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Flavour structure in the MSSM

Assume same flavour structure as in Standard Model: flavour-changing currents are 
related to CKM/PMNS-matrices — minimal flavour violation (MFV)
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Sfermion sector in the MSSM

M2
d̃

are given by101

M2
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respectively. In these notations, we have introduced the soft supersymmetry-breaking102

squark mass matrices M2
Q̃
, M2

Ũ
and M2

D̃
for left-handed, up-type right-handed and down-103

type right-handed squarks respectively, as well as the matrices Tu and Td that embed the104

trilinear soft interactions of the up-type and down-type squarks with the Higgs sector.105

While these five matrices are defined to be flavour diagonal in usual constrained versions of106

the MSSM, our NMFV framework allows them to be general and possibly flavour-violating.107

Moreover, VCKM stands for the CKM matrix, µ denotes the superpotential Higgs(ino) mass108

parameter and tan � = vd
vu

is the ratio of the vacuum expectation values of the neutral109

components of the two Higgs doublets. Finally, the squark mass matrices also include110

(flavour-diagonal) D-term contributions111
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where mZ is the Z-boson mass, ✓W is the weak mixing angle and eq and Iq (with q = u, d)112

are the electric charge and the weak isospin quantum numbers of the (s)quarks.113

In order to reduce the number of supersymmetric input parameters, we assume that114

the first two generations of squarks are degenerate so that the (flavour-conserving) soft115

masses are determined by six free parameters,116
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⌘ MŨ1,2
,

�
MŨ
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,

�
MD̃

�
11

=
�
MD̃

�
22

⌘ MD̃1,2
,

�
MD̃

�
33

⌘ MD̃3
.

(2.3)

Moreover, we define the diagonal components of the trilinear couplings Tq relatively to the117

Yukawa matrices Yq,118

(Tq)ii = (Aq)ii(Yq)ii . (2.4)

We then neglect the first and second generation Yukawa couplings so that only the trilinear119

coupling parameters related to third generation squarks are considered as free parameters.120

We take them equal for simplicity, so that we have121

(Au)33 ⌘ At , (Ad)33 ⌘ Ab and At = Ab ⌘ Af . (2.5)

We now turn to the o↵-diagonal elements of the squark mass matrices. In order to122

be compliant with kaon data, we ignore any mixing involving one of the first generation123

squarks [23]. Next, following standard prescriptions [24], we normalize the non-diagonal124

– 3 –

In the super-CKM basis, the sfermion sector is parametrized by four mass matrices:  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In the super-CKM basis, the sfermion sector is parametrized by four mass matrices:  

5 independent mass matrices and 3 trilinear coupling matrices  
 
 

(3x3 matrices in flavour space — 48 independent parameters)

M2
Q̃
, M2

Ũ
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Non-minimally flavour-violating terms manifest as non-diagonal entries in the soft mass 
matrices (                                    ) and the trilinear coupling matrices (                )
— dimensionless and scenario-independent parametrization:
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Ũ

�
ij�

MŨ
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Non-minimally flavour-violating terms manifest as non-diagonal entries in the soft mass 
matrices (                                    ) and the trilinear coupling matrices (                )
— dimensionless and scenario-independent parametrization:

Mass eigenstates are obtained via 6x6 rotation matrices (generalized “mixing angles”):
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TeV scale MSSM — flavour-violating parameters

De Causmaecker, Fuks, Herrmann, Mahmoudi, O’Leary, Porod, Sekmen, Strobbe  — JHEP 1511 (2015) 125 — arXiv:1509.05414 [hep-ph]
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Figure 2. Same as Figure 1 in the case of the flavour-violating input parameters of our NMFV
MSSM description.

4.2 Flavour-violating parameters

We now turn to the analysis of the constraints that are imposed on the seven non-minimally

flavour-violating parameters �
q
↵� that are at the centre of interest of the present analysis.

The corresponding prior and posterior distributions are displayed in Figure 2, and we detail

the impact of the most important observables on Figure 3, Figure 4 and Figure 5.

The theoretical constraints on any additional stop-scharm mixing in the left-left sector

(�LL) are relatively mild such that an almost flat behaviour is observed (see Figure 2). The

�LL parameter is then mainly constrained by the B-meson oscillation parameter �MBs
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Extensive analysis of the MSSM with squark NMFV featuring 22 parameters at the TeV scale
— Markov Chain Monte Carlo (MCMC) study
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Hypothesis of NMFV in the squark sector 
not obviously disfavoured by exp. data  

(B-physics, K-physics, Higgs mass, …)

http://www.arxiv.org/abs/1803.10379


LHC squark mass limits and search proposal

Chakraborty, Endo, Fuks, Herrmann, Nojiri, Pani, Polesello — PhysTeV Les Houches 2017 — arXiv:1803.10379 [hep-ph]
Chakraborty, Endo, Fuks, Herrmann, Nojiri, Pani, Polesello — Eur. Phys. J. C78 (2018) 10: 844 — arXiv:1808.07488 [hep-ph]

http://www.arxiv.org/abs/1803.10379
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SU(5)-like Grand Unification
families are neatly accommodated into the SU(5) representations F = 5 and T = 10

according to
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We argue that in order to account for the muon anomalous magnetic moment g − 2, dark matter and LHC
data, nonuniversal gaugino masses Mi at the high scale are required in the framework of the minimal
supersymmetric standard model. We also need a right-handed smuon μ̃R with a mass around 100 GeV,
evading LHC searches due to the proximity of a neutralino χ̃01 several GeV lighter which allows successful
dark matter. We discuss such a scenario in the framework of an SUð5Þ grand unified theory (GUT)
combined with A4 family symmetry, where the three 5̄ representations form a single triplet of A4 with a
unified soft mass m F, while the three 10 representations are singlets of A4 with independent soft masses
m T1; m T2; m T3. Although m T2 (and hence μ̃R) may be light, the muon g − 2 and relic density also requires
light M1 ≃ 250 GeV, which is incompatible with universal gaugino masses due to LHC constraints onM2

andM3 arising from gaugino searches. After showing that universal gaugino massesM1=2 at the GUT scale
are excluded by gluino searches, we provide a series of benchmarks which show that while M1 ¼ M2 ≪
M3 is in tension with 8 and 13 TeV LHC data,M1 < M2 ≪ M3 is currently allowed. Even this scenario is
almost excluded by the tension between the muon g − 2, relic density, dark matter direct detection and LHC
data. We focus on a region of parameter space that has not been studied in detail before being characterized
by low Higgsino mass μ ≈ −300 GeV, as required by the muon g − 2. The LHC will be able to fully test
this scenario with the upgraded luminosity via muon-dominated tri- and dilepton signatures resulting from
Higgsino-dominated χ̃$1 χ̃

0
2 and χ̃þ1 χ̃

−
1 production.

DOI: 10.1103/PhysRevD.97.115002

I. INTRODUCTION

The minimal supersymmetric standard model (MSSM)
remains an attractive candidate for physics beyond the
standard model (BSM) even in the absence of any signal at
the Large Hadron Collider (LHC). Despite the limits from
direct and indirect searches for dark matter (DM), the
lightest neutralino [1], whose stability is enforced by R
parity, remains a prime candidate for the weakly interacting
massive particle (WIMP).
There are several constraints from the LHC that restrict

the parameter space of the MSSM, in particular, the
requirement of a 125 GeV Higgs boson and stringent
limits on the gluino mass [2,3].

An interesting possible signature of BSM physics is
the muon g − 2 or anomalous magnetic moment aμ ¼
ðg − 2Þμ=2 which differs from its standard model (SM)
prediction by amount [4],

Δaμ ≡ aμðexpÞ − aμðSMÞ ¼ ð28.8 $ 8.0Þ × 10−10: ð1Þ

Although it is possible to account for the muon g − 2within
a supersymmetric framework [5–38], it is well known that it
cannot be achieved in the MSSMwith universal soft masses
consistent with the above requirements, and therefore,
some degree of nonuniversality is required. For example,
nonuniversal gaugino masses have been shown to lead to an
acceptable muon g − 2 [25,27,31,39], while for a universal
high-scale gaugino mass M1;2 ≠M3 one is forced into a
region of parameter space with large positive μ∼2–5 TeV
[37]. Based on fine-tuning considerations, one is motivated
to consider smaller values of μ. In this paper we focus on
successful regions of parameter space with μ ≈ −300 GeV,
which have not been well studied hitherto.
It is well known that, to solve the muon g − 2 problem in

supersymmetry (SUSY) models, various mass spectra,
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dark matter. We discuss such a scenario in the framework of an SUð5Þ grand unified theory (GUT)
combined with A4 family symmetry, where the three 5̄ representations form a single triplet of A4 with a
unified soft mass m F, while the three 10 representations are singlets of A4 with independent soft masses
m T1; m T2; m T3. Although m T2 (and hence μ̃R) may be light, the muon g − 2 and relic density also requires
light M1 ≃ 250 GeV, which is incompatible with universal gaugino masses due to LHC constraints onM2

andM3 arising from gaugino searches. After showing that universal gaugino massesM1=2 at the GUT scale
are excluded by gluino searches, we provide a series of benchmarks which show that while M1 ¼ M2 ≪
M3 is in tension with 8 and 13 TeV LHC data,M1 < M2 ≪ M3 is currently allowed. Even this scenario is
almost excluded by the tension between the muon g − 2, relic density, dark matter direct detection and LHC
data. We focus on a region of parameter space that has not been studied in detail before being characterized
by low Higgsino mass μ ≈ −300 GeV, as required by the muon g − 2. The LHC will be able to fully test
this scenario with the upgraded luminosity via muon-dominated tri- and dilepton signatures resulting from
Higgsino-dominated χ̃$1 χ̃

0
2 and χ̃þ1 χ̃

−
1 production.

DOI: 10.1103/PhysRevD.97.115002

I. INTRODUCTION

The minimal supersymmetric standard model (MSSM)
remains an attractive candidate for physics beyond the
standard model (BSM) even in the absence of any signal at
the Large Hadron Collider (LHC). Despite the limits from
direct and indirect searches for dark matter (DM), the
lightest neutralino [1], whose stability is enforced by R
parity, remains a prime candidate for the weakly interacting
massive particle (WIMP).
There are several constraints from the LHC that restrict

the parameter space of the MSSM, in particular, the
requirement of a 125 GeV Higgs boson and stringent
limits on the gluino mass [2,3].

An interesting possible signature of BSM physics is
the muon g − 2 or anomalous magnetic moment aμ ¼
ðg − 2Þμ=2 which differs from its standard model (SM)
prediction by amount [4],

Δaμ ≡ aμðexpÞ − aμðSMÞ ¼ ð28.8 $ 8.0Þ × 10−10: ð1Þ

Although it is possible to account for the muon g − 2within
a supersymmetric framework [5–38], it is well known that it
cannot be achieved in the MSSMwith universal soft masses
consistent with the above requirements, and therefore,
some degree of nonuniversality is required. For example,
nonuniversal gaugino masses have been shown to lead to an
acceptable muon g − 2 [25,27,31,39], while for a universal
high-scale gaugino mass M1;2 ≠M3 one is forced into a
region of parameter space with large positive μ∼2–5 TeV
[37]. Based on fine-tuning considerations, one is motivated
to consider smaller values of μ. In this paper we focus on
successful regions of parameter space with μ ≈ −300 GeV,
which have not been well studied hitherto.
It is well known that, to solve the muon g − 2 problem in

supersymmetry (SUSY) models, various mass spectra,
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What about NMFV effects in this setup…?



Sfermion sector in the MSSM — revisited

In the super-CKM/PMNS basis, the sfermion sector is parametrized by four mass matrices:  M2
d̃

are given by101

M2
ũ =

 
VCKMM2

Q̃
V †
CKM + m2

u + Dũ,L
vup
2
T †
u � mu

µ
tan�

vup
2
Tu � mu

µ⇤

tan� M2
Ũ

+ m2
u + Dũ,R

!
,

M2
d̃

=

 
M2

Q̃
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d + Dd̃,L
vdp
2
T †
d � mdµ tan �

vdp
2
Td � mdµ⇤ tan � M2

D̃
+ m2

d + Dd̃,R

!
,

(2.1)

respectively. In these notations, we have introduced the soft supersymmetry-breaking102

squark mass matrices M2
Q̃
, M2

Ũ
and M2

D̃
for left-handed, up-type right-handed and down-103

type right-handed squarks respectively, as well as the matrices Tu and Td that embed the104

trilinear soft interactions of the up-type and down-type squarks with the Higgs sector.105

While these five matrices are defined to be flavour diagonal in usual constrained versions of106

the MSSM, our NMFV framework allows them to be general and possibly flavour-violating.107

Moreover, VCKM stands for the CKM matrix, µ denotes the superpotential Higgs(ino) mass108

parameter and tan � = vd
vu

is the ratio of the vacuum expectation values of the neutral109

components of the two Higgs doublets. Finally, the squark mass matrices also include110

(flavour-diagonal) D-term contributions111

Dq̃,L = m2
Z

�
Iq � eq sin2 ✓W

�
cos 2� and Dq̃,R = m2

Zeq sin2 ✓W cos 2� , (2.2)

where mZ is the Z-boson mass, ✓W is the weak mixing angle and eq and Iq (with q = u, d)112

are the electric charge and the weak isospin quantum numbers of the (s)quarks.113

In order to reduce the number of supersymmetric input parameters, we assume that114

the first two generations of squarks are degenerate so that the (flavour-conserving) soft115

masses are determined by six free parameters,116
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(2.3)

Moreover, we define the diagonal components of the trilinear couplings Tq relatively to the117

Yukawa matrices Yq,118

(Tq)ii = (Aq)ii(Yq)ii . (2.4)

We then neglect the first and second generation Yukawa couplings so that only the trilinear119

coupling parameters related to third generation squarks are considered as free parameters.120

We take them equal for simplicity, so that we have121

(Au)33 ⌘ At , (Ad)33 ⌘ Ab and At = Ab ⌘ Af . (2.5)

We now turn to the o↵-diagonal elements of the squark mass matrices. In order to122

be compliant with kaon data, we ignore any mixing involving one of the first generation123

squarks [23]. Next, following standard prescriptions [24], we normalize the non-diagonal124
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In the super-CKM/PMNS basis, the sfermion sector is parametrized by four mass matrices:  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MFV Reference points

Parameter/Observable Scenario 1 Scenario 2
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2 0.116 0.120

�
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Neutron

SI
/10�14

pb 3.249 0.986

Table 1: GUT-scale inputs together with resulting physical masses and relevant TeV-scale parameters for
our MFV reference scenarios. The first is based on BP4 from [25], the second features higher smuon and
neutralino masses. Further squark and slepton masses which are beyond the reach of current experiments
are not shown. Unless otherwise illustrated, dimensionful quantities are given in GeV. DM direct detection
cross-sections are given for both protons and neutrons.

3.2 Introducing NMFV

Starting from these two MFV reference points, we study the impact of flavour violating
soft terms by perturbing around this scenario. Keeping the MFV parameters fixed at the
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NMFV parameter study
Parameters Scenario 1 Scenario 2

(�T )12 [�2.00, 2.00]⇥ 10�2 [�5.57, 5.15]⇥ 10�2

(�T )13 [�8.01, 8.01]⇥ 10�2 [�0.267, 0.301]

(�T )23 0.0 [�5.73, 5.73]⇥ 10�2

(�F )12 [�8.00, 8.00]⇥ 10�3 [�8.00, 8.00]⇥ 10�3

(�F )13 [�1.00, 1.00]⇥ 10�2 [�8.00, 8.00]⇥ 10�2

(�F )23 [�1.60, 1.60]⇥ 10�2 [�8.00, 8.00]⇥ 10�2

(�TT )12 [�8.69, 10.43]⇥ 10�4 [�7.46, 8.95]⇥ 10�4

(�TT )13 [�1.74, 1.74]⇥ 10�3 [�3.48, 1.74]⇥ 10�3

(�TT )23 [�0.0174, 0.145] [�0.0871, 0.124]

(�FT )12 [�4.64, 4.64]⇥ 10�5 [�5.47, 5.47]⇥ 10�5

(�FT )13 [�7.74, 7.74]⇥ 10�5 [�3.87, 3.87]⇥ 10�4

(�FT )21 0.0 [�1.04, 1.04]⇥ 10�4

(�FT )23 [�1.16, 1.16]⇥ 10�4 [�2.32, 2.32]⇥ 10�4

(�FT )31 [�1.39, 1.39]⇥ 10�5 [�8.81, 8.81]⇥ 10�5

(�FT )32 0.0 [�1.49, 1.49]⇥ 10�4

Table 4: Ranges of the NMFV parameters defined at the GUT scale (see Eq. (2.9)) for our multi-
dimensional scans around the reference scenarios. Those parameters given as 0.0 have not been varied,
since even small variations lead to tachyonic mass spectra and/or a charged LSP.

4 Results and Discussion

4.1 General Remarks and Summary of Bounds

Results and related phenomenology are discussed in the following sections, here we focus
on general aspects and detail limits on NMFV parameters Table 5.

We confidently conclude that the most sensitive observables for the majority of param-
eters across both scans are the branching ratios of µ ! e�, B ! Xs� and the dark matter
relic density, ⌦CDM . The branching ratio of µ ! 3e has much the same impact as µ ! e�.
The impact of the relic density can be attributed to crucial coannihilation effects which
stem from the small mass gap between the lightest slepton and LSP, this in turn is strongly
dependent on the size of off-diagonal entrants in the slepton mass matrix. Indeed, since
Scenario 1 exhibits a small (mT )22, even tiny flavour-violating parameters can be excluded
by current data.

It should be noted that flavour violating parameters that mix the first and second
generations with the third are constrained by µ ! e� and µ ! 3e but not by ⌧ ! µ� or
⌧ ! e�. This is due to the greater precision of the µ ! e� measurement with respect to
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Experimental constraints

Decay mode
Relative contribution to ⌦DM

Scenario 1 Scenario 2

fµR, e�0
1 ! �, µR 45% 31%

e�0
1, e�0

1 ! µR, µR 27% 2%

fµR, fµR ! µR, µR 10% 37%

fµR, e�0
1 ! Z, µR 8% 8%

fµR, fµR ! �, � 3% 11%

Table 2: Dominant decay modes in MFV scenarios that contribute to the relic density.

Observable Constraint Remarks Refs.

mh (125.2± 2.5) GeV (SPheno th.) [34, 39, 40]

BR(µ ! e�) < 4.2⇥ 10�13 90% (exp.) [34]
BR(µ ! 3e) < 1.0⇥ 10�12 90% (exp.) [34]
BR(⌧ ! e�) < 3.3⇥ 10�8 90% (exp.) [34]
BR(⌧ ! µ�) < 4.4⇥ 10�8 90% (exp.) [34]
BR(⌧ ! 3e) < 2.7⇥ 10�8 90% (exp.) [34]
BR(⌧ ! 3µ) < 2.1⇥ 10�8 90% (exp.) [34]

BR(⌧ ! e
�
µµ) < 2.7⇥ 10�8 90% (exp.) [34]

BR(⌧ ! e
+
µµ) < 1.7⇥ 10�8 90% (exp.) [34]

BR(⌧ ! µ
�
ee) < 1.8⇥ 10�8 90% (exp.) [34]

BR(⌧ ! µ
+
ee) < 1.5⇥ 10�8 90% (exp.) [34]

BR(B ! Xs�) (3.32± 0.18)⇥ 10�4 2� (exp.) [35]
BR(Bs ! µµ) (2.7± 1.2)⇥ 10�9 2� (exp.) [34]
BR(B⌧ ! µ�) < 4.4⇥ 10�8 90% (exp.) [34]

�MBs (17.757± 0.042± 2.7) ps�1 2� (exp.), (th. SM-2015) [34, 38]
�MK (3.1± 1.2)⇥ 10�15 GeV (th.) [34, 37]
✏K 2.228± 0.29 (th.) [34, 37]

⌦CDMh
2 0.1198± 0.0042 2� (exp.), 1% (th.) [36, 45–47]

Table 3: Experimental constraints imposed on the A4⇥SU(5) parameter space in our study. Upper limits
are given at the 90% confidence level, while two-sided limits are understood at the 95% confidence level.

values given in Table 1, we perform a random scan on the flavour-violating parameters
introduced in Eq. (2.9) at the GUT scale using flat prior distributions. We scan over the
flavour-violating parameters both independently and as part of a more-dimensional scan
over all �s simultaneously and subsequently study the impact of constraints detailed in
Table ??.
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fµR, e�0
1 ! �, µR 45% 31%

e�0
1, e�0

1 ! µR, µR 27% 2%

fµR, fµR ! µR, µR 10% 37%
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1 ! Z, µR 8% 8%
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µµ) < 2.7⇥ 10�8 90% (exp.) [34]

BR(⌧ ! e
+
µµ) < 1.7⇥ 10�8 90% (exp.) [34]

BR(⌧ ! µ
�
ee) < 1.8⇥ 10�8 90% (exp.) [34]

BR(⌧ ! µ
+
ee) < 1.5⇥ 10�8 90% (exp.) [34]
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�MK (3.1± 1.2)⇥ 10�15 GeV (th.) [34, 37]
✏K 2.228± 0.29 (th.) [34, 37]

⌦CDMh
2 0.1198± 0.0042 2� (exp.), 1% (th.) [36, 45–47]

Table 3: Experimental constraints imposed on the A4⇥SU(5) parameter space in our study. Upper limits
are given at the 90% confidence level, while two-sided limits are understood at the 95% confidence level.

values given in Table 1, we perform a random scan on the flavour-violating parameters
introduced in Eq. (2.9) at the GUT scale using flat prior distributions. We scan over the
flavour-violating parameters both independently and as part of a more-dimensional scan
over all �s simultaneously and subsequently study the impact of constraints detailed in
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Figure 1: Computational proceedure for individual parameter point

throughout the analysis of Scenario 1. Our scan is over 15 non-zero NMFV-parameters at
the GUT scale. We test each parameter point by calculating observables listed in Table
?? and then check whether all constraints are satisfied. The points that do not conform
to this become part of the prior distribution of parameters only. Only those that are
allowed under the constraints also become part of the posterior distribution. In examining
said distribution of each parameter we obtain allowed possibilities for each of the NMFV
parameters in both scenarios.
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Results — Overview
Parameters Scenario 1 Most constraining obs. 1 Scenario 2 Most constraining obs. 2

(�T )12 [-0.015, 0.015] µ ! 3e, µ ! e�, ⌦
�̃
0
1
h
2 [-0.12, 0.12]† ⌦

�̃
0
1
h
2, µ ! e�

(�T )13 ]-0.06, 0.06[ ⌦
�̃
0
1
h
2 [-0.3, 0.3]† ⌦

�̃
0
1
h
2

(�T )23 [0, 0]⇤ ⌦
�̃
0
1
h
2, µ ! 3e, µ ! e� [-0.1, 0.1†] ⌦

�̃
0
1
h
2, µ ! 3e, µ ! e�,

(�F )12 [-0.008, 0.008] µ ! 3e, µ ! e� [-0.015, 0.015]† µ ! 3e, µ ! e�

(�F )13 ]-0.01, 0.01[ µ ! e� [-0.15, 0.15]† µ ! 3e, µ ! e�

(�F )23 ]-0.015, 0.015[ µ ! e�, ⌦
�̃
0
1
h
2 [-0.15, 0.15]† ⌦

�̃
0
1
h
2, µ ! e�, µ ! 3e

(�TT )12 [-3, 3.5] ⇥10�5 prior [-1, 1.5]† ⇥10�3 prior, ⌦
�̃
0
1
h
2

(�TT )13 ]-6, 7[ ⇥10�5 prior, ⌦
�̃
0
1
h
2 [-4, 2.5]† ⇥10�3 prior, ⌦

�̃
0
1
h
2

(�TT )23 ]-0.5, 4[ ⇥10�5 prior, ⌦
�̃
0
1
h
2 [-0.25, 0.2]† prior, ⌦

�̃
0
1
h
2

(�FT )12 [-0.0015, 0.0015] ⌦
�̃
0
1
h
2 [-1.2, 1.2]† ⇥10�4

µ ! 3e, ⌦
�̃
0
1
h
2, µ ! e�

(�FT )13 ]-0.002, 0.002[ ⌦
�̃
0
1
h
2 [-5, 5] ⇥10�4 ⌦

�̃
0
1
h
2, µ ! 3e, µ ! e�

(�FT )21 [0,0]* prior [-1.2, 1.2]† ⇥10�4 ⌦
�̃
0
1
h
2, prior

(�FT )23 ]-0.0022, 0.0022[ ⌦
�̃
0
1
h
2 [-6, 6]† ⇥10�4

µ ! 3e, ⌦
�̃
0
1
h
2, µ ! e�

(�FT )31 ]-0.0004, 0.0004[ ⌦
�̃
0
1
h
2 [-2, 2]† ⇥10�4 ⌦

�̃
0
1
h
2

(�FT )32 [0,0]* prior [-1.5, 1.5] ⇥10�4 ⌦
�̃
0
1
h
2

Table 5: Estimated allowed GUT scale flavour-violation for both reference scenarios and impactful con-
straints. Where square brackets are shown open, we scan up to these values but, even if we noticed some
impact from the constraints, it seems that the allowed region can be larger. The observables are set in
order from the most constraining to the least constraining. A ⇤ denotes parameters fixed to 0 in order to
satisfy LSP and physical mass spectrum requirements. A parameter that is bounded by ‘prior’ is affected
only by LSP and physical mass constraints.

the analogous tau decays. Considering one-loop Feynman diagrams for µ ! e�, (�)13 and
(�)23 parameters can enter as a consequence of stau exchange, therefore introducing the
suppression of a second small � parameter. However, relevant �s are > 10�5 and since the
increase in precision between the experimental values of ⌧ ! e/µ� and µ ! e� is around
five orders of magnitude, muon decay bounds have a significant effect on these parameters.
We compared the impact of decay rates by artificially lowering the bound on tau decays.
In such a case, the tau sector becomes dominant when considering constraints on (�)13 and
(�)23 parameters.

The hadronic constraint, BR(B ! Xs�), has non-negligible impact on some posterior
distributions. We emphasize that compute time and efficiency are important limitations
with regards to the scan. Indeed, increasing the ranges of parameters outside that of Table
4 when scanned in a flat, random way often leads to an unreasonably low efficiency of
obtaining surviving points. The full set of bounds on all scanned parameters are fully
detailed in Table 5.

4.2 Scan Around Scenario 1

Here are discussed in detail the results for the full NMFV scan around the Scenario 1
reference point. MFV parameters were held at their Scenario 1 values and remain un-
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* parameter not varied                                       † extrapolated range



Individual vs. simultaneous variation

Figure 2: Comparison of individual VS simultaneous scan in Scenario 1 for (�F )12; individual scan shown
on the left, full scan on the right.

altered throughout the entirety of the scan. First, we motivate the requirement for a
multi-dimensional scan:

4.2.1 Individual Parameter Scans VS Simultaneous Scans

Cancellations between parameters can give rise to viable regions of parameter space that
would otherwise be excluded by a more simplistic scan. We choose three arbitrary param-
eters on which to show this effect:

Figure 2 shows action of the µ ! 3e flavour constraint on a single GUT scale parameter,
(�F )12. The viable region of parameter space as denoted by the red posterior distribution
is much larger in the right panel, i.e. where all NMFV parameters are switched on simulta-
neously. Cancellations in the calculation of constraint-relevant observables are responsible
for this effect. Similar effects are shown for other GUT scale parameters in Figures 3 and
4.

In Figure 3, note how the posterior distributions vary between the first two panels
and recall that here we study the effects of all the flavour constraints simultaneously; the
individual scan places bounds of ' ±0.2⇥10�2 on this parameter, whereas the simultaneous
scan bounds are closer to ' ±1.6⇥ 10�2.

Figure 4 reveals a result that is even more stark. Therefore scanning over one parameter
at a time is insufficient when there is a large number of NMFV parameters that from a
theoretical point of view are not restricted from varying simultaneously.

4.2.2 Simultaneous Scan Results

Here we plot the prior and posterior distributions for all parameters, focusing on the im-
portant constraints (those that alter the distribution significantly from prior to posterior).
The following figures show how constraints alter the distributions for �

T .
Firstly, (�T )12. Muon decay constraints are by far the most impactful, with DM re-

quirements a subleading effect.
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Individual variation Simultaneous variation

prior
distribution

posterior 
distribution

In a multi-dimensional parameter space, it is clearly not enough to scan each parameter
individually… 
→ interference or cancellation effects in simultaneous study can be very important!



Interplay of different constraintsFigure 4: Comparison of individual VS simultaneous scan for (�FT )12 in Scenario 1.

Figure 5: Main constraints on (�T )12 from simultaneous scan around Scenario 1
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μ➞eγ  vs.  μ➞3e

Decay mode
Relative contribution to ⌦DM

Scenario 1 Scenario 2

fµR, e�0
1 ! �, µR 45% 31%

e�0
1, e�0

1 ! µR, µR 27% 2%

fµR, fµR ! µR, µR 10% 37%

fµR, e�0
1 ! Z, µR 8% 8%

fµR, fµR ! �, � 3% 11%

Table 2: Dominant decay modes in MFV scenarios that contribute to the relic density.

Observable Constraint Remarks Refs.

mh (125.2± 2.5) GeV (SPheno th.) [34, 39, 40]

BR(µ ! e�) < 4.2⇥ 10�13 90% (exp.) [34]
BR(µ ! 3e) < 1.0⇥ 10�12 90% (exp.) [34]
BR(⌧ ! e�) < 3.3⇥ 10�8 90% (exp.) [34]
BR(⌧ ! µ�) < 4.4⇥ 10�8 90% (exp.) [34]
BR(⌧ ! 3e) < 2.7⇥ 10�8 90% (exp.) [34]
BR(⌧ ! 3µ) < 2.1⇥ 10�8 90% (exp.) [34]

BR(⌧ ! e
�
µµ) < 2.7⇥ 10�8 90% (exp.) [34]

BR(⌧ ! e
+
µµ) < 1.7⇥ 10�8 90% (exp.) [34]

BR(⌧ ! µ
�
ee) < 1.8⇥ 10�8 90% (exp.) [34]

BR(⌧ ! µ
+
ee) < 1.5⇥ 10�8 90% (exp.) [34]

BR(B ! Xs�) (3.32± 0.18)⇥ 10�4 2� (exp.) [35]
BR(Bs ! µµ) (2.7± 1.2)⇥ 10�9 2� (exp.) [34]
BR(B⌧ ! µ�) < 4.4⇥ 10�8 90% (exp.) [34]

�MBs (17.757± 0.042± 2.7) ps�1 2� (exp.), (th. SM-2015) [34, 38]
�MK (3.1± 1.2)⇥ 10�15 GeV (th.) [34, 37]
✏K 2.228± 0.29 (th.) [34, 37]

⌦CDMh
2 0.1198± 0.0042 2� (exp.), 1% (th.) [36, 45–47]

Table 3: Experimental constraints imposed on the A4⇥SU(5) parameter space in our study. Upper limits
are given at the 90% confidence level, while two-sided limits are understood at the 95% confidence level.

values given in Table 1, we perform a random scan on the flavour-violating parameters
introduced in Eq. (2.9) at the GUT scale using flat prior distributions. We scan over the
flavour-violating parameters both independently and as part of a more-dimensional scan
over all �s simultaneously and subsequently study the impact of constraints detailed in
Table ??.
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Parameters Scenario 1 Most constraining obs. 1 Scenario 2 Most constraining obs. 2

(�T )12 [-0.015, 0.015] µ ! 3e, µ ! e�, ⌦
�̃
0
1
h
2 [-0.12, 0.12]† ⌦

�̃
0
1
h
2, µ ! e�

(�T )13 ]-0.06, 0.06[ ⌦
�̃
0
1
h
2 [-0.3, 0.3]† ⌦

�̃
0
1
h
2

(�T )23 [0, 0]⇤ ⌦
�̃
0
1
h
2, µ ! 3e, µ ! e� [-0.1, 0.1†] ⌦

�̃
0
1
h
2, µ ! 3e, µ ! e�,

(�F )12 [-0.008, 0.008] µ ! 3e, µ ! e� [-0.015, 0.015]† µ ! 3e, µ ! e�

(�F )13 ]-0.01, 0.01[ µ ! e� [-0.15, 0.15]† µ ! 3e, µ ! e�

(�F )23 ]-0.015, 0.015[ µ ! e�, ⌦
�̃
0
1
h
2 [-0.15, 0.15]† ⌦

�̃
0
1
h
2, µ ! e�, µ ! 3e

(�TT )12 [-3, 3.5] ⇥10�5 prior [-1, 1.5]† ⇥10�3 prior, ⌦
�̃
0
1
h
2

(�TT )13 ]-6, 7[ ⇥10�5 prior, ⌦
�̃
0
1
h
2 [-4, 2.5]† ⇥10�3 prior, ⌦

�̃
0
1
h
2

(�TT )23 ]-0.5, 4[ ⇥10�5 prior, ⌦
�̃
0
1
h
2 [-0.25, 0.2]† prior, ⌦

�̃
0
1
h
2

(�FT )12 [-0.0015, 0.0015] ⌦
�̃
0
1
h
2 [-1.2, 1.2]† ⇥10�4

µ ! 3e, ⌦
�̃
0
1
h
2, µ ! e�

(�FT )13 ]-0.002, 0.002[ ⌦
�̃
0
1
h
2 [-5, 5] ⇥10�4 ⌦

�̃
0
1
h
2, µ ! 3e, µ ! e�

(�FT )21 [0,0]* prior [-1.2, 1.2]† ⇥10�4 ⌦
�̃
0
1
h
2, prior

(�FT )23 ]-0.0022, 0.0022[ ⌦
�̃
0
1
h
2 [-6, 6]† ⇥10�4

µ ! 3e, ⌦
�̃
0
1
h
2, µ ! e�

(�FT )31 ]-0.0004, 0.0004[ ⌦
�̃
0
1
h
2 [-2, 2]† ⇥10�4 ⌦

�̃
0
1
h
2

(�FT )32 [0,0]* prior [-1.5, 1.5] ⇥10�4 ⌦
�̃
0
1
h
2

Table 5: Estimated allowed GUT scale flavour-violation for both reference scenarios and impactful con-
straints. Where square brackets are shown open, we scan up to these values but, even if we noticed some
impact from the constraints, it seems that the allowed region can be larger. The observables are set in
order from the most constraining to the least constraining. A ⇤ denotes parameters fixed to 0 in order to
satisfy LSP and physical mass spectrum requirements. A parameter that is bounded by ‘prior’ is affected
only by LSP and physical mass constraints.

the analogous tau decays. Considering one-loop Feynman diagrams for µ ! e�, (�)13 and
(�)23 parameters can enter as a consequence of stau exchange, therefore introducing the
suppression of a second small � parameter. However, relevant �s are > 10�5 and since the
increase in precision between the experimental values of ⌧ ! e/µ� and µ ! e� is around
five orders of magnitude, muon decay bounds have a significant effect on these parameters.
We compared the impact of decay rates by artificially lowering the bound on tau decays.
In such a case, the tau sector becomes dominant when considering constraints on (�)13 and
(�)23 parameters.

The hadronic constraint, BR(B ! Xs�), has non-negligible impact on some posterior
distributions. We emphasize that compute time and efficiency are important limitations
with regards to the scan. Indeed, increasing the ranges of parameters outside that of Table
4 when scanned in a flat, random way often leads to an unreasonably low efficiency of
obtaining surviving points. The full set of bounds on all scanned parameters are fully
detailed in Table 5.

4.2 Scan Around Scenario 1

Here are discussed in detail the results for the full NMFV scan around the Scenario 1
reference point. MFV parameters were held at their Scenario 1 values and remain un-
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impact from the constraints, it seems that the allowed region can be larger. The observables are set in
order from the most constraining to the least constraining. A ⇤ denotes parameters fixed to 0 in order to
satisfy LSP and physical mass spectrum requirements. A parameter that is bounded by ‘prior’ is affected
only by LSP and physical mass constraints.
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(�)23 parameters can enter as a consequence of stau exchange, therefore introducing the
suppression of a second small � parameter. However, relevant �s are > 10�5 and since the
increase in precision between the experimental values of ⌧ ! e/µ� and µ ! e� is around
five orders of magnitude, muon decay bounds have a significant effect on these parameters.
We compared the impact of decay rates by artificially lowering the bound on tau decays.
In such a case, the tau sector becomes dominant when considering constraints on (�)13 and
(�)23 parameters.

The hadronic constraint, BR(B ! Xs�), has non-negligible impact on some posterior
distributions. We emphasize that compute time and efficiency are important limitations
with regards to the scan. Indeed, increasing the ranges of parameters outside that of Table
4 when scanned in a flat, random way often leads to an unreasonably low efficiency of
obtaining surviving points. The full set of bounds on all scanned parameters are fully
detailed in Table 5.

4.2 Scan Around Scenario 1

Here are discussed in detail the results for the full NMFV scan around the Scenario 1
reference point. MFV parameters were held at their Scenario 1 values and remain un-
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μ➞eγ  vs.  μ➞3e

Decay mode
Relative contribution to ⌦DM

Scenario 1 Scenario 2

fµR, e�0
1 ! �, µR 45% 31%

e�0
1, e�0

1 ! µR, µR 27% 2%

fµR, fµR ! µR, µR 10% 37%

fµR, e�0
1 ! Z, µR 8% 8%

fµR, fµR ! �, � 3% 11%

Table 2: Dominant decay modes in MFV scenarios that contribute to the relic density.

Observable Constraint Remarks Refs.

mh (125.2± 2.5) GeV (SPheno th.) [34, 39, 40]

BR(µ ! e�) < 4.2⇥ 10�13 90% (exp.) [34]
BR(µ ! 3e) < 1.0⇥ 10�12 90% (exp.) [34]
BR(⌧ ! e�) < 3.3⇥ 10�8 90% (exp.) [34]
BR(⌧ ! µ�) < 4.4⇥ 10�8 90% (exp.) [34]
BR(⌧ ! 3e) < 2.7⇥ 10�8 90% (exp.) [34]
BR(⌧ ! 3µ) < 2.1⇥ 10�8 90% (exp.) [34]

BR(⌧ ! e
�
µµ) < 2.7⇥ 10�8 90% (exp.) [34]

BR(⌧ ! e
+
µµ) < 1.7⇥ 10�8 90% (exp.) [34]

BR(⌧ ! µ
�
ee) < 1.8⇥ 10�8 90% (exp.) [34]

BR(⌧ ! µ
+
ee) < 1.5⇥ 10�8 90% (exp.) [34]

BR(B ! Xs�) (3.32± 0.18)⇥ 10�4 2� (exp.) [35]
BR(Bs ! µµ) (2.7± 1.2)⇥ 10�9 2� (exp.) [34]
BR(B⌧ ! µ�) < 4.4⇥ 10�8 90% (exp.) [34]

�MBs (17.757± 0.042± 2.7) ps�1 2� (exp.), (th. SM-2015) [34, 38]
�MK (3.1± 1.2)⇥ 10�15 GeV (th.) [34, 37]
✏K 2.228± 0.29 (th.) [34, 37]

⌦CDMh
2 0.1198± 0.0042 2� (exp.), 1% (th.) [36, 45–47]

Table 3: Experimental constraints imposed on the A4⇥SU(5) parameter space in our study. Upper limits
are given at the 90% confidence level, while two-sided limits are understood at the 95% confidence level.

values given in Table 1, we perform a random scan on the flavour-violating parameters
introduced in Eq. (2.9) at the GUT scale using flat prior distributions. We scan over the
flavour-violating parameters both independently and as part of a more-dimensional scan
over all �s simultaneously and subsequently study the impact of constraints detailed in
Table ??.
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Table 5: Estimated allowed GUT scale flavour-violation for both reference scenarios and impactful con-
straints. Where square brackets are shown open, we scan up to these values but, even if we noticed some
impact from the constraints, it seems that the allowed region can be larger. The observables are set in
order from the most constraining to the least constraining. A ⇤ denotes parameters fixed to 0 in order to
satisfy LSP and physical mass spectrum requirements. A parameter that is bounded by ‘prior’ is affected
only by LSP and physical mass constraints.

the analogous tau decays. Considering one-loop Feynman diagrams for µ ! e�, (�)13 and
(�)23 parameters can enter as a consequence of stau exchange, therefore introducing the
suppression of a second small � parameter. However, relevant �s are > 10�5 and since the
increase in precision between the experimental values of ⌧ ! e/µ� and µ ! e� is around
five orders of magnitude, muon decay bounds have a significant effect on these parameters.
We compared the impact of decay rates by artificially lowering the bound on tau decays.
In such a case, the tau sector becomes dominant when considering constraints on (�)13 and
(�)23 parameters.

The hadronic constraint, BR(B ! Xs�), has non-negligible impact on some posterior
distributions. We emphasize that compute time and efficiency are important limitations
with regards to the scan. Indeed, increasing the ranges of parameters outside that of Table
4 when scanned in a flat, random way often leads to an unreasonably low efficiency of
obtaining surviving points. The full set of bounds on all scanned parameters are fully
detailed in Table 5.

4.2 Scan Around Scenario 1

Here are discussed in detail the results for the full NMFV scan around the Scenario 1
reference point. MFV parameters were held at their Scenario 1 values and remain un-
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with regards to the scan. Indeed, increasing the ranges of parameters outside that of Table
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μ➞eγ  vs.  μ➞3e

Decay mode
Relative contribution to ⌦DM

Scenario 1 Scenario 2

fµR, e�0
1 ! �, µR 45% 31%

e�0
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1 ! µR, µR 27% 2%

fµR, fµR ! µR, µR 10% 37%

fµR, e�0
1 ! Z, µR 8% 8%

fµR, fµR ! �, � 3% 11%

Table 2: Dominant decay modes in MFV scenarios that contribute to the relic density.

Observable Constraint Remarks Refs.

mh (125.2± 2.5) GeV (SPheno th.) [34, 39, 40]

BR(µ ! e�) < 4.2⇥ 10�13 90% (exp.) [34]
BR(µ ! 3e) < 1.0⇥ 10�12 90% (exp.) [34]
BR(⌧ ! e�) < 3.3⇥ 10�8 90% (exp.) [34]
BR(⌧ ! µ�) < 4.4⇥ 10�8 90% (exp.) [34]
BR(⌧ ! 3e) < 2.7⇥ 10�8 90% (exp.) [34]
BR(⌧ ! 3µ) < 2.1⇥ 10�8 90% (exp.) [34]

BR(⌧ ! e
�
µµ) < 2.7⇥ 10�8 90% (exp.) [34]

BR(⌧ ! e
+
µµ) < 1.7⇥ 10�8 90% (exp.) [34]

BR(⌧ ! µ
�
ee) < 1.8⇥ 10�8 90% (exp.) [34]

BR(⌧ ! µ
+
ee) < 1.5⇥ 10�8 90% (exp.) [34]

BR(B ! Xs�) (3.32± 0.18)⇥ 10�4 2� (exp.) [35]
BR(Bs ! µµ) (2.7± 1.2)⇥ 10�9 2� (exp.) [34]
BR(B⌧ ! µ�) < 4.4⇥ 10�8 90% (exp.) [34]

�MBs (17.757± 0.042± 2.7) ps�1 2� (exp.), (th. SM-2015) [34, 38]
�MK (3.1± 1.2)⇥ 10�15 GeV (th.) [34, 37]
✏K 2.228± 0.29 (th.) [34, 37]

⌦CDMh
2 0.1198± 0.0042 2� (exp.), 1% (th.) [36, 45–47]

Table 3: Experimental constraints imposed on the A4⇥SU(5) parameter space in our study. Upper limits
are given at the 90% confidence level, while two-sided limits are understood at the 95% confidence level.

values given in Table 1, we perform a random scan on the flavour-violating parameters
introduced in Eq. (2.9) at the GUT scale using flat prior distributions. We scan over the
flavour-violating parameters both independently and as part of a more-dimensional scan
over all �s simultaneously and subsequently study the impact of constraints detailed in
Table ??.
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(�T )12 [-0.015, 0.015] µ ! 3e, µ ! e�, ⌦
�̃
0
1
h
2 [-0.12, 0.12]† ⌦

�̃
0
1
h
2, µ ! e�

(�T )13 ]-0.06, 0.06[ ⌦
�̃
0
1
h
2 [-0.3, 0.3]† ⌦

�̃
0
1
h
2

(�T )23 [0, 0]⇤ ⌦
�̃
0
1
h
2, µ ! 3e, µ ! e� [-0.1, 0.1†] ⌦

�̃
0
1
h
2, µ ! 3e, µ ! e�,

(�F )12 [-0.008, 0.008] µ ! 3e, µ ! e� [-0.015, 0.015]† µ ! 3e, µ ! e�

(�F )13 ]-0.01, 0.01[ µ ! e� [-0.15, 0.15]† µ ! 3e, µ ! e�

(�F )23 ]-0.015, 0.015[ µ ! e�, ⌦
�̃
0
1
h
2 [-0.15, 0.15]† ⌦

�̃
0
1
h
2, µ ! e�, µ ! 3e

(�TT )12 [-3, 3.5] ⇥10�5 prior [-1, 1.5]† ⇥10�3 prior, ⌦
�̃
0
1
h
2

(�TT )13 ]-6, 7[ ⇥10�5 prior, ⌦
�̃
0
1
h
2 [-4, 2.5]† ⇥10�3 prior, ⌦

�̃
0
1
h
2

(�TT )23 ]-0.5, 4[ ⇥10�5 prior, ⌦
�̃
0
1
h
2 [-0.25, 0.2]† prior, ⌦

�̃
0
1
h
2

(�FT )12 [-0.0015, 0.0015] ⌦
�̃
0
1
h
2 [-1.2, 1.2]† ⇥10�4

µ ! 3e, ⌦
�̃
0
1
h
2, µ ! e�

(�FT )13 ]-0.002, 0.002[ ⌦
�̃
0
1
h
2 [-5, 5] ⇥10�4 ⌦

�̃
0
1
h
2, µ ! 3e, µ ! e�

(�FT )21 [0,0]* prior [-1.2, 1.2]† ⇥10�4 ⌦
�̃
0
1
h
2, prior

(�FT )23 ]-0.0022, 0.0022[ ⌦
�̃
0
1
h
2 [-6, 6]† ⇥10�4

µ ! 3e, ⌦
�̃
0
1
h
2, µ ! e�

(�FT )31 ]-0.0004, 0.0004[ ⌦
�̃
0
1
h
2 [-2, 2]† ⇥10�4 ⌦

�̃
0
1
h
2

(�FT )32 [0,0]* prior [-1.5, 1.5] ⇥10�4 ⌦
�̃
0
1
h
2

Table 5: Estimated allowed GUT scale flavour-violation for both reference scenarios and impactful con-
straints. Where square brackets are shown open, we scan up to these values but, even if we noticed some
impact from the constraints, it seems that the allowed region can be larger. The observables are set in
order from the most constraining to the least constraining. A ⇤ denotes parameters fixed to 0 in order to
satisfy LSP and physical mass spectrum requirements. A parameter that is bounded by ‘prior’ is affected
only by LSP and physical mass constraints.

the analogous tau decays. Considering one-loop Feynman diagrams for µ ! e�, (�)13 and
(�)23 parameters can enter as a consequence of stau exchange, therefore introducing the
suppression of a second small � parameter. However, relevant �s are > 10�5 and since the
increase in precision between the experimental values of ⌧ ! e/µ� and µ ! e� is around
five orders of magnitude, muon decay bounds have a significant effect on these parameters.
We compared the impact of decay rates by artificially lowering the bound on tau decays.
In such a case, the tau sector becomes dominant when considering constraints on (�)13 and
(�)23 parameters.

The hadronic constraint, BR(B ! Xs�), has non-negligible impact on some posterior
distributions. We emphasize that compute time and efficiency are important limitations
with regards to the scan. Indeed, increasing the ranges of parameters outside that of Table
4 when scanned in a flat, random way often leads to an unreasonably low efficiency of
obtaining surviving points. The full set of bounds on all scanned parameters are fully
detailed in Table 5.

4.2 Scan Around Scenario 1

Here are discussed in detail the results for the full NMFV scan around the Scenario 1
reference point. MFV parameters were held at their Scenario 1 values and remain un-
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Figure 10: Constraints on (�T )13, simultaneous scan over Scenario 2

Figure 11: Constraints on (�T )23

violating muon decays on (�)13 parameters that we would not usually expect, as elaborated
upon in Section 4.1.

As per the scan around MFV Scenario 1, all �TT parameters are ‘prior constrained’
by LSP and spectrum requirements. Once these phenomena are accounted for, flavour
changing observabes have little to no effect. This is referred to in Table 5.

Almost all �FT parameters see a subdominating constraining effect from µ ! 3e or
µ ! e�.

4.4 SUSY Scale � Parameters for Scenario 2

Whilst useful to explore the allowed level of flavour violation at the GUT scale, the im-
portance of renormalisation group (RG) running should not be forgotten. Running from
the GUT scale to the SUSY scale will break the equivalences outline in Equation 2.7 and
consequently in Equation 2.9. Therefore, for a full phenomenological study, it’s necessary
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We systematically analyze the correlations between the various leptonic and hadronic flavor

violating processes arising in SUSY Grand Unified Theories. Using the GUT-symmetric

relations between the soft SUSY breaking parameters, we assess the impact of hadronic and

leptonic flavor observables on the SUSY sources of flavor violation.

I. INTRODUCTION

Supersymmetry (SUSY) Breaking (SB) remains one of the biggest issues in physics beyond the

Standard Model (SM). In spite of various proposals [1], we still miss a realistic and theoretically

satisfactory model of SB.

Flavor violating processes have been instrumental in guiding us towards consistent SB models.

Indeed, even in the absence of a well-defined SB mechanism and, hence, without a precise knowledge

of the SUSY Lagrangian at the electroweak scale, it is still possible to make use of the Flavour

Changing Neutral Current (FCNC) bounds to infer relevant constraints on the part of the SUSY

soft breaking sector related to the sfermion mass matrices [2].

The model-independent method which is adopted is the so-called Mass-Insertion Approximation

∗ Unité mixte du CNRS et de l’EP, UMR 7644.
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therefore they mainly depend on the gluino mass and the “average squark mass”.5

On the contrary, as we saw in section VI, the leptonic bounds depend basically on three param-

eters: gaugino mass, “average slepton mass” and tan β. In our model squark and slepton masses

originate from a common scalar mass m0 at the GUT scale and therefore we can relate the average

squark and slepton masses.

As we have discussed in section IIIB, the off-diagonal elements of sfermion mass matrices are not

significantly modified in the RGE evolution from MGUT to MW . However, under some conditions,

as for example in the presence of large neutrino Yukawa couplings, the RG evolution can generate

sizable off-diagonal elements in the slepton mass matrices even starting from a vanishing value at

MGUT. Clearly these effects are never present in the squark mass matrices, thus breaking the GUT

symmetric relations. This implies that, given our ignorance on the structure of neutrino Yukawa

couplings, we have to be careful when applying the MI bounds obtained from quarks to leptons or

vice-versa.

In fact, if we obtain a bound on a δlij MI from a leptonic process at low scales, we can say that,

barring accidental cancellations, this bound applies both to the mass insertions already present at

MGUT and to the mass insertions generated radiatively between MGUT and MνR . Therefore we

can translate this low-scale bound into a bound on the MI at the GUT scale. This bound applies

also to the squark MI at MGUT and using RGEs we can transport this bound to the electroweak

scale. For example, in SU(5), we find:

|(δdij)RR| ≤
m2

L

m2
dc
|(δlij)LL| . (30)

The situation is different if we try to translate the bound from quark to lepton MIs. An hadronic

MI bound at low energy leads, after RGE evolution, to a bound on the corresponding grand-

unified MI at MGUT, applying both to slepton and squark mass matrices. However, if the neutrino

Yukawa couplings have sizable off-diagonal entries, the RGE running from MGUT to MW could

still generate a new contribution to the slepton MI that exceeds this GUT bound. Therefore

hadronic bounds cannot be translated to leptons unless we make some additional assumptions on

the neutrino Yukawa matrices.

On general grounds, given that SM contributions in the lepton sector are absent and that the

branching ratios of leptonic processes constrain only the modulus of the MIs, it turns out that all

the MI bounds arising from the lepton sector are circles in the Re
(

δdij
)

AB
–Im

(

δdij
)

AB
plane and

5 Note that the tan β dependence seeps in once we consider the double MIs
(

δdij
)

LL,RR

(

δdjj
)

LR,RL
.
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Type of δl12 µ → e γ µ → e e e µ → e conversion in T i

LL 6× 10−4 2× 10−3 2× 10−3

RR - 0.09 -

LR/RL 1× 10−5 3.5× 10−5 3.5× 10−5

TABLE V: Bounds on leptonic δl12 from various µ → e processes. The bounds are obtained by making a scan

ofm0 and M1/2 over the rangesm0 < 380GeV and M1/2 <160GeV and varying tanβ within 5 < tanβ < 15.

The bounds are rather insensitive to the sign of the µ mass term.

through a full diagonalization of the slepton mass matrix. So, imposing that the contribution of

each flavor off-diagonal entry to the rates of the above processes does not exceed (in absolute value)

the experimental bounds, we obtain the limits on the δij ’s, barring accidental cancellations.

The process that sets the most stringent bounds is the li → ljγ decay, whose amplitude has the

form

T = mliϵ
λuj(p − q)[iqνσλν(ALPL +ARPR)]ui(p) , (25)

where p and q are momenta of the leptons lk and of the photon respectively, PR,L = 1
2(1± γ5) and

AL,R are the two possible amplitudes entering the process. The lepton mass factor mli is associated

to the chirality flip present in this transition. In a supersymmetric framework, we can implement

the chirality flip in three ways: in the external fermion line (as in the SM with massive neutrinos),

at the vertex through a higgsino Yukawa coupling or in the internal gaugino line together with a

chirality change in the sfermion line. The branching ratio of li → ljγ can be written as

BR(li → ljγ)

BR(li → ljνiν̄j)
=

48π3α

G2
F

(|Aij
L |

2 + |Aij
R |

2) ,

with the SUSY contribution to each amplitude given by the sum of two terms AL,R = An
L,R+Ac

L,R.

Here An
L,R and Ac

L,R denote the contributions from the neutralino and chargino loops respectively.

Even though all our numerical results presented in Tables V–VII are obtained performing an

exact diagonalization of sfermion and gaugino mass matrices, it is more convenient for the discussion

to use the expressions for the li → ljγ amplitudes in the MI approximation. In particular, we treat

both the slepton mass matrix and the chargino and neutralino mass matrix off-diagonal elements

18

ij\AB LL LR RL RR

12 1.4× 10−2 9.0× 10−5 9.0× 10−5 9.0× 10−3

13 9.0× 10−2 1.7× 10−2 1.7× 10−2 7.0× 10−2

23 1.6× 10−1 4.5× 10−3 6.0× 10−3 2.2× 10−1

TABLE III: 95% probability bounds on |
(

δdij
)

AB
| obtained using the data set described in Section IV. See

the text for details.

Process Present Bounds Expected Future Bounds

BR(µ → e γ) 1.2 × 10−11 O(10−13 − 10−14)

BR(µ → e e e) 1.1 × 10−12 O(10−13 − 10−14)

BR(µ → e in Nuclei (Ti)) 1.1 × 10−12 O(10−18)

BR(τ → e γ) 1.1 × 10−7 O(10−8)

BR(τ → e e e) 2.7 × 10−7 O(10−8)

BR(τ → e µµ) 2. × 10−7 O(10−8)

BR(τ → µ γ) 6.8 × 10−8 O(10−8)

BR(τ → µµµ) 2 × 10−7 O(10−8)

BR(τ → µ e e) 2.4 × 10−7 O(10−8)

TABLE IV: Present and Upcoming experimental limits on various leptonic processes at 90% C.L.

of double MIs
(

δdij
)

LL

(

δdjj
)

LR
in chromomagnetic operators. This dependence however becomes

sizable only for very large values of tan β.

VI. MASS INSERTION BOUNDS FROM LEPTONIC PROCESSES

In this section, we study the constraints on slepton mass matrices in low energy SUSY imposed

by several LFV transitions, namely li → ljγ, li → ljlklk and µ–e transitions in nuclei [46]. The

present and projected bounds on these processes are summarized in Table IV. These processes

are mediated by chargino and neutralino loops and therefore they depend on all the parameters

entering chargino and neutralino mass matrices. In order to constrain the leptonic MIs δij , we

will first obtain the spectrum at the weak scale for our SU(5) GUT theory as has been mentioned

in detail in section IV. Furthermore, we take all the flavor off-diagonal entries in the slepton

mass matrices equal to zero except for the entry corresponding to the MI we want to bound. To

calculate the branching ratios of the different processes, we work in the mass eigenstates basis
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Type of δl13 τ → e γ τ → e e e τ → eµµ

LL 0.15 − -

RR - - -

LR/RL 0.04 0.5 -

TABLE VI: Bounds on leptonic δl13 from various τ → e processes obtained using the same values of SUSY

parameters as in Table V.

as mass insertions.4 In this approximation, we have the following expressions

Aij
L =

α2

4π

(

δlij
)

LL

m2
l̃

[

f1n(a2)+f1c(a2)+
µM2 tan β

(M2
2 −µ2)

(

f2n(a2, b)+f2c(a2, b)
)

(26)

+ tan2 θW

(

f1n(a1) + µM1 tan β
(

f3n(a1)

m2
l̃

+
f2n(a1, b)

(µ2−M2
1 )

))

]

+
α1

4π

(

δlij
)

RL

m2
l̃

(

M1

mli

)

2 f2n(a1) ,

Aij
R =

α1

4π

(

(

δlij
)

RR

m2
l̃

[

4f1n(a1) + µM1 tan β

(

f3n(a1)

m2
l̃

−
2f2n(a1, b)

(µ2−M2
1 )

)]

(27)

+

(

δlij
)

LR

m2
l̃

(

M1

mli

)

2 f2n(a1)

)

,

where θW is the weak mixing angle, a1,2 = M2
1,2/m̃

2, b = µ2/m2
l̃
and fi(c,n)(x, y) = fi(c,n)(x) −

fi(c,n)(y). The loop functions fi are given as

f1n(x) = (−17x3 + 9x2 + 9x− 1 + 6x2(x+ 3) ln x)/(24(1 − x)5),

f2n(x) = (−5x2 + 4x+ 1 + 2x(x+ 2) ln x)/(4(1 − x)4),

f3n(x) = (1 + 9x− 9x2 − x3 + 6x(x+ 1) ln x)/(3(1 − x)5),

f1c(x) = (−x3 − 9x2 + 9x+ 1 + 6x(x+ 1) ln x)/(6(1 − x)5),

f2c(x) = (−x2 − 4x+ 5 + 2(2x + 1) lnx)/(2(1 − x)4) . (28)

We note that all
(

δlij
)

LL
contributions with internal chirality flip are tan β-enhanced. On the other

hand, the only term proportional to
(

δlij
)

LR
arises from pure B̃ exchange and it is completely

independent of tan β, as can be seen from Eqs. (26) and (27). Therefore the phenomenological

4 This approximation is well justified and reproduces the results of the full computation very accurately in a large
region of the parameter space [46].
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Type of δl23 τ → µ γ τ → µµµ τ → µ e e

LL 0.12 - -

RR - - -

LR/RL 0.03 - 0.5

TABLE VII: Bounds on leptonic δl23 from various τ → µ processes obtained using the same values of SUSY

parameters as in Table V.

bounds on
(

δlij
)

LL
depend on tan β to some extent, while those on

(

δlij
)

LR
do not. The bounds

on LL and RL MIs are expected to approximately fulfill the relation

(

δlij
)

LR
≃

mi

m̃
tan β

(

δlij
)

LL
.

This is confirmed by our numerical study.

The δdRR sector requires some care because of the presence of cancellations among different

contributions to the amplitudes in regions of the parameter space. The origin of these cancellations

is the destructive interference between the dominant contributions coming from the B̃ (with internal

chirality flip and a flavor-conserving LR mass insertion) and B̃H̃0 exchange [46, 47]. We can see

this in the MI approximation if we compare the tan β enhanced terms in the second line of Eq. (26)

with the tan β enhanced terms in Eq. (27). Here the loop function f3(a1) corresponds to the pure

B̃ contribution while f2n(a1, b) represents the B̃H̃0 exchange. These contributions have different

relative signs in Eq. (26) and Eq. (27) due to the opposite sign in the hypercharge of SU(2) doublets

and singlets. Thus, the decay li → ljγ does not allow to put a bound on the RR sector. We can

still take into account other LFV processes such as li → lj lklk and µ–e in nuclei. These processes

get contributions not only from penguin diagrams (with both photon and Z-boson exchange) but

also from box diagrams. Still the contribution of dipole operators, being also tan β-enhanced, is

dominant. Disregarding other contributions, one finds the relations

Br(li→ lj lklk)

Br(li→ ljγ)
≃

αe

3π

(

log
m2

li

m2
lk

−3

)

,

Br(µ− e in Ti) ≃ αeBR(µ → eγ) , (29)

which clearly shows that li → ljγ is the strongest constraint and gives the more stringent bounds on

the different δij ’s. As we have mentioned above, however, in the case of δlRR the dominant dipole

contributions interfere destructively in regions of parameters, so that Br(li → ljγ) is strongly

suppressed while Br(µ − e in nuclei) and Br(li → lj lklk) are dominated by monopole penguin

Imposing SU(5) unification conditions,
hadronic mass insertions supposed 
to be smaller than leptonic ones, 
e.g.

Bounds on leptonic mass insertions Bounds on hadronic mass insertions

Nucl. Phys. B 783 (2007) 112-142 — arXiv:hep-ph/0702144



Leptonic vs. hadronic NMFV at TeV scale

Figure 19: (�F )12 and associated SUSY scale �s. Refer back to Equation 2.3 for definitions of these
parameters, (�LLL)12 and (�DRR)12 are extracted at the SUSY breaking scale. Results given for full scan over
Scenario 2.
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Figure 19: (�F )12 and associated SUSY scale �s. Refer back to Equation 2.3 for definitions of these
parameters, (�LLL)12 and (�DRR)12 are extracted at the SUSY breaking scale. Results given for full scan over
Scenario 2.
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Parameter correlations

Figure 20: Correlations plots of (�F )12 and (�FT )12 at GUT scale (first plot). Associated correlations at
SUSY scale deltas. Results given here reflect simultaneous scan around Scenario 1.
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Results — Summary
Parameters Scenario 1 Most constraining obs. 1 Scenario 2 Most constraining obs. 2

(�T )12 [-0.015, 0.015] µ ! 3e, µ ! e�, ⌦
�̃
0
1
h
2 [-0.12, 0.12]† ⌦

�̃
0
1
h
2, µ ! e�

(�T )13 ]-0.06, 0.06[ ⌦
�̃
0
1
h
2 [-0.3, 0.3]† ⌦

�̃
0
1
h
2

(�T )23 [0, 0]⇤ ⌦
�̃
0
1
h
2, µ ! 3e, µ ! e� [-0.1, 0.1†] ⌦

�̃
0
1
h
2, µ ! 3e, µ ! e�,

(�F )12 [-0.008, 0.008] µ ! 3e, µ ! e� [-0.015, 0.015]† µ ! 3e, µ ! e�

(�F )13 ]-0.01, 0.01[ µ ! e� [-0.15, 0.15]† µ ! 3e, µ ! e�

(�F )23 ]-0.015, 0.015[ µ ! e�, ⌦
�̃
0
1
h
2 [-0.15, 0.15]† ⌦

�̃
0
1
h
2, µ ! e�, µ ! 3e

(�TT )12 [-3, 3.5] ⇥10�5 prior [-1, 1.5]† ⇥10�3 prior, ⌦
�̃
0
1
h
2

(�TT )13 ]-6, 7[ ⇥10�5 prior, ⌦
�̃
0
1
h
2 [-4, 2.5]† ⇥10�3 prior, ⌦

�̃
0
1
h
2

(�TT )23 ]-0.5, 4[ ⇥10�5 prior, ⌦
�̃
0
1
h
2 [-0.25, 0.2]† prior, ⌦

�̃
0
1
h
2

(�FT )12 [-0.0015, 0.0015] ⌦
�̃
0
1
h
2 [-1.2, 1.2]† ⇥10�4

µ ! 3e, ⌦
�̃
0
1
h
2, µ ! e�

(�FT )13 ]-0.002, 0.002[ ⌦
�̃
0
1
h
2 [-5, 5] ⇥10�4 ⌦

�̃
0
1
h
2, µ ! 3e, µ ! e�

(�FT )21 [0,0]* prior [-1.2, 1.2]† ⇥10�4 ⌦
�̃
0
1
h
2, prior

(�FT )23 ]-0.0022, 0.0022[ ⌦
�̃
0
1
h
2 [-6, 6]† ⇥10�4

µ ! 3e, ⌦
�̃
0
1
h
2, µ ! e�

(�FT )31 ]-0.0004, 0.0004[ ⌦
�̃
0
1
h
2 [-2, 2]† ⇥10�4 ⌦

�̃
0
1
h
2

(�FT )32 [0,0]* prior [-1.5, 1.5] ⇥10�4 ⌦
�̃
0
1
h
2

Table 5: Estimated allowed GUT scale flavour-violation for both reference scenarios and impactful con-
straints. Where square brackets are shown open, we scan up to these values but, even if we noticed some
impact from the constraints, it seems that the allowed region can be larger. The observables are set in
order from the most constraining to the least constraining. A ⇤ denotes parameters fixed to 0 in order to
satisfy LSP and physical mass spectrum requirements. A parameter that is bounded by ‘prior’ is affected
only by LSP and physical mass constraints.

the analogous tau decays. Considering one-loop Feynman diagrams for µ ! e�, (�)13 and
(�)23 parameters can enter as a consequence of stau exchange, therefore introducing the
suppression of a second small � parameter. However, relevant �s are > 10�5 and since the
increase in precision between the experimental values of ⌧ ! e/µ� and µ ! e� is around
five orders of magnitude, muon decay bounds have a significant effect on these parameters.
We compared the impact of decay rates by artificially lowering the bound on tau decays.
In such a case, the tau sector becomes dominant when considering constraints on (�)13 and
(�)23 parameters.

The hadronic constraint, BR(B ! Xs�), has non-negligible impact on some posterior
distributions. We emphasize that compute time and efficiency are important limitations
with regards to the scan. Indeed, increasing the ranges of parameters outside that of Table
4 when scanned in a flat, random way often leads to an unreasonably low efficiency of
obtaining surviving points. The full set of bounds on all scanned parameters are fully
detailed in Table 5.

4.2 Scan Around Scenario 1

Here are discussed in detail the results for the full NMFV scan around the Scenario 1
reference point. MFV parameters were held at their Scenario 1 values and remain un-

– 13 –

* parameter not varied                                       † extrapolated range
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