Flavour violation in SUSY GUTs SU(5)×A4 case study

Björn Herrmann

Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTh) Univ. Grenoble Alpes — Univ. Savoie Mont Blanc — CNRS Annecy — France

December 3rd, 2018 — Münster, Germany

Flavour violation in SUSY GUTs SU(5)×A4 case study

Flavour in the MSSM

Flavoured Grand Unification

SU(5)×A₄ case study

Summary and perspectives

based mainly on work in collaboration with Jordan Bernigaud, Stephen F. King, Samuel J. Rowley to be published — arXiv:1812.01xyz

Minimal Supersymmetric Standard Model

SM Particle	es	Spin		Spin	Superpartne	
Quarks	$\begin{pmatrix} u_L & d_L \end{pmatrix}$	1/2	Q	0	$\begin{pmatrix} \widetilde{u}_L & \widetilde{d}_L \end{pmatrix}$	Squarks
	u_R^\dagger	1/2	$ \overline{u}$	0	$ ilde{u}_R^*$	
	d_R^\dagger	1/2	$ \overline{d}$	0	$ ilde{d}_R^*$	
Leptons	$\begin{pmatrix} u & e_L \end{pmatrix}$	1/2	L	0	$ig(ec u \ ec e_L ig)$	Sleptons
	e_R^\dagger	1/2	\bar{e}	0	$ ilde{e}_R^*$	
Higgs	$\begin{pmatrix} H_u^+ & H_u^0 \end{pmatrix}$	0	H_u	1/2	$(\tilde{H}_u^+ \ \tilde{H}_u^0)$	Higgsinos
	$\begin{pmatrix} H_d^0 & H_d^- \end{pmatrix}$	0	H_d	1/2	$\begin{pmatrix} \tilde{H}_d^0 & \tilde{H}_d^- \end{pmatrix}$	
W bosons	W^0, W^{\pm}	1		1/2	$ ilde W^0, ilde W^\pm$	Winos
B boson	B^0	1		1/2	$ ilde{B}^0$	Bino
Gluon	g	1		1/2	${\widetilde g}$	Gluino
Graviton	G	2		3/2	$ ilde{G}$	Gravitino

Minimal Supersymmetric Standard Model

SM Particle	es	Spin		Spin	Superpartne	
Quarks	$\begin{pmatrix} u_L & d_L \end{pmatrix}$	1/2	Q	0	$ig(\widetilde{u}_L \ \ \widetilde{d}_L ig)$	Squarks
	u_R^\dagger	1/2	$ \overline{u}$	0	$ ilde{u}_R^*$	
	d_R^\dagger	1/2	\bar{d}	0	$ ilde{d}_R^*$	
Leptons	$\begin{pmatrix} u & e_L \end{pmatrix}$	1/2	L	0	$egin{pmatrix} ilde{ u} & ilde{e}_L \end{pmatrix}$	Sleptons
	e_R^\dagger	1/2	\bar{e}	0	$ ilde{e}_R^*$	
Higgs	$\begin{pmatrix} H_u^+ & H_u^0 \end{pmatrix}$	0	H_u	1/2	$\begin{pmatrix} \tilde{H}_u^+ & \tilde{H}_u^0 \end{pmatrix}$	Higgsinos
Higgs	$ \begin{pmatrix} H_u^+ & H_u^0 \\ (H_d^0 & H_d^-) \end{pmatrix} $	0 0	$\begin{array}{c} H_u \\ H_d \end{array}$	$1/2 \\ 1/2$	$ \begin{pmatrix} \tilde{H}_u^+ & \tilde{H}_u^0 \\ (\tilde{H}_d^0 & \tilde{H}_d^-) \end{pmatrix} $	Higgsinos
$\begin{tabular}{ c c } Higgs \\ \hline W bosons \end{tabular}$	$ \begin{array}{c} \begin{pmatrix} H_u^+ & H_u^0 \\ (H_d^0 & H_d^-) \\ \hline W^0, W^{\pm} \end{array} $	0 0 1	H_u H_d	1/2 1/2 1/2	$ \begin{array}{ccc} \left(\tilde{H}_{u}^{+} & \tilde{H}_{u}^{0}\right) \\ \left(\tilde{H}_{d}^{0} & \tilde{H}_{d}^{-}\right) \\ \hline \tilde{W}^{0}, \tilde{W}^{\pm} \end{array} $	Higgsinos Winos
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} \begin{pmatrix} H_u^+ & H_u^0 \\ (H_d^0 & H_d^-) \\ \hline W^0, W^{\pm} \\ B^0 \end{array} $	0 0 1 1	H_u H_d	1/2 1/2 1/2 1/2	$ \begin{array}{c c} \left(\tilde{H}_{u}^{+} & \tilde{H}_{u}^{0} \right) \\ \left(\tilde{H}_{d}^{0} & \tilde{H}_{d}^{-} \right) \\ \hline \tilde{W}^{0}, \tilde{W}^{\pm} \\ \tilde{B}^{0} \end{array} $	Higgsinos Winos Bino
$\begin{array}{c} \text{Higgs} \\ \hline W \text{ bosons} \\ B \text{ boson} \\ \hline \text{Gluon} \end{array}$	$ \begin{array}{ccc} \left(H_{u}^{+} & H_{u}^{0}\right) \\ \left(H_{d}^{0} & H_{d}^{-}\right) \\ \hline W^{0}, W^{\pm} \\ B^{0} \\ \hline g \end{array} $	0 0 1 1 1	H_u H_d	$ \begin{array}{r} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ \end{array} $	$ \begin{array}{ccc} \left(\tilde{H}_{u}^{+} & \tilde{H}_{u}^{0}\right) \\ \left(\tilde{H}_{d}^{0} & \tilde{H}_{d}^{-}\right) \\ \hline \tilde{W}^{0}, \tilde{W}^{\pm} \\ \tilde{B}^{0} \\ \hline \tilde{g} \end{array} $	Higgsinos Winos Bino Gluino

Minimal Supersymmetric Standard Model

SM Particle	es	Spin		Spin	Superpartner	
Quarks	$\begin{pmatrix} u_L & d_L \end{pmatrix}$	1/2	Q	0	$ig(ilde{u}_L \ \ ilde{d}_Lig)$	Squarks
	u_R^\dagger	1/2	$ \overline{u}$	0	$ ilde{u}_R^*$	
	d_R^\dagger	1/2	$ \overline{d}$	0	$ ilde{d}_R^*$	
Leptons	$egin{pmatrix} u & e_L \end{pmatrix}$	1/2	L	0	$egin{pmatrix} ilde{ u} & ilde{e}_L \end{pmatrix}$	Sleptons
	e_R^\dagger	1/2	\bar{e}	0	$ ilde{e}_R^*$	
					a short at the case of the fillent at the case short at	the second at the second s
Higgs	$\begin{pmatrix} H_u^+ & H_u^0 \end{pmatrix}$	0	H_u			
Higgs	$ \begin{pmatrix} H_u^+ & H_u^0 \\ (H_d^0 & H_d^-) \end{pmatrix} $	0 0	$\begin{array}{c} H_u \\ H_d \end{array}$	1/2	$ ilde{\chi}^0_{1,2,3,4}$	Neutralinos
$\begin{tabular}{ c c c c } \hline Higgs \\ \hline W bosons \\ \hline \end{tabular}$	$ \begin{array}{c c} \begin{pmatrix} H_u^+ & H_u^0 \\ \\ \begin{pmatrix} H_d^0 & H_d^- \end{pmatrix} \\ \hline W^0, W^{\pm} \end{array} $	0 0 1	H_u H_d	1/2 $1/2$	${ ilde{\chi}^{0}_{1,2,3,4}} \ { ilde{\chi}^{\pm}_{1,2}}$	Neutralinos Charginos
$\begin{tabular}{c} Higgs \\ \hline W bosons \\ B boson \end{tabular}$	$ \begin{array}{cccc} \left(H_{u}^{+} & H_{u}^{0}\right) \\ \left(H_{d}^{0} & H_{d}^{-}\right) \\ \hline W^{0}, W^{\pm} \\ B^{0} \end{array} $	0 0 1 1	H_u H_d	1/2 $1/2$	${ ilde{\chi}^{0}_{1,2,3,4}} \ { ilde{\chi}^{\pm}_{1,2}}$	Neutralinos Charginos
Higgs W bosons B boson Gluon	$ \begin{array}{cccc} \left(H_{u}^{+} & H_{u}^{0}\right) \\ \left(H_{d}^{0} & H_{d}^{-}\right) \\ \hline W^{0}, W^{\pm} \\ B^{0} \\ \hline g \end{array} $	0 0 1 1 1	H_u H_d	1/2 1/2 1/2	$ ilde{\chi}^0_{1,2,3,4} \ ilde{\chi}^\pm_{1,2} \ ilde{g}$	Neutralinos Charginos Gluino

Flavour structure in the MSSM

Flavour structure in the MSSM

Flavour structure in the MSSM

In the super-CKM basis, the sfermion sector is parametrized by four mass matrices:

$$\mathcal{M}_{\tilde{u}}^{2} = \begin{pmatrix} V_{\text{CKM}} M_{\tilde{Q}}^{2} V_{\text{CKM}}^{\dagger} + m_{u}^{2} + D_{\tilde{u},L} & \frac{v_{u}}{\sqrt{2}} T_{u}^{\dagger} - m_{u} \frac{\mu}{\tan\beta} \\ \frac{v_{u}}{\sqrt{2}} T_{u} - m_{u} \frac{\mu^{*}}{\tan\beta} & M_{\tilde{U}}^{2} + m_{u}^{2} + D_{\tilde{u},R} \end{pmatrix}$$

$$\mathcal{M}_{\tilde{d}}^{2} = \begin{pmatrix} M_{\tilde{Q}}^{2} + m_{d}^{2} + D_{\tilde{d},L} & \frac{v_{d}}{\sqrt{2}} T_{d}^{\dagger} - m_{d}\mu \tan\beta \\ \frac{v_{d}}{\sqrt{2}} T_{d} - m_{d}\mu^{*} \tan\beta & M_{\tilde{D}}^{2} + m_{d}^{2} + D_{\tilde{d},R} \end{pmatrix}$$

$$\mathcal{M}_{\tilde{\ell}}^{2} = \begin{pmatrix} M_{\tilde{L}}^{2} + m_{e}^{2} + D_{\tilde{\ell},L} & \frac{v_{d}}{\sqrt{2}} T_{e} - m_{e}\mu \tan\beta \\ \frac{v_{d}}{\sqrt{2}} T_{e} - m_{e}\mu^{*} \tan\beta & M_{\tilde{E}}^{2} + m_{e}^{2} + D_{\tilde{\ell},R} \end{pmatrix}$$

In the super-CKM basis, the sfermion sector is parametrized by four mass matrices:

$$\mathcal{M}_{\tilde{u}}^{2} = \begin{pmatrix} V_{\text{CKM}} M_{\tilde{Q}}^{2} V_{\text{CKM}}^{\dagger} + m_{u}^{2} + D_{\tilde{u},L} & \frac{v_{u}}{\sqrt{2}} T_{u}^{\dagger} - m_{u} \frac{\mu}{\tan\beta} \\ \frac{v_{u}}{\sqrt{2}} T_{u} - m_{u} \frac{\mu^{*}}{\tan\beta} & M_{\tilde{U}}^{2} + m_{u}^{2} + D_{\tilde{u},R} \end{pmatrix}$$

$$\mathcal{M}_{\tilde{d}}^{2} = \begin{pmatrix} M_{\tilde{Q}}^{2} + m_{d}^{2} + D_{\tilde{d},L} & \frac{v_{d}}{\sqrt{2}} T_{d}^{\dagger} - m_{d} \mu \tan\beta \\ \frac{v_{d}}{\sqrt{2}} T_{d} - m_{d} \mu^{*} \tan\beta & M_{\tilde{D}}^{2} + m_{d}^{2} + D_{\tilde{d},R} \end{pmatrix}$$

$$\mathcal{M}_{\tilde{\ell}}^{2} = \begin{pmatrix} M_{\tilde{L}}^{2} + m_{e}^{2} + D_{\tilde{\ell},L} & \frac{v_{d}}{\sqrt{2}} T_{e} - m_{e} \mu \tan\beta \\ \frac{v_{d}}{\sqrt{2}} T_{e} - m_{e} \mu^{*} \tan\beta & M_{\tilde{E}}^{2} + m_{e}^{2} + D_{\tilde{\ell},R} \end{pmatrix}$$
5 independent mass matrices and 3 trilinear coupling matrices
$$M_{\tilde{Q}}^{2}, M_{\tilde{U}}^{2}, M_{\tilde{D}}^{2}, M_{\tilde{L}}^{2}, M_{\tilde{E}}^{2} & T_{u}, T_{d}, T_{e}$$
(3x3 matrices in flavour space — 48 independent parameters)

Non-minimally flavour-violating terms manifest as non-diagonal entries in the soft mass matrices $(M_{\tilde{Q}}^2, M_{\tilde{U}}^2, M_{\tilde{D}}^2, M_{\tilde{L}}^2, M_{\tilde{E}}^2)$ and the trilinear coupling matrices (T_u, T_d, T_e) — dimensionless and scenario-independent parametrization:

$$(\delta^{Q}_{LL})_{ij} = \frac{(M^{2}_{\tilde{Q}})_{ij}}{(M_{\tilde{Q}})_{ii}(M_{\tilde{Q}})_{jj}} \qquad (\delta^{U}_{RR})_{ij} = \frac{(M^{2}_{\tilde{U}})_{ij}}{(M_{\tilde{U}})_{ii}(M_{\tilde{U}})_{jj}} \qquad (\delta^{U}_{RL})_{ij} = \frac{v_{u}}{\sqrt{2}} \frac{(T_{u})_{ij}}{(M_{\tilde{Q}})_{ii}(M_{\tilde{U}})_{jj}}$$

$$(\delta^{D}_{RR})_{ij} = \frac{(M^{2}_{\tilde{D}})_{ij}}{(M_{\tilde{D}})_{ii}(M_{\tilde{D}})_{jj}} \qquad (\delta^{D}_{RL})_{ij} = \frac{v_{d}}{\sqrt{2}} \frac{(T_{d})_{ij}}{(M_{\tilde{Q}})_{ii}(M_{\tilde{D}})_{jj}}$$

$$(\delta^{L}_{RR})_{ij} = \frac{(M^{2}_{\tilde{L}})_{ij}}{(M_{\tilde{L}})_{ii}(M_{\tilde{L}})_{jj}} \qquad (\delta^{E}_{RR})_{ij} = \frac{(M^{2}_{\tilde{E}})_{ij}}{(M_{\tilde{E}})_{ii}(M_{\tilde{E}})_{jj}} \qquad (\delta^{E}_{RL})_{ij} = \frac{v_{d}}{\sqrt{2}} \frac{(T_{e})_{ij}}{(M_{\tilde{L}})_{ii}(M_{\tilde{E}})_{jj}}$$

Non-minimally flavour-violating terms manifest as non-diagonal entries in the soft mass matrices $(M_{\tilde{Q}}^2, M_{\tilde{U}}^2, M_{\tilde{D}}^2, M_{\tilde{L}}^2, M_{\tilde{E}}^2)$ and the trilinear coupling matrices (T_u, T_d, T_e) — dimensionless and scenario-independent parametrization:

$$(\delta^{Q}_{LL})_{ij} = \frac{(M^{2}_{\tilde{Q}})_{ij}}{(M_{\tilde{Q}})_{ii}(M_{\tilde{Q}})_{jj}} \qquad (\delta^{U}_{RR})_{ij} = \frac{(M^{2}_{\tilde{U}})_{ij}}{(M_{\tilde{U}})_{ii}(M_{\tilde{U}})_{jj}} \qquad (\delta^{U}_{RL})_{ij} = \frac{v_{u}}{\sqrt{2}} \frac{(T_{u})_{ij}}{(M_{\tilde{Q}})_{ii}(M_{\tilde{U}})_{jj}}$$

$$(\delta^{D}_{RR})_{ij} = \frac{(M^{2}_{\tilde{D}})_{ij}}{(M_{\tilde{D}})_{ii}(M_{\tilde{D}})_{jj}} \qquad (\delta^{D}_{RL})_{ij} = \frac{v_{d}}{\sqrt{2}} \frac{(T_{d})_{ij}}{(M_{\tilde{Q}})_{ii}(M_{\tilde{D}})_{jj}}$$

$$(\delta^{E}_{RR})_{ij} = \frac{(M^{2}_{\tilde{L}})_{ij}}{(M_{\tilde{L}})_{ii}(M_{\tilde{L}})_{jj}} \qquad (\delta^{E}_{RR})_{ij} = \frac{(M^{2}_{\tilde{E}})_{ij}}{(M_{\tilde{E}})_{ii}(M_{\tilde{E}})_{jj}} \qquad (\delta^{E}_{RL})_{ij} = \frac{v_{d}}{\sqrt{2}} \frac{(T_{e})_{ij}}{(M_{\tilde{L}})_{ii}(M_{\tilde{E}})_{jj}}$$

Mass eigenstates are obtained via 6x6 rotation matrices (generalized "mixing angles"):

$$\operatorname{diag}\left(m_{\tilde{u}_{1}}^{2}, m_{\tilde{u}_{2}}^{2}, \dots, m_{\tilde{u}_{6}}^{2}\right) = \mathcal{R}_{\tilde{u}}\mathcal{M}_{\tilde{u}}^{2}\mathcal{R}_{\tilde{u}}^{\dagger} \qquad \operatorname{diag}\left(m_{\tilde{d}_{1}}^{2}, m_{\tilde{d}_{2}}^{2}, \dots, m_{\tilde{d}_{6}}^{2}\right) = \mathcal{R}_{\tilde{d}}\mathcal{M}_{\tilde{d}}^{2}\mathcal{R}_{\tilde{d}}^{\dagger}$$
$$\operatorname{diag}\left(m_{\tilde{\ell}_{1}}^{2}, m_{\tilde{\ell}_{2}}^{2}, \dots, m_{\tilde{\ell}_{6}}^{2}\right) = \mathcal{R}_{\tilde{\ell}}\mathcal{M}_{\tilde{\ell}}^{2}\mathcal{R}_{\tilde{\ell}}^{\dagger}$$

TeV scale MSSM — flavour-violating parameters

Extensive analysis of the MSSM with squark NMFV featuring 22 parameters at the TeV scale — Markov Chain Monte Carlo (MCMC) study

De Causmaecker, Fuks, Herrmann, Mahmoudi, O'Leary, Porod, Sekmen, Strobbe — JHEP 1511 (2015) 125 — arXiv:1509.05414 [hep-ph]

LHC squark mass limits and search proposal

Chakraborty, Endo, Fuks, Herrmann, Nojiri, Pani, Polesello — PhysTeV Les Houches 2017 — arXiv:1803.10379 [hep-ph] Chakraborty, Endo, Fuks, Herrmann, Nojiri, Pani, Polesello — Eur. Phys. J. C78 (2018) 10: 844 — arXiv:1808.07488 [hep-ph]

SU(5)-like Grand Unification

Standard-Model fields are neatly accommodated into the $\overline{\mathbf{5}}$ and $\mathbf{10}$ representations of SU(5)

$$F = \overline{\mathbf{5}} = \begin{pmatrix} d_r^c \\ d_b^c \\ d_g^c \\ e^- \\ -\nu_e \end{pmatrix}_L \qquad T = \mathbf{10} = \begin{pmatrix} 0 \ u_g^c \ -u_b^c \ u_r \ d_r \\ \cdot \ 0 \ u_r^c \ u_b \ d_b \\ \cdot \ \cdot \ 0 \ u_g \ d_g \\ \cdot \ \cdot \ 0 \ e^c \\ \cdot \ \cdot \ \cdot \ 0 \ e^c \end{pmatrix}_L$$

The SU(5) gauge group may be broken into the Standard-Model gauge group according to

$$SU(5) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$$

$$\overline{\mathbf{5}} = d^{c}(\overline{\mathbf{3}}, \mathbf{1}, 1/3) \oplus L(\mathbf{1}, \overline{\mathbf{2}}, -1/2) , \mathbf{10} = u^{c}(\overline{\mathbf{3}}, \mathbf{1}, -2/3) \oplus Q(\mathbf{3}, \mathbf{2}, 1/6) \oplus e^{c}(\mathbf{1}, \mathbf{1}, 1)$$

SU(5)-like Grand Unification

Standard-Model fields are neatly accommodated into the $\overline{\mathbf{5}}$ and $\mathbf{10}$ representations of SU(5)

$$F = \overline{\mathbf{5}} = \begin{pmatrix} d_r^c \\ d_b^c \\ d_g^c \\ e^- \\ -\nu_e \end{pmatrix}_L \qquad T = \mathbf{10} = \begin{pmatrix} 0 \ u_g^c \ -u_b^c \ u_r \ d_r \\ . \ 0 \ u_r^c \ u_b \ d_b \\ . \ . \ 0 \ u_g \ d_g \\ . \ . \ 0 \ e^c \\ . \ . \ . \ 0 \ \end{pmatrix}_L$$

The SU(5) gauge group may be broken into the Standard-Model gauge group according to

$$SU(5) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y, \qquad \overline{\mathbf{5}} = d^c(\overline{\mathbf{3}}, \mathbf{1}, 1/3) \oplus L(\mathbf{1}, \overline{\mathbf{2}}, -1/2),$$
$$\mathbf{10} = u^c(\overline{\mathbf{3}}, \mathbf{1}, -2/3) \oplus Q(\mathbf{3}, \mathbf{2}, 1/6) \oplus e^c(\mathbf{1}, \mathbf{1}, 1)$$

Extending to Supersymmetry, SU(5) symmetry provides the following relationships between soft terms at the Grand Unification scale:

$$M_{\tilde{D}}^2 = M_{\tilde{L}}^2 \equiv M_F^2 \qquad A_d = A_e^t \equiv A_{FT}$$
$$M_{\tilde{Q}}^2 = M_{\tilde{U}}^2 = M_{\tilde{E}}^2 \equiv M_T^2 \qquad A_u \equiv A_{TT}$$

Adding the A₄ flavour symmetry

Unify three families of $\overline{\mathbf{5}} = F = (d^c, L)$ into the triplet of A_4 while the three $\mathbf{10}_i = T_i = (Q, u^c, e^c)_i$ representations are singlets of A_4

$$M_F^2 = \begin{pmatrix} m_F^2 & 0 & 0 \\ 0 & m_F^2 & 0 \\ 0 & 0 & m_F^2 \end{pmatrix} \qquad \qquad M_T^2 = \begin{pmatrix} m_{T_1}^2 & 0 & 0 \\ 0 & m_{T_2}^2 & 0 \\ 0 & 0 & m_{T_3}^2 \end{pmatrix}$$

Adding the A₄ flavour symmetry

Unify three families of $\overline{\mathbf{5}} = F = (d^c, L)$ into the triplet of A_4 while the three $\mathbf{10}_i = T_i = (Q, u^c, e^c)_i$ representations are singlets of A_4

$$M_F^2 = \begin{pmatrix} m_F^2 & 0 & 0 \\ 0 & m_F^2 & 0 \\ 0 & 0 & m_F^2 \end{pmatrix} \qquad \qquad M_T^2 = \begin{pmatrix} m_{T_1}^2 & 0 & 0 \\ 0 & m_{T_2}^2 & 0 \\ 0 & 0 & m_{T_3}^2 \end{pmatrix}$$

Generally, non-minimal flavour violation is expected in this type of setup

(presence of flavons related to the breaking of $A_{4...}$)

S. Antusch, S. F. King, M. Spinrath — Phys. Rev. D 87 (2013) 096018 — arXiv:1301.6764 [hep-ph]
M. Dimou, S. F. King, C. Luhn — JHEP 1602 (2016) 118 — arXiv:1511.07886 [hep-ph]
M. Dimou, S. F. King, C. Luhn — Phys. Rev. D 93 (2016) 075026 — arXiv:1512.09063 [hep-ph]

PHYSICAL REVIEW D 97, 115002 (2018)

Muon g-2 and dark matter suggest nonuniversal gaugino masses: $SU(5) \times A_4$ case study at the LHC

Alexander S. Belyaev,^{1,2,*} Steve F. King,^{1,†} and Patrick B. Schaefers^{1,‡}

arXiv:1801.00514 [hep-ph]

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = (28.8 \pm 8.0) \cdot 10^{-10}$$
$$\Omega_{CDM} h^2 \lesssim 0.1224$$
$$\sigma_{DD}^{SI} \lesssim 7.64 \cdot 10^{-11} \text{ pb}$$
$$m_h = (125.09 \pm 1.50) \text{ GeV}$$
$$BR(b \to s\gamma) = (3.29 \pm 0.52) \cdot 10^{-4}$$
$$BR(B_s \to \mu^+ \mu^-) = 3.0^{+1.0}_{-0.9} \cdot 10^{-9}$$

PHYSICAL REVIEW D 97, 115002 (2018)

Muon g-2 and dark matter suggest nonuniversal gaugino masses: $SU(5) \times A_4$ case study at the LHC

Alexander S. Belyaev,^{1,2,*} Steve F. King,^{1,†} and Patrick B. Schaefers^{1,‡}

PHYSICAL REVIEW D 97, 115002 (2018)

Muon g-2 and dark matter suggest nonuniversal gaugino masses: $SU(5) \times A_4$ case study at the LHC

Alexander S. Belyaev,^{1,2,*} Steve F. King,^{1,†} and Patrick B. Schaefers^{1,‡}

What about NMFV effects in this setup...?

Sfermion sector in the MSSM — revisited

In the super-CKM/PMNS basis, the sfermion sector is parametrized by four mass matrices:

$$\mathcal{M}_{\tilde{u}}^{2} = \begin{pmatrix} V_{\text{CKM}} M_{\tilde{Q}}^{2} V_{\text{CKM}}^{\dagger} + m_{u}^{2} + D_{\tilde{u},L} & \frac{v_{u}}{\sqrt{2}} T_{u}^{\dagger} - m_{u} \frac{\mu}{\tan\beta} \\ \frac{v_{u}}{\sqrt{2}} T_{u} - m_{u} \frac{\mu^{*}}{\tan\beta} & M_{\tilde{U}}^{2} + m_{u}^{2} + D_{\tilde{u},R} \end{pmatrix}$$

$$\mathcal{M}_{\tilde{d}}^{2} = \begin{pmatrix} M_{\tilde{Q}}^{2} + m_{d}^{2} + D_{\tilde{d},L} & \frac{v_{d}}{\sqrt{2}} T_{d}^{\dagger} - m_{d}\mu \tan\beta \\ \frac{v_{d}}{\sqrt{2}} T_{d} - m_{d}\mu^{*} \tan\beta & M_{\tilde{D}}^{2} + m_{d}^{2} + D_{\tilde{d},R} \end{pmatrix}$$

$$\mathcal{M}_{\tilde{\ell}}^{2} = \begin{pmatrix} M_{\tilde{L}}^{2} + m_{e}^{2} + D_{\tilde{\ell},L} & \frac{v_{d}}{\sqrt{2}} T_{e} - m_{e}\mu \tan\beta \\ \frac{v_{d}}{\sqrt{2}} T_{e} - m_{e}\mu^{*} \tan\beta & M_{\tilde{E}}^{2} + m_{e}^{2} + D_{\tilde{\ell},R} \end{pmatrix}$$
5 independent mass matrices and 3 trilinear coupling matrices
$$M_{\tilde{Q}}^{2}, M_{\tilde{U}}^{2}, M_{\tilde{D}}^{2}, M_{\tilde{L}}^{2}, M_{\tilde{E}}^{2} & T_{u}, T_{d}, T_{e}$$
(3x3 matrices in flavour space — 48 independent parameters)

MFV Reference points

	Parameter/Observable	Scenario 1	Scenario 2
	m_F	5000	5000
ale	m_{T_1}	5000	5000
	m_{T_2}	200	233.2
GUJ	m_{T_3}	2995	2995
at (a_{33}^{TT}	-940	-940
ters	a_{33}^{FT}	-1966	-1966
ame	M_1	250.0	600.0
Para	M_2	415.2	415.2
	M_3	2551.6	2551.6
	M_{H_u}	4242.6	4242.6
	M_{H_d}	4242.6	4242.6
	aneta	30	30
	μ	-2163.1	-2246.8

	Parameter/Observable	Scenario 1	Scenario 2
	m_h	126.7	127.3
	$m_{\widetilde{g}}$	5570.5	5625.7
70	$m_{\widetilde{\mu}_L}$	4996.7	4997.5
ISSE	$m_{\widetilde{\mu}_R}$	102.1	254.4
l mê	$m_{\widetilde{\chi}^0_1}$	94.6	250.4
sica	$m_{\widetilde{\chi}^0_2}$	323.6	322.0
Phy	$m_{\widetilde{\chi}^0_3}$	2248.8	2331.1
	$m_{\widetilde{\chi}_4^0}$	2248.8	2331.2
	$m_{\widetilde{\chi}_1^\pm}$	323.8	322.2
	$m_{\widetilde{\chi}^{\pm}_2}$	2249.8	2332.2

MFV Reference points

NMFV parameter study

Parameters	Scenario 1	Scenario 2
$(\delta^T)_{12}$	$[-2.00, 2.00] \times 10^{-2}$	$[-5.57, 5.15] \times 10^{-2}$
$(\delta^T)_{13}$	$[-8.01, 8.01] \times 10^{-2}$	[-0.267, 0.301]
$(\delta^T)_{23}$	0.0	$[-5.73, 5.73] \times 10^{-2}$
$(\delta^F)_{12}$	$[-8.00, 8.00] \times 10^{-3}$	$[-8.00, 8.00] \times 10^{-3}$
$(\delta^F)_{13}$	$[-1.00, 1.00] \times 10^{-2}$	$[-8.00, 8.00] \times 10^{-2}$
$(\delta^F)_{23}$	$[-1.60, 1.60] \times 10^{-2}$	$[-8.00, 8.00] \times 10^{-2}$
$(\delta^{TT})_{12}$	$[-8.69, 10.43] \times 10^{-4}$	$[-7.46, 8.95] \times 10^{-4}$
$(\delta^{TT})_{13}$	$[-1.74, 1.74] \times 10^{-3}$	$[-3.48, 1.74] \times 10^{-3}$
$(\delta^{TT})_{23}$	$\left[-0.0174, 0.145 ight]$	[-0.0871, 0.124]
$(\delta^{FT})_{12}$	$[-4.64, 4.64] \times 10^{-5}$	$[-5.47, 5.47] \times 10^{-5}$
$(\delta^{FT})_{13}$	$[-7.74, 7.74] \times 10^{-5}$	$[-3.87, 3.87] \times 10^{-4}$
$(\delta^{FT})_{21}$	0.0	$\left \left[-1.04, 1.04 \right] \times 10^{-4} \right $
$(\delta^{FT})_{23}$	$[-1.16, 1.16] \times 10^{-4}$	$\left \left[-2.32, 2.32 \right] \times 10^{-4} \right $
$(\delta^{FT})_{31}$	$[-1.39, 1.39] \times 10^{-5}$	$\left \left[-8.81, 8.81 \right] \times 10^{-5} \right $
$(\delta^{FT})_{32}$	0.0	$\left \left[-1.49, 1.49 \right] \times 10^{-4} \right $

$$\left(\delta^{T}\right)_{ij} = \frac{\left(M_{T}^{2}\right)_{ij}}{\left(M_{T}\right)_{ii}\left(M_{T}\right)_{jj}}$$

$$\left(\delta^F\right)_{ij} = \frac{\left(M_F^2\right)_{ij}}{\left(M_F\right)_{ii}\left(M_F\right)_{jj}}$$

$$\left(\delta^{TT}\right)_{ij} = \frac{v_u}{\sqrt{2}} \frac{\left(T_u\right)_{ij}}{\left(M_T\right)_{ii} \left(M_T\right)_{jj}}$$

$$\left(\delta^{FT}\right)_{ij} = \frac{v_u}{\sqrt{2}} \frac{\left(T_d\right)_{ij}}{\left(M_T\right)_{ii} \left(M_F\right)_{jj}}$$

parameters at GUT scale

Experimental constraints

Observable	Constraint		
m_h	$(125.2 \pm 2.5) \text{ GeV}$		
$BR(\mu \to e\gamma)$	$< 4.2 \times 10^{-13}$		
$BR(\mu \to 3e)$	$< 1.0 \times 10^{-12}$		
$BR(\tau \to e\gamma)$	$< 3.3 \times 10^{-8}$		
$BR(\tau \to \mu \gamma)$	$<4.4\times10^{-8}$		
$BR(\tau \to 3e)$	$<2.7\times10^{-8}$		
$BR(\tau \to 3\mu)$	$<2.1\times10^{-8}$		
$BR(\tau \to e^- \mu \mu)$	$<2.7\times10^{-8}$		
$BR(\tau \to e^+ \mu \mu)$	$< 1.7 \times 10^{-8}$		
$BR(\tau \to \mu^- ee)$	$< 1.8 \times 10^{-8}$		
$BR(\tau \to \mu^+ ee)$	$<1.5\times10^{-8}$		
$BR(B \to X_s \gamma)$	$(3.32 \pm 0.18) \times 10^{-4}$		
$BR(B_s \to \mu\mu)$	$(2.7 \pm 1.2) \times 10^{-9}$		
ΔM_{B_s}	$(17.757 \pm 0.042 \pm 2.7) \text{ ps}^{-1}$		
ΔM_K	$(3.1 \pm 1.2) \times 10^{-15} \text{ GeV}$		
ϵ_K	2.228 ± 0.29		
$\Omega_{ m CDM} h^2$	0.1198 ± 0.0042		

Experimental constraints

Observable	Constraint
m_h	$(125.2 \pm 2.5) \text{ GeV}$
$BR(\mu \to e\gamma)$	$< 4.2 \times 10^{-13}$
$BR(\mu \to 3e)$	$< 1.0 \times 10^{-12}$
$BR(\tau \to e\gamma)$	$< 3.3 \times 10^{-8}$
$BR(\tau \to \mu \gamma)$	$< 4.4 \times 10^{-8}$
$BR(\tau \to 3e)$	$< 2.7 \times 10^{-8}$
$BR(\tau \to 3\mu)$	$< 2.1 \times 10^{-8}$
$BR(\tau \to e^- \mu \mu)$	$< 2.7 \times 10^{-8}$
$BR(\tau \to e^+ \mu \mu)$	$< 1.7 \times 10^{-8}$
$BR(\tau \to \mu^- ee)$	$< 1.8 \times 10^{-8}$
$BR(\tau \to \mu^+ ee)$	$< 1.5 \times 10^{-8}$
$BR(B \to X_s \gamma)$	$(3.32 \pm 0.18) \times 10^{-4}$
$BR(B_s \to \mu \mu)$	$(2.7 \pm 1.2) \times 10^{-9}$
ΔM_{B_s}	$(17.757 \pm 0.042 \pm 2.7) \text{ ps}^{-1}$
ΔM_K	$(3.1 \pm 1.2) \times 10^{-15} \text{ GeV}$
ϵ_K	2.228 ± 0.29
$\Omega_{ m CDM} h^2$	0.1198 ± 0.0042

Results — Overview

Parameters	Scenario 1	Most constraining obs. 1	Scenario 2	Most constraining obs. 2
$(\delta^T)_{12}$	[-0.015, 0.015]	$\mu \to 3e, \ \mu \to e\gamma, \ \Omega_{\tilde{\chi}_1^0} h^2$	$[-0.12, 0.12]^{\dagger}$	$\Omega_{ ilde{\chi}^0_1} h^2, \mu o e\gamma$
$(\delta^T)_{13}$]-0.06, 0.06[$\Omega_{ ilde{\chi}_1^0} h^2$	$[-0.3, 0.3]^{\dagger}$	$\Omega_{ ilde{\chi}_1^0} h^2$
$(\delta^T)_{23}$	$[0,0]^*$	$\Omega_{\tilde{\chi}^0_1}h^2,\mu ightarrow 3e,\mu ightarrow e\gamma$	$[-0.1, 0.1^{\dagger}]$	$\Omega_{\tilde{\chi}^0_1} h^2, \mu \to 3e, \mu \to e\gamma,$
$(\delta^F)_{12}$	[-0.008, 0.008]	$\mu \rightarrow 3e, \mu \rightarrow e\gamma$	$[-0.015, 0.015]^{\dagger}$	$\mu \to 3e, \ \mu \to e\gamma$
$(\delta^F)_{13}$]-0.01, 0.01[$\mu ightarrow e \gamma$	$[-0.15, 0.15]^{\dagger}$	$\mu \to 3e, \ \mu \to e\gamma$
$(\delta^F)_{23}$]-0.015, 0.015[$\mu ightarrow e \gamma, \Omega_{{ ilde \chi}_1^0} h^2$	$[-0.15, 0.15]^{\dagger}$	$\Omega_{\tilde{\chi}^0_1} h^2, \mu \to e\gamma, \mu \to 3e$
$(\delta^{TT})_{12}$	$[-3, 3.5] \times 10^{-5}$	prior	$[-1, 1.5]^{\dagger} \times 10^{-3}$	prior, $\Omega_{\tilde{\chi}_1^0} h^2$
$(\delta^{TT})_{13}$]-6, 7[$\times 10^{-5}$	prior, $\Omega_{\tilde{\chi}_1^0} h^2$	$[-4, 2.5]^{\dagger} \times 10^{-3}$	prior, $\Omega_{ ilde{\chi}_1^0} h^2$
$(\delta^{TT})_{23}$]-0.5, 4[$\times 10^{-5}$	prior, $\Omega_{\tilde{\chi}_1^0} h^2$	$[-0.25, 0.2]^{\dagger}$	prior, $\Omega_{ ilde{\chi}_1^0} h^2$
$(\delta^{FT})_{12}$	[-0.0015, 0.0015]	$\Omega_{ ilde{\chi}_1^0} h^2$	$[-1.2, 1.2]^{\dagger} \times 10^{-4}$	$\mu \to 3e, \Omega_{\tilde{\chi}^0_1} h^2, \mu \to e\gamma$
$(\delta^{FT})_{13}$]-0.002, 0.002[$\Omega_{ ilde{\chi}_1^0} h^2$	$[-5, 5] \times 10^{-4}$	$\Omega_{\tilde{\chi}^0_1} h^2, \mu \to 3e, \mu \to e\gamma$
$(\delta^{FT})_{21}$	[0,0]*	prior	$[-1.2, 1.2]^{\dagger} \times 10^{-4}$	$\Omega_{ ilde{\chi}_1^0} h^2$, prior
$(\delta^{FT})_{23}$]-0.0022, 0.0022[$\Omega_{ ilde{\chi}_1^0} h^2$	$[-6, 6]^{\dagger} \times 10^{-4}$	$\mu \to 3e, \Omega_{\tilde{\chi}^0_1} h^2, \mu \to e\gamma$
$(\delta^{FT})_{31}$]-0.0004, 0.0004[$\Omega_{ ilde{\chi}_1^0} h^2$	$[-2, 2]^{\dagger} \times 10^{-4}$	$ig \Omega_{ ilde{\chi}_1^0} h^2$
$(\delta^{FT})_{32}$	[0,0]*	prior	$\left[-1.5, 1.5\right] \times 10^{-4}$	$ig \Omega_{ ilde{\chi}_1^0} h^2$

* parameter not varied

[†] extrapolated range

Individual vs. simultaneous variation

In a multi-dimensional parameter space, it is clearly not enough to scan each parameter individually...

 \rightarrow interference or cancellation effects in simultaneous study can be very important!

$$\begin{array}{c|c} \mathrm{BR}(\mu \to e\gamma) < 4.2 \times 10^{-13} \\ \mathrm{BR}(\mu \to 3e) < 1.0 \times 10^{-12} \end{array} \qquad \begin{array}{c|c} & ??? \\ \hline & (\delta^F)_{12} \\ & (\delta^F)_{13} \end{array} & \begin{array}{c|c} \mu \to 3e, \ \mu \to e\gamma \\ & \mu \to 3e, \ \mu \to e\gamma \end{array}$$

$$\begin{array}{c|c} \mathrm{BR}(\mu \to e\gamma) < 4.2 \times 10^{-13} \\ \mathrm{BR}(\mu \to 3e) < 1.0 \times 10^{-12} \end{array} \end{array} \xrightarrow{\ref{eq:selectric}} \begin{array}{c|c} & \ref{eq:selectric} & \ref{eq:selectric}$$

$$\propto \frac{m_e}{m_{\mu}} \,\delta_{12} \,\alpha^3 \qquad \qquad \propto \frac{m_e}{m_{\mu}} \,\delta_{12} \,\alpha^4 \qquad \qquad \propto \delta_{12} \,\alpha^4$$

$$\begin{array}{c|c} \mathrm{BR}(\mu \to e\gamma) < 4.2 \times 10^{-13} \\ \mathrm{BR}(\mu \to 3e) < 1.0 \times 10^{-12} \end{array} \qquad \begin{array}{c|c} & \reomega}{(\delta^F)_{12}} & \ & \mu \to 3e, \ \mu \to e\gamma \\ & (\delta^F)_{13} \end{array} & \ & \mu \to 3e, \ \mu \to e\gamma \end{array}$$

 $(\delta^T)_{13}$ not constrained by flavour observables other NMFV parameters driven away from zero by flavour observables, \rightarrow decrease in lightest smuon mass...

 $(\delta^T)_{13}$ not constrained by flavour observables other NMFV parameters driven away from zero by flavour observables, \rightarrow decrease in lightest smuon mass...

 $(\delta^T)_{13}$ increases lightest smuon mass (due to specific pattern of mass matrix) \rightarrow compensation of effect of other NMFV parameters w.r.t. to the relic density

Soft SUSY Breaking Grand Unification: Leptons vs Quarks on the Flavor Playground

M. Ciuchini,¹ A. Masiero,² P. Paradisi,^{3,4,5} L. Silvestrini,⁶ S. K. Vempati,^{7,8} and O. Vives⁴

Nucl. Phys. B 783 (2007) 112-142 — arXiv:hep-ph/0702144

Type of δ_{12}^l	$\mu \to e \gamma$	$\mu \to e e e$		$\mu \to e$	conversion in Ti
LL	6×10^{-4}	2	$ imes 10^{-3}$	2×10^{-3}	
RR	-		0.09		-
LR/RL	1×10^{-5}	3.	5×10^{-5}		3.5×10^{-5}
Type of δ_{13}^l	au =	$ ightarrow e \gamma$	7	$- \rightarrow e e e e$	$\tau \to e \mu \mu$
LL	0.	15	_		-
RR		-		-	-
LR/RL	0.	04		0.5	-
Type of δ_{23}^l	$\tau \rightarrow$	$\mu \gamma$	au	$ ightarrow \mu \mu \mu$	$\tau \to \mu e e$
LL	0.1	12		-	-
RR	-			-	-
LR/RL	0.0	03		-	0.5

Bounds on leptonic mass insertions

Bounds on hadronic mass insertions

$ij \backslash AB$	LL	LR	RL	RR
12	1.4×10^{-2}	$9.0 imes 10^{-5}$	$9.0 imes 10^{-5}$	$9.0 imes 10^{-3}$
13	$9.0 imes 10^{-2}$	$1.7 imes 10^{-2}$	$1.7 imes 10^{-2}$	7.0×10^{-2}
23	$1.6 imes 10^{-1}$	$4.5 imes 10^{-3}$	$6.0 imes 10^{-3}$	2.2×10^{-1}

Imposing SU(5) unification conditions, hadronic mass insertions supposed to be smaller than leptonic ones,

e.g.
$$|(\delta^d_{ij})_{\mathrm{RR}}| \leq \frac{m_L^2}{m_{d^c}^2} |(\delta^l_{ij})_{\mathrm{LL}}|$$

Leptonic vs. hadronic NMFV at TeV scale

Parameter co

Parameter co

10

Results — Summary

Parameters	Scenario 1	Most constraining obs. 1	Scenario 2	Most constraining obs. 2
$(\delta^T)_{12}$	[-0.015, 0.015]	$\mu \to 3e, \ \mu \to e\gamma, \ \Omega_{\tilde{\chi}_1^0} h^2$	$[-0.12, 0.12]^{\dagger}$	$\Omega_{ ilde{\chi}_1^0} h^2, \mu o e\gamma$
$(\delta^T)_{13}$]-0.06, 0.06[$\Omega_{ ilde{\chi}_1^0} h^2$	$[-0.3, 0.3]^{\dagger}$	$\Omega_{ ilde{\chi}_1^0}h^2$
$(\delta^T)_{23}$	$[0,0]^*$	$\Omega_{\tilde{\chi}^0_1} h^2, \mu o 3e, \mu o e\gamma$	$[-0.1, 0.1^{\dagger}]$	$\Omega_{\tilde{\chi}^0_1} h^2, \mu \to 3e, \mu \to e\gamma,$
$(\delta^F)_{12}$	[-0.008, 0.008]	$\mu \rightarrow 3e, \mu \rightarrow e\gamma$	$[-0.015, 0.015]^{\dagger}$	$\mu \rightarrow 3e, \ \mu \rightarrow e\gamma$
$(\delta^F)_{13}$]-0.01, 0.01[$\mu ightarrow e \gamma$	$[-0.15, 0.15]^{\dagger}$	$\mu \rightarrow 3e, \ \mu \rightarrow e\gamma$
$(\delta^F)_{23}$]-0.015, 0.015[$\mu ightarrow e\gamma, \Omega_{{ ilde \chi}_1^0} h^2$	$[-0.15, 0.15]^{\dagger}$	$\Omega_{\tilde{\chi}^0_1} h^2, \mu o e\gamma, \mu o 3e$
$(\delta^{TT})_{12}$	$[-3, 3.5] \times 10^{-5}$	prior	$[-1, 1.5]^{\dagger} \times 10^{-3}$	prior, $\Omega_{\tilde{\chi}_1^0} h^2$
$(\delta^{TT})_{13}$]-6, 7[$\times 10^{-5}$	prior, $\Omega_{\tilde{\chi}_1^0} h^2$	$[-4, 2.5]^{\dagger} \times 10^{-3}$	prior, $\Omega_{\tilde{\chi}_1^0} h^2$
$(\delta^{TT})_{23}$]-0.5, 4[$\times 10^{-5}$	prior, $\Omega_{\tilde{\chi}_1^0} h^2$	$[-0.25, 0.2]^{\dagger}$	prior, $\Omega_{ ilde{\chi}_1^0} h^2$
$(\delta^{FT})_{12}$	[-0.0015, 0.0015]	$\Omega_{ ilde{\chi}_1^0} h^2$	$[-1.2, 1.2]^{\dagger} \times 10^{-4}$	$\mu \to 3e, \Omega_{\tilde{\chi}_1^0} h^2, \mu \to e\gamma$
$(\delta^{FT})_{13}$]-0.002, 0.002[$\Omega_{ ilde{\chi}_1^0} h^2$	$[-5, 5] \times 10^{-4}$	$\Omega_{\tilde{\chi}^0_1} h^2, \mu o 3e, \mu o e\gamma$
$(\delta^{FT})_{21}$	[0,0]*	prior	$[-1.2, 1.2]^{\dagger} \times 10^{-4}$	$\Omega_{\tilde{\chi}_1^0} h^2$, prior
$(\delta^{FT})_{23}$]-0.0022, 0.0022[$\Omega_{ ilde{\chi}_1^0} h^2$	$[-6, 6]^{\dagger} \times 10^{-4}$	$\mu \to 3e, \Omega_{\tilde{\chi}_1^0} h^2, \mu \to e\gamma$
$(\delta^{FT})_{31}$]-0.0004, 0.0004[$\Omega_{ ilde{\chi}_1^0} h^2$	$[-2, 2]^{\dagger} \times 10^{-4}$	$\Omega_{ ilde{\chi}_1^0}h^2$
$(\delta^{FT})_{32}$	[0,0]*	prior	$\left[-1.5, 1.5\right] \times 10^{-4}$	$\Omega_{ ilde{\chi}_1^0}h^2$

* parameter not varied

[†] extrapolated range

Summary and outlook

Impact of non-minimal flavour violation in a flavoured GUT framework: $SU(5) \times A_4$

Limits on NMFV parameters at the GUT and TeV scales... Interesting features already in this rather simple model... Lepton constraints stronger than hadronic ones... LHC phenomenology less interesting in this particular setup...

> Jordan Bernigaud, B. Herrmann, Stephen F. King, Samuel J. Rowley to be published — arXiv:1812.01xyz

Summary and outlook

Impact of non-minimal flavour violation in a flavoured GUT framework: $SU(5) \times A_4$

Limits on NMFV parameters at the GUT and TeV scales... Interesting features already in this rather simple model... Lepton constraints stronger than hadronic ones... LHC phenomenology less interesting in this particular setup...

> Jordan Bernigaud, B. Herrmann, Stephen F. King, Samuel J. Rowley to be published — arXiv:1812.01xyz

Further studies: general SU(5) unified MSSM... MSSM with $SU(5) \times S_4$ unification... study of $(g-2)_{\ell}$ in BSM...

Summary and outlook

Impact of non-minimal flavour violation in a flavoured GUT framework: $SU(5) \times A_4$

Limits on NMFV parameters at the GUT and TeV scales... Interesting features already in this rather simple model... Lepton constraints stronger than hadronic ones... LHC phenomenology less interesting in this particular setup...

> Jordan Bernigaud, B. Herrmann, Stephen F. King, Samuel J. Rowley to be published — arXiv:1812.01xyz

Further studies: general SU(5) unified MSSM... MSSM with $SU(5) \times S_4$ unification... study of $(g-2)_{\ell}$ in BSM...

