Multi-legs calculations with GRACE/LOOP system

— Toward Radiative Corrections to $e^+e^- \to \mu\bar\nu u\bar d \ -\!\!\!\!-$

Junpei Fujimoto KEK, Japan

for the collaboration with

F. Boudjema, T. Ishikawa, T. Kaneko,

K. Kato, Y. Kurihara and Y. Shimizu.

Loop & Legs 2004 Zinnowitz Apr. 29, 2004

Contents

- 1. Introduction
- 2. Motivation
- 3. Steps of calculation
- 4. Check of codes
- 5. Status of calculation
- 6. Summary

1. Introduction

At L&L/RADCOR 2002, the numerical results of $O(\alpha)$ corrections to $e^+e^- \to \nu\bar{\nu}H$ was presented by GRACE group.

Since then, several radiative corrections to important $2 \rightarrow 3$ processes were performed by several authors:

- for $e^+e^- \to \nu\bar{\nu}H$;
 - G. Belanger et. al. PLB 559(2003)252.
 - A. Denner et. al. PLB 560(2003)196.
 - A. Denner et. al. NPB 660(2003)289.
- for $e^+e^- \to t\bar{t}H$;
 - Y. You et. al. PLB 571(2003)85.
 - G. Belanger et. al. PLB 571(2003)163.
 - A. Denner et. al. PLB 575(2003)290.
 - A. Denner et. al. NPB 680(2004)85.
- for $e^+e^- \to ZHH$;
 - G. Belanger et. al. PLB 576(2003)152.
 - R. Zhang et. al. PLB 578(2004)349.
- for $\gamma \gamma \to t\bar{t}H$;

- H. Chen et. al. NPB 683(2004)196.
- for $e^+e^- \rightarrow e^+e^-H$;
 - F. Boudjema et. al. contribution to ACAT03(Dec. 2003); hep-ph/0404098.
- for $e^+e^- \to \nu\bar{\nu}\gamma$;
 - F. Boudjema et. al. contribution to ACAT03(Dec. 2003); hep-ph/0404098.

Full EW 1-loop calculations are well under control for $2 \rightarrow 3$ processes in SM.

Now the time to attack $2 \rightarrow 4$!!

(A. Vicini, "2nd ECFA/DESY Linear Collider Workshop" (Oct. 1999))

We take a typical LEP-2 process

$$e^+ + e^- \to \mu + \bar{\nu} + u + \bar{d}$$

for the first trial.

2. Motivation

At LEP2 experiments, Double Pole Approximation(DPA) or the fermion loop scheme was used to predict the cross sections of $e^+e^- \rightarrow 4$ -fermions. Features are:

- Gauge invariance is guaranteed.
- It was sensible to split the diagrams into W-pair production(CC03) and others.

But the energy region at the future linear-collider, non-CC03 diagrams are not negligible.

For example, at $\sqrt{s} = 500$ GeV, the tree level cross sections of CC03 and CC10 are

CC03	CC10	1-CC03/CC10
213.56 fb	222.39 fb	4%

The size of the radiative corrections to (CC10-CC03) should be carefully estimated at the TeV energy region.

We need exact $O(\alpha)$ corrections to 4-fermion processes.

3. Steps of calculation

- 1-loop calculation consists of the following three parts:
 - the numerators
 - ⇒ using Symbolic manipulation system
 - \implies to shorten the size of matrix elements, m_e, m_μ, m_u, m_d are neglected.
 - the denominators
 - \implies 5- and 6-point integrals are reduced to 4-point.
 - \Longrightarrow FF and other analytic formulas
 - \implies all the masses are kept for the mass singularity.
 - Kinematics \Longrightarrow keep masses exactly

• The reduction algorithm of $N(\geq 5)$ point functions:

$$T^{(5)} \sim \int \frac{d^n l}{(2\pi)^n i} \frac{l_{\mu} l_{\nu} \cdots l_{\rho}}{D_0 D_1 \cdots D_4},$$

where $D_0 = l^2 - m_0^2$ and $D_i = (l + s_i)^2 - m_i^2, i = 1, \dots, 4$.

Using the identities

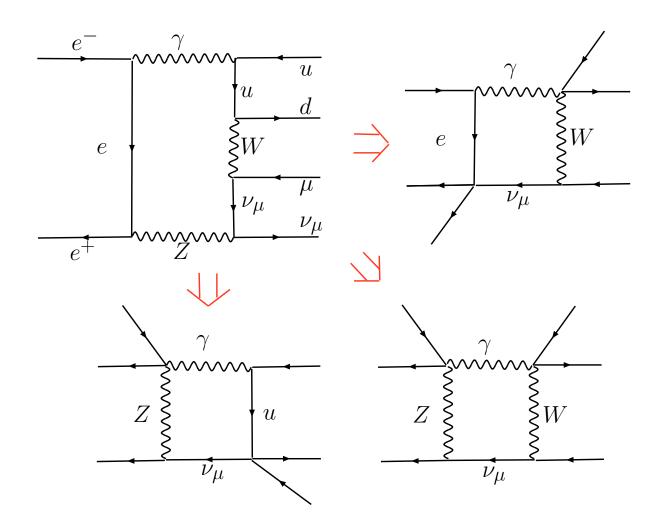
$$g^{\mu\nu} = \sum_{i,j=1}^{4} s_i^{\mu} (A^{-1})_{ij} s_j^{\nu},$$

$$l^{\mu} = \sum_{i,j} s_i^{\mu} (A^{-1})_{ij} (l \cdot s_j),$$

$$= \frac{1}{2} \sum_{i,j} (A^{-1})_{ij} (D_j - D_0 - \Delta_j) s_i^{\mu},$$

with $A_{ij} = s_i \cdot s_j$ and $\Delta_i = s_i^2 - m_i^2$, the numerator can be reduced to

$$l_{\mu}l_{\nu}\cdots l_{\rho} = \sum_{i,j} (A^{-1})_{ij}(D_i - D_0 - \Delta_i)s_j^{\mu}l_{\nu}\cdots l_{\rho}.$$


This method also enables us to reduce a 6-point function to a sum of 4-point functions.

It is noted that the following identity is not used to reduce the numerator:

$$l^2 = \sum_{i,j} (l \cdot s_i) A_{ij} (l \cdot s_j),$$

except for the scalar integral.

- When we keep the fermion masses in the numerator, the matrix elements are rather lengthy. To shorten them, those masses are neglected.
- GRACE/1-LOOP system adopts FF package for 4-point function in the case of general mass combination.
 - Some non-IR 4-point functions are unstable when **internal massless** particles appear. If this case happens, we use in-house formulas.
- Introduce a decay width(constant fixed width). But it breaks the gauge invariance in $O(\alpha \Gamma_W/M_W)$.
 - This causes a serious problem to IR 5-point diagrams around the W-pole. \Longrightarrow See below.

5. 1-loop diagrams of $e^+e^- \rightarrow \mu \bar{\nu} u \bar{d}$

6094 diagrams for 1-loop and **44** ones for tree, when the electron-scalar couplings are kept.

 \Longrightarrow Approximation: ignore $m_e^2, m_\mu^2, m_u^2, m_d^2$ in the numerator of the matrix elements, which looses digits of the renormalization and infra-red independence in $O(m^2/s)$.

 \implies **668** 1-loops (**30** 6-point functions, **88** 5-point functions) and **10** trees(CC10).

 \Longrightarrow Figures

4. Check of codes

- Single phase space point with full-set of diagrams.
- \bullet Gauge invariance in the 1-loop level \Longrightarrow non-linear gauge (NLG) fixing is applied in collaboration with LAPTH

(F. Boudjema and E. Chopin, Z.Phys. C73(1996) 85.)

$$\xi_W = \xi_Z = \xi_A = 1 \Longrightarrow \text{Numerator} = g^{\mu\nu}.$$

$$\mathcal{L}_{GF} = -\frac{1}{\xi_W} \left| (\partial_{\mu} - ie\tilde{\alpha}A_{\mu} - ig\cos\theta_W \tilde{\beta}Z_{\mu})W^{+\mu} \right| + \xi_W \frac{g}{2} (v + \tilde{\delta}H + i\tilde{\kappa}\chi_3)\chi^{+} \right|^2 - \frac{1}{2\xi_Z} \left(\partial_{\mu}Z^{\mu} + \xi_Z \frac{g}{2\cos\theta_W} (v + \tilde{\epsilon}H)\chi_3 \right)^2 - \frac{1}{2\xi_A} (\partial_{\mu}A^{\mu})^2$$

• In total the amplitude contains 5 NLG gauge parameters:

$$\tilde{\zeta} = \tilde{\alpha}, \tilde{\beta}, \tilde{\delta}, \tilde{\varepsilon}, \tilde{\kappa}$$

NLG invariance check:

- \Longrightarrow No width, $\Gamma_W = \Gamma_Z = 0$.
- ⇒ the whole matrix elements has no dependence on each gauge parameters in more than 21 digits because we keep all the masses in the numerator.

	ζ^3	ζ^2	ζ^1
\tilde{lpha}	29	29	21
$ ilde{eta}$	29	28	23
$ ilde{\delta}$		30	27
$ ilde{\kappa}$		29	26
$\widetilde{\epsilon}$		31	27

This table shows the number of digits canceled among coefficients of $\tilde{\zeta} = \tilde{\alpha}, \tilde{\beta}, \tilde{\delta}, \tilde{\varepsilon}, \tilde{\kappa}$.

4V		l a^3	l a^2	a^1	a^0
6V	4V	1 4 5	1 42	•	*
7V .2941457E-12 2941457E-12 11V .1490282E-11 1490282E-11 22V .2456668E-17 2456668E-17 1676P 3506756E-07 .1672967E-06 1677P .2598412E-19 .1957840E-17 1678P .5263239E-19 .1010322E-17 1679P 7508612E-09 .7508612E-09 .1403795E-27 1403795E-27					
11V .1490282E-11 1490282E-11 22V .2456668E-17 2456668E-17 3506756E-07 .1672967E-06 1677P .2598412E-19 .1957840E-17 1678P .5263239E-19 .1010322E-17 1679P 7508612E-09 .7508612E-09 2812B					
22V .2456668E-17 2456668E-17 1676P 3506756E-07 .1672967E-06 1677P .2598412E-19 .1957840E-17 1678P .5263239E-19 .1010322E-17 1679P 7508612E-09 .7508612E-09 .1403795E-27 1403795E-27					
1676P 3506756E-07 .1672967E-06 1677P .2598412E-19 .1957840E-17 1678P .5263239E-19 .1010322E-17 1679P 7508612E-09 .7508612E-09 2812B .1403795E-27 1403795E-27					
1677P .2598412E-19 .1957840E-17 1678P .5263239E-19 .1010322E-17 1679P 7508612E-09 .7508612E-09 .1403795E-27 1403795E-27				, .21000002 11	.21000001
1677P .2598412E-19 .1957840E-17 1678P .5263239E-19 .1010322E-17 1679P 7508612E-09 .7508612E-09 .1403795E-27 1403795E-27	1676P			l3506756E-07 l	.1672967E-06
1678P .5263239E-19 .1010322E-17 1679P 7508612E-09 .7508612E-09 .1403795E-27 1403795E-27	1677P			2598412E-19	.1957840E-17
1679P 7508612E-09 .7508612E-09 2812B .1403795E-27 1403795E-27					
				,	
	2812B			.1403795E-27	1403795E-27
2827V 3054008E-04 .8223128E-04	2827V			3054008E-04	.8223128E-04
2828V 4346760E-07 6945575E-05 4347713E-05 .1718614E-04	2828V	4346760E-07	6945575E-0	05 4347713E-05	.1718614E-04
2829V 4717141E-06 2049285E-05	2829V			4717141E-06	2049285E-05
2830V .3500290E-06 3500290E-06	2830V			l .3500290E-06 l	3500290E-06
2831V .9859557E-07 .7851083E-06 1866003E-05 .9822995E-06	2831V	l .9859557E-07	l .7851083E-0	06 1866003E-05	.9822995E-06
••••					
4594B .2175874E-10 .4893556E-11 2665229E-10	4594B		.2175874E-1	10 .4893556E-11	2665229E-10
4597B 5193025E-21 1019102E-20	4597B			5193025E-21	1019102E-20
4602B 1014049E-21 .2028098E-21 1014049E-21	4602B		1014049E-2	21 .2028098E-21	1014049E-21
4605B .8243866E-32 8243866E-32	4605B			.8243866E-32	8243866E-32
4606B 1766323E-10 2512931E-09 .2689563E-09	4606B		1766323E-	10 2512931E-09	.2689563E-09
••••					
5405V .3968024E-06 .0000000E+00 3105600E-06	5405V		.3968024E-0	06 .0000000E+00	3105600E-06
5409V .1011671E-07 .0000000E+00 .1717128E-06	5409V		.1011671E-0	07 .000000E+00	.1717128E-06
5462V 4721634E-06 .0000000E+00 2064775E-06	5462V		4721634E-0	06 .000000E+00	2064775E-06
5498F 8047711E-07 6499034E-06 5010129E-06 .2058246E-05	5498F	8047711E-07	6499034E-0	06 5010129E-06	.2058246E-05
5501F 1505980E-10 .0000000E+00	5501F			1505980E-10	.000000E+00
5502F 4091890E-11 .0000000E+00	5502F			4091890E-11	.000000E+00
5505F .4029963E-10 4029963E-10 2497602E-10 .2497602E-10	5505F	.4029963E-10	4029963E-3	10 2497602E-10	.2497602E-10
••••					
6087 5141385E-25 1206314E-21 .2232925E-19	6087		5141385E-2	25 1206314E-21	.2232925E-19
6088 .4693592E-25 3888506E-25 .3075515E-25	6088		.4693592E-2	25 3888506E-25	.3075515E-25
6089 .5834359E-36 4833599E-36 .3822797E-36	6089		.5834359E-3	36 4833599E-36	.3822797E-36
6090 5277732E-36 .1055546E-35 3034993E-35	6090		5277732E-3	36 .1055546E-35	3034993E-35
			010	070	
cnt 24 219 878	cnt	24	219	8/8	
sum1 .38030E-31 .25463E-3128065E-23 .55657E-02	sum1	.38030E-31	.25463E-3	3128065E-23	.55657E-02
sum2 .38053E-31 .25230E-3128065E-23 .55657E-02					
max .98596E-07 .91195E-05 .89766E-04 .35029E-02					
s/a0 .68371E-29 .45331E-2950426E-21 1.0000					

C_{UV} check(Renormalization check)

Keep $C_{UV} = 1/\varepsilon - \gamma_E + \log 4\pi$ in the code and check independence of it.

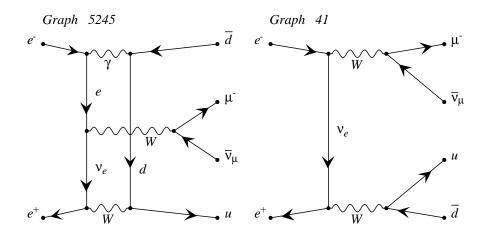
IR check(Infrared divergence check)

Check independence of λ .

```
one phase spcae point
P ...668 Diagrams for production run,
     neglecting light fermion masses
A ... All diagrams including all fermion masses
0 ...cuv=0
c ...cuv=1000
lamda=10^-18
OA -0.85388129300841993023002220162825220E-03
cA -0.85388129300841993023002220166554602E-03
OP -0.85388086448063959950419248157833587E-03
cP -0.85388086452253511266116024563283106E-03
lamda=10^-21
OA -0.85388129300794622839025322460373685E-03
cA -0.85388129300794622839025322465225825E-03
OP -0.85388086990548652947683563335079978E-03
cP -0.85388086994738204263380339741156403E-03
lamda=10^-24
OA -0.85388129300747253815840381818417531E-03
cA -0.85388129300747253815840381822708744E-03
OP -0.85388087533033347105757135572379178E-03
cP -0.85388087537222898421453911977756475E-03
lamda=10^-27
OA -0.85388129300699884793860269107185114E-03
cA -0.85388129300699884793860269111500401E-03
OP -0.85388088075518041265035552905677652E-03
cP -0.85388088079707592580732329311352264E-03
```

5. Status of calculation

Input parameters:


$$M_Z = 91.1876 \text{ GeV}, \Gamma_Z = 2.4952 \text{ GeV},$$
 $M_W = 80.4163 \text{ GeV}, \Gamma_W = 2.118 \text{ GeV},$
 $M_H = 120 \text{ GeV},$
 $M_t = 180 \text{ GeV},$
 $M_u = M_d = 63 \text{ MeV}^1,$
 $M_s = 92 \text{ MeV},$
 $M_c = 1.5 \text{ GeV},$
 $M_b = 4.7 \text{ GeV},$
 $\alpha = 1/137.0359895$

All the calculations were done in quadruple precision.

 $^{^{1}}$ for the denominators and vacuum polarization.

What happened with IR 5-point integrals?

Take, say loop $#5245P \times #41$,

produced by GRACEFIG

Write the contribution of a 5-point diagram as a sum of five 4-point integrals.

$$\sigma^{(5)} = I_1^{(4)IR} + I_2^{(4)IR} + I_3^{(4)} + I_4^{(4)} + I_5^{(4)},$$

which contains two infared divergent boxes.

Currently Γ_W , Γ_Z are retained only

1. in the IR part of box integrals

$$I_1^{(4)IR} \sim \frac{1}{D_W(q^2)} \left[\log \frac{\lambda \sqrt{\tilde{M}_W^2}}{D_W(q^2)} \log(\cdots) + \cdots \right]$$

where

$$D_W(q^2) \equiv q^2 - \tilde{M}_W^2 = q^2 - M_W^2 + i\Gamma_W M_W,$$

2. in the reduction formulas.

Put $\Gamma_Z = 0$, then the contribution of each box is summarized as

- With $\Gamma_W \neq 0$ the phase space integration does not converge.
- Without the width 3 digits cancellation occurred at a phase space point near W-pole,

$$(q^2 - M_W^2 + i\Gamma_W M_W)_{ud} = -169.3611 + 167.1833i \qquad (GeV^2)$$

• The mechanism for this big cancellation is not fully understood, but it is highly possible that an identity including $\varepsilon_{\alpha\beta\gamma\delta}$ such as

$$\{(l.p_1)\varepsilon(p_2, p_3, p_4, p_5) - (l.p_2)\varepsilon(p_1, p_3, p_4, p_5) + (l.p_3)\varepsilon(p_1, p_2, p_4, p_5) - (l.p_4)\varepsilon(p_1, p_2, p_3, p_5) + (l.p_5)\varepsilon(p_1, p_2, p_3, p_4)\} \times (l.p_6) = 0$$

causes the trouble, by giving a relation between 5 box integrals.

- However, it seems not easy to find and remove this hidden identity in a symbolic way when it appears. General 4-point integral formulas which allows a constant width may improve the situation.
- No such phenomenon took place for 6-point diagrams nor non-IR 5-points. Also we didn't see such difficulty in 2 → 3 processes up to now. The number of independent fermion lines may be related with this situation.
- We are investigating the origin of this phenomena in comparing with the reduction method using only identity

$$1 = \sum_{i=1}^{5} (a_i + b_{ij}(l.s_j)) D_j,$$

which is derived from

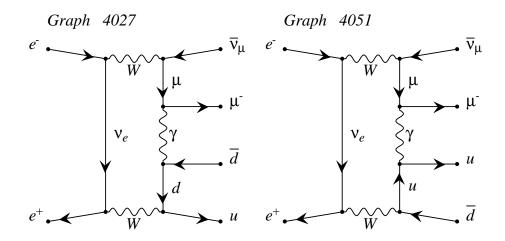
$$l^2 = \sum_{i,j} (l \cdot s_i) A_{ij} (l \cdot s_j).$$

• Test run of integration

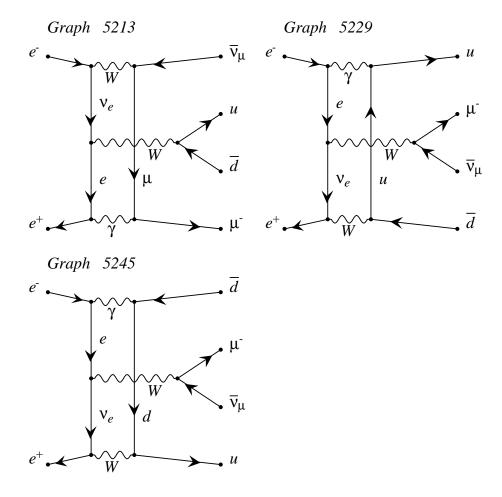
- Phase space integration is carried out by BASES package.
- Those diagrams which contribute less than 0.01 fb were omitted. \Longrightarrow total **361** 1-loop diagrams were taken.
- Hard photon emission is also included.
- In order to cure the emergency we temporarily took the following ad hoc replacement in the loop amplitude

$$\sigma^{(5)} \propto [\text{IR-loop}]^{(5)} \Longrightarrow \frac{q^2 - M_W^2}{q^2 - M_W^2 + iM_W\Gamma_W} [\text{IR-loop}]^{(5)}|_{\Gamma_W = 0}$$
 and looked the cross section.

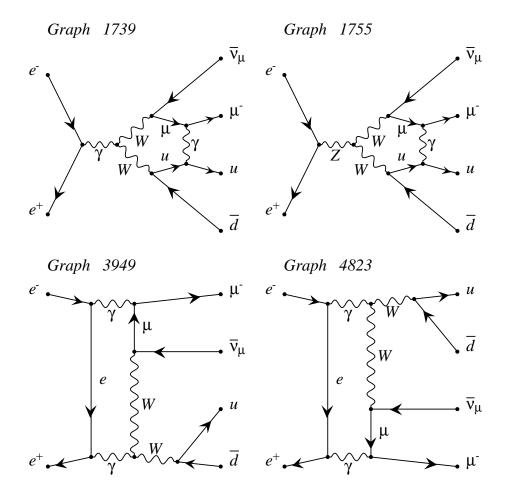
- Size of the source code: 38 M Lines, 2.5 GBytes

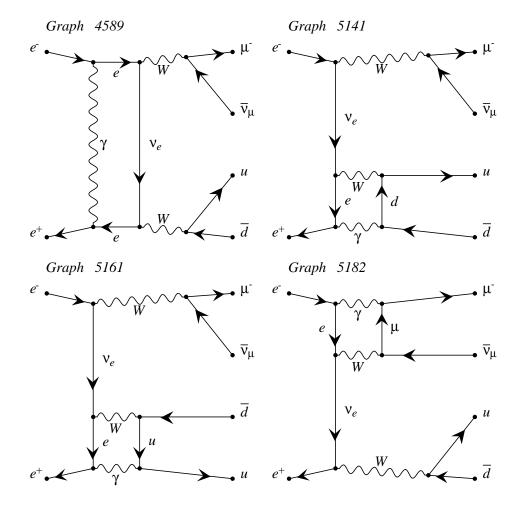

At
$$\sqrt{s} = 500 \text{ GeV}$$
: $\sigma_{tree} = 222.39 \pm 0.01 \text{fb}$,

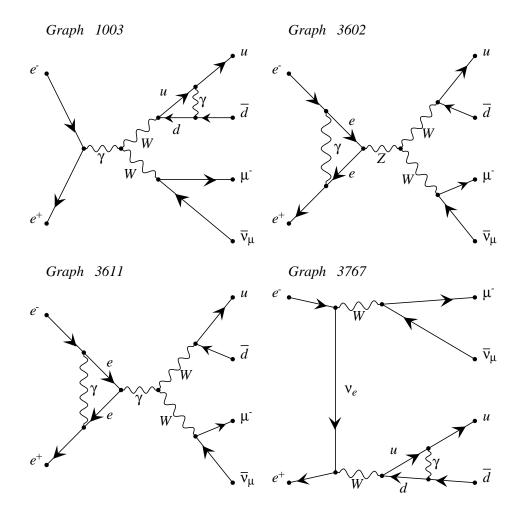
Test run


graph	original(IR)	factorized(IR)	non-IR
6-pnt	-921(16)f	-914(6)fb	small
5-pnt	-4221(2224)	+2729(17)	-80(10)fb
4-pnt	-4041(26)	-3999(26)	+216(7)
3-pnt	+735(6)	+735(6)	-258(2)
2-pnt			-27(0.3)
self	-104(2)	-104(2)	-9(0.08)
cnt	+305(26)	+305(26)	small
soft	+990(8)		
hard			+461(0.5)
total	-7257(2223)	-258(9)	+302(9)

One iteration of 50,000 sampling points.


Graphs with large contributions:


produced by GRACEFIG


produced by GRACEFIG

produced by GRACEFIG

produced by GRACEFIG

produced by GRACEFIG

6. Summary

- One-loop amplitudes of **full 6094** diagrams for $e^+e^- \to \mu\bar{\nu}u\bar{d}$ were generated by GRACE/1-LOOP system.
- Non-Linear Gauge invariance has shown the consistency of the full set of amplitudes and the system itself.
- A new reduction algorithm from a 6-point function to 4-point functions works well.
- A finite decay width introduces a serious gauge invariance breaking, particularly for 5-point integrals.
- It is clearly shown that the radiative corrections to $2 \rightarrow 4$ processes are calculable, though more improvements are inevitable.

box	$\Gamma_W = 0$	$\Gamma_W \neq 0$	
	(real, imag)	(real, imag)	
1	(-17.69217505, 66.88369265)	(-4.22744975, 2.9465712570)	
2	(-929.96695924, 1372.81890328)	(-120.36833308, 39.2204483424)	
3	(782.70500402, -5690.37576950)	(321.80994609, -283.271079293)	
4	(410.83071602, 4557.14502347)	(-199.63435655, 275.873356743)	
5	(-245.31384970, -301.36098220)	(0.65534291, -27.683645798)	
sum	(0.56273604, 5.11086770)	(-1.76485038, 7.085651250)	

Table 1: $5245P \times 41$

		-
box	$\Gamma_W = 0$	$\Gamma_W \neq 0$
	(real, imag)	(real, imag)
1	(-0.5714209451E-01,-0.2606583777E-05)	(-0.3018763824E-02,-0.2980215555E-02)
2	(-1.5656740655E+00,-1.1523430196E+00)	(-0.2746045912E-01,-0.1441615988E+00)
3	(1.7058101561E+00, 1.1486531903E+00)	(0.3021572559E-01, 0.1496464860E+00)
4	(-0.6086966576E-01, 0.2653087449E-05)	(-0.3215968725E-02,-0.3174338480E-02)
5	(-0.2212432177E-01, 0.3689906021E-02)	(-0.1361295359E-02,-0.9588860802E-03)
sum	(0.8645610115E-08, 0.1232403071E-06)	(-0.4840761440E-02,-0.1628552911E-02)

Table 2: Example