$\tan \beta$ in the MSSM

Definitions, Gauge Invariance, Scheme Dependence Applications

Fawzi BOUDJEMA

LAPTH, CNRS, Annecy-le-Vieux, France

in collaboration with Nans BARO and Andrei Semenov

based on arXiv:0710.1821, 0807.4668 and 0906.1665

$$\begin{split} V &= m_1^2 |H_1|^2 + m_2^2 |H_2|^2 + m_{12}^2 (H_1 \wedge H_2 + h.c.) \\ &+ \frac{1}{8} (g^2 + g'^2) (|H_1|^2 - |H_2|^2)^2 + \frac{g^2}{2} |H_1^\dagger H_2|^2 \\ &\quad \text{with} \quad H_1 \wedge H_2 = H_1^a H_2^b \epsilon_{ab} \quad (\epsilon_{12} = -\epsilon_{21} = 1, \epsilon_{ii} = 0) \,. \end{split}$$

$$H_{1} = \begin{pmatrix} H_{1}^{0} \\ H_{1}^{-} \end{pmatrix} = \begin{pmatrix} (v_{1} + \phi_{1}^{0} - i\varphi_{1}^{0})/\sqrt{2} \\ -\varphi_{1}^{-} \end{pmatrix}, \quad Y_{H_{1}} = -1$$

$$H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} \varphi_{2}^{+} \\ (v_{2} + \phi_{2}^{0} + i\varphi_{2}^{0})/\sqrt{2} \end{pmatrix}, \quad Y_{H_{2}} = +1$$

Opposite hypercharges, in principle distinguishable

$$\begin{split} V &= m_1^2 |H_1|^2 + m_2^2 |H_2|^2 + m_{12}^2 (H_1 \wedge H_2 + h.c.) \\ &+ \frac{1}{8} (g^2 + g'^2) (|H_1|^2 - |H_2|^2)^2 + \frac{g^2}{2} |H_1^\dagger H_2|^2 \\ &\quad \text{with} \quad H_1 \wedge H_2 = H_1^a H_2^b \epsilon_{ab} \quad (\epsilon_{12} = -\epsilon_{21} = 1, \epsilon_{ii} = 0) \,. \end{split}$$

$$H_{1} = \begin{pmatrix} H_{1}^{0} \\ H_{1}^{-} \end{pmatrix} = \begin{pmatrix} (v_{1} + \phi_{1}^{0} - i\varphi_{1}^{0})/\sqrt{2} \\ -\varphi_{1}^{-} \end{pmatrix}, \quad Y_{H_{1}} = -1$$

$$H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} \varphi_{2}^{+} \\ (v_{2} + \phi_{2}^{0} + i\varphi_{2}^{0})/\sqrt{2} \end{pmatrix}, \quad Y_{H_{2}} = +1$$

$$M_{W^{\pm}}^{2} = \frac{1}{4}g^{2}v^{2},$$
 $v^{2} = (v_{1}^{2} + v_{2}^{2})$

$$\begin{split} V &= m_1^2 |H_1|^2 + m_2^2 |H_2|^2 + m_{12}^2 (H_1 \wedge H_2 + h.c.) \\ &+ \frac{1}{8} (g^2 + g'^2) (|H_1|^2 - |H_2|^2)^2 + \frac{g^2}{2} |H_1^\dagger H_2|^2 \\ &\quad \text{with} \quad H_1 \wedge H_2 = H_1^a H_2^b \epsilon_{ab} \quad (\epsilon_{12} = -\epsilon_{21} = 1, \epsilon_{ii} = 0) \,. \end{split}$$

$$H_{1} = \begin{pmatrix} H_{1}^{0} \\ H_{1}^{-} \end{pmatrix} = \begin{pmatrix} (v_{1} + \phi_{1}^{0} - i\varphi_{1}^{0})/\sqrt{2} \\ -\varphi_{1}^{-} \end{pmatrix}, \quad Y_{H_{1}} = -1$$

$$H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} \varphi_{2}^{+} \\ (v_{2} + \phi_{2}^{0} + i\varphi_{2}^{0})/\sqrt{2} \end{pmatrix}, \quad Y_{H_{2}} = +1$$

$$M_{W^{\pm}}^{2} = \frac{1}{4}g^{2}v^{2},$$

$$v^{2} = (v_{1}^{2} + v_{2}^{2})$$

$$\tan \beta = \frac{v_{2}}{v_{1}}?$$

$$\begin{split} V &= m_1^2 |H_1|^2 + m_2^2 |H_2|^2 + m_{12}^2 (H_1 \wedge H_2 + h.c.) \\ &+ \frac{1}{8} (g^2 + g'^2) (|H_1|^2 - |H_2|^2)^2 + \frac{g^2}{2} |H_1^\dagger H_2|^2 \\ &\quad \text{with} \quad H_1 \wedge H_2 = H_1^a H_2^b \epsilon_{ab} \quad (\epsilon_{12} = -\epsilon_{21} = 1, \epsilon_{ii} = 0) \,. \end{split}$$

$$H_{1} = \begin{pmatrix} H_{1}^{0} \\ H_{1}^{-} \end{pmatrix} = \begin{pmatrix} (v_{1} + \phi_{1}^{0} - i\varphi_{1}^{0})/\sqrt{2} \\ -\varphi_{1}^{-} \end{pmatrix}, \quad Y_{H_{1}} = -1$$

$$H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} \varphi_{2}^{+} \\ (v_{2} + \phi_{2}^{0} + i\varphi_{2}^{0})/\sqrt{2} \end{pmatrix}, \quad Y_{H_{2}} = +1$$

$$M_{W^{\pm}}^{2} = \frac{1}{4}g^{2}v^{2},$$

$$v^{2} = (v_{1}^{2} + v_{2}^{2}) \Longrightarrow \text{INVARIANT}.$$

$$\tan \beta = \frac{v_{2}}{v_{1}}?$$

$$\begin{split} V &= m_1^2 |H_1|^2 + m_2^2 |H_2|^2 + m_{12}^2 (H_1 \wedge H_2 + h.c.) \\ &+ \frac{1}{8} (g^2 + g'^2) (|H_1|^2 - |H_2|^2)^2 + \frac{g^2}{2} |H_1^\dagger H_2|^2 \\ &\quad \text{with} \quad H_1 \wedge H_2 = H_1^a H_2^b \epsilon_{ab} \quad (\epsilon_{12} = -\epsilon_{21} = 1, \epsilon_{ii} = 0) \,. \end{split}$$

$$H_{1} = \begin{pmatrix} H_{1}^{0} \\ H_{1}^{-} \end{pmatrix} = \begin{pmatrix} (v_{1} + \phi_{1}^{0} - i\varphi_{1}^{0})/\sqrt{2} \\ -\varphi_{1}^{-} \end{pmatrix}, \quad Y_{H_{1}} = -1$$

$$H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} \varphi_{2}^{+} \\ (v_{2} + \phi_{2}^{0} + i\varphi_{2}^{0})/\sqrt{2} \end{pmatrix}, \quad Y_{H_{2}} = +1$$

$$M_{W^{\pm}}^{2} = \frac{1}{4}g^{2}v^{2},$$

$$v^{2} = (v_{1}^{2} + v_{2}^{2}) \Longrightarrow \text{INVARIANT}.$$

$$\tan \beta = \frac{v_{2}}{v_{1}} ? \Longrightarrow \text{NOT INVARIANT}?$$

The tree-level Higgs potential

$$V = V_{const} + V_{linear} + V_{mass} + V_{cubic} + V_{quartic},$$

$$\begin{split} V_{linear} &= & T_{\phi_1^0} \phi_1^0 + T_{\phi_2^0} \phi_2^0, \\ V_{mass} &= & \frac{1}{2} \left(\begin{array}{cc} \phi_1^0 & \phi_2^0 \end{array} \right) M_{\phi^0}^2 \left(\begin{array}{c} \phi_1^0 \\ \phi_2^0 \end{array} \right) \\ &+ & \frac{1}{2} \left(\begin{array}{cc} \varphi_1^0 & \varphi_2^0 \end{array} \right) M_{\varphi^0}^2 \left(\begin{array}{c} \varphi_1^0 \\ \varphi_2^0 \end{array} \right) \\ &+ & \left(\begin{array}{cc} \varphi_1^- & \varphi_2^- \end{array} \right) M_{\varphi^\pm}^2 \left(\begin{array}{c} \varphi_1^+ \\ \varphi_2^+ \end{array} \right) \end{split}$$

The tree-level Higgs potential

$$V = V_{const} + V_{linear} + V_{mass} + V_{cubic} + V_{quartic},$$

$$\begin{split} V_{linear} &= & T_{\phi_1^0} \phi_1^0 + T_{\phi_2^0} \phi_2^0, \quad T_{\phi_1^0} = m_1^2 v_1 + m_{12}^2 v_2 + \frac{g^2 + g'^2}{8} (v_1^2 - v_2^2) v_1, \rightarrow \textbf{Tadpoles} \\ V_{mass} &= & \frac{1}{2} \left(\begin{array}{c} \phi_1^0 & \phi_2^0 \end{array} \right) M_{\phi^0}^2 \left(\begin{array}{c} \phi_1^0 \\ \phi_2^0 \end{array} \right) \\ &+ & \frac{1}{2} \left(\begin{array}{c} \varphi_1^0 & \varphi_2^0 \end{array} \right) M_{\varphi^0}^2 \left(\begin{array}{c} \varphi_1^0 \\ \varphi_2^0 \end{array} \right), \quad M_{\varphi^0}^2 = \mathcal{T}_v \, - \, \frac{m_{12}^2}{v_1 v_2} N_{GP} \\ &+ & \left(\begin{array}{c} \varphi_1^- & \varphi_2^- \end{array} \right) M_{\varphi^\pm}^2 \left(\begin{array}{c} \varphi_1^+ \\ \varphi_2^+ \end{array} \right), \quad M_{\varphi^\pm}^2 = \mathcal{T}_v \, - \, \left(\frac{m_{12}^2}{v_1 v_2} - \frac{g^2}{4} \right) N_{GP} \end{split}$$

$$\mathcal{T}_{v} = \begin{pmatrix} \frac{T_{\phi_{1}^{0}}}{v_{1}} & 0\\ 0 & \frac{T_{\phi_{2}^{0}}}{v_{2}} \end{pmatrix}, \qquad N_{GP} = \begin{pmatrix} v_{2}^{2} & -v_{1}v_{2}\\ -v_{1}v_{2} & v_{1}^{2} \end{pmatrix},$$

The tree-level Higgs potential

$$V = V_{const} + V_{linear} + V_{mass} + V_{cubic} + V_{quartic},$$

$$\begin{split} V_{linear} &= & T_{\phi_1^0} \phi_1^0 + T_{\phi_2^0} \phi_2^0, \quad T_{\phi_1^0} = m_1^2 v_1 + m_{12}^2 v_2 + \frac{g^2 + g'^2}{8} (v_1^2 - v_2^2) v_1, \rightarrow \textbf{Tadpoles} \\ V_{mass} &= & \frac{1}{2} \left(\begin{array}{c} \phi_1^0 & \phi_2^0 \end{array} \right) M_{\phi^0}^2 \left(\begin{array}{c} \phi_1^0 \\ \phi_2^0 \end{array} \right) \\ &+ & \frac{1}{2} \left(\begin{array}{c} \varphi_1^0 & \varphi_2^0 \end{array} \right) M_{\varphi^0}^2 \left(\begin{array}{c} \varphi_1^0 \\ \varphi_2^0 \end{array} \right), \quad M_{\varphi^0}^2 = \mathcal{T}_v - \frac{m_{12}^2}{v_1 v_2} N_{GP} \\ &+ & \left(\begin{array}{c} \varphi_1^- & \varphi_2^- \end{array} \right) M_{\varphi^\pm}^2 \left(\begin{array}{c} \varphi_1^+ \\ \varphi_2^+ \end{array} \right), \quad M_{\varphi^\pm}^2 = \mathcal{T}_v - \left(\begin{array}{c} m_{12}^2 - \frac{g^2}{4} \end{array} \right) N_{GP} \end{split}$$

$$\mathcal{T}_{v} = \begin{pmatrix} \frac{T_{\phi_{1}^{0}}}{v_{1}} & 0\\ 0 & \frac{T_{\phi_{2}^{0}}}{v_{2}} \end{pmatrix}, \quad N_{GP} = \begin{pmatrix} v_{2}^{2} & -v_{1}v_{2}\\ -v_{1}v_{2} & v_{1}^{2} \end{pmatrix},$$
$$\det(N_{GP}) = 0 \quad \operatorname{Tr}(N_{GP}) = v_{1}^{2} + v_{2}^{2}$$

- ullet The requirement that v_1 and v_2 correspond to the true vacua is a requirement on the vanishing of the tadpoles. $T_{\phi_{1,2}^0}=0$ can be seen as a trade off for m_1^2 and m_2^2 .
- $det(N_{GP}) = 0$ implies massless Goldstones.

- The requirement that v_1 and v_2 correspond to the true vacua is a requirement on the vanishing of the tadpoles. $T_{\phi_1^0}=0$ can be seen as a trade off for m_1^2 and m_2^2 .
- $det(N_{GP}) = 0$ implies massless Goldstones.

$$\begin{split} M_{A^0}^2 &= & \mathrm{Tr} \left(M_{\varphi^0}^2 \right) = - m_{12}^2 \frac{v^2}{v_1 v_2} = m_1^2 + m_2^2 \,, \\ M_{H^\pm}^2 &= & M_{A^0}^2 + M_{W^\pm}^2 \quad \mathrm{from} \; \mathrm{Tr} \left(M_{\varphi^\pm}^2 \right) \,. \\ M_{h^0}^2 + M_{H^0}^2 &= & M_{A^0}^2 + M_{Z^0}^2 \quad \mathrm{from} \; \mathrm{Tr} \left(M_{\phi^0}^2 \right) \\ M_{h^0}^2 \; M_{H^0}^2 &= & M_{A^0}^2 \; M_{Z^0}^2 \; c_{2\beta}^2 \quad \mathrm{from} \; \det \left(M_{\varphi^0}^2 \right) \,. \end{split}$$

- The requirement that v_1 and v_2 correspond to the true vacua is a requirement on the vanishing of the tadpoles. $T_{\phi_1^0} = 0$ can be seen as a trade off for m_1^2 and m_2^2 .
- $det(N_{GP}) = 0$ implies massless Goldstones.

$$\begin{split} M_{A^0}^2 &= \operatorname{Tr}\left(M_{\varphi^0}^2\right) = -m_{12}^2 \frac{v^2}{v_1 v_2} = m_1^2 + m_2^2 \,, \\ M_{H^\pm}^2 &= M_{A^0}^2 + M_{W^\pm}^2 \quad \text{from } \operatorname{Tr}\left(M_{\varphi^\pm}^2\right) \,. \\ M_{h^0}^2 + M_{H^0}^2 &= M_{A^0}^2 + M_{Z^0}^2 \quad \text{from } \operatorname{Tr}\left(M_{\phi^0}^2\right) \\ M_{h^0}^2 M_{H^0}^2 &= M_{A^0}^2 M_{Z^0}^2 \, c_{2\beta}^2 \quad \text{from } \det\left(M_{\varphi^0}^2\right) \,. \end{split}$$

$$c_{2\beta}^2$$
, from book-keeping device $c_{\beta}=\frac{v_1}{v}$, $s_{\beta}=\frac{v_2}{v}$

- The requirement that v_1 and v_2 correspond to the true vacua is a requirement on the vanishing of the tadpoles. $T_{\phi_{1,2}^0}=0$ can be seen as a trade off for m_1^2 and m_2^2 .
- $det(N_{GP}) = 0$ implies massless Goldstones.

$$\begin{split} M_{A^0}^2 &= \operatorname{Tr}\left(M_{\varphi^0}^2\right) = -m_{12}^2 \frac{v^2}{v_1 v_2} = m_1^2 + m_2^2 \,, \\ M_{H^\pm}^2 &= M_{A^0}^2 + M_{W^\pm}^2 \quad \text{from } \operatorname{Tr}\left(M_{\varphi^\pm}^2\right) \,. \\ M_{h^0}^2 + M_{H^0}^2 &= M_{A^0}^2 + M_{Z^0}^2 \quad \text{from } \operatorname{Tr}\left(M_{\phi^0}^2\right) \\ M_{h^0}^2 M_{H^0}^2 &= M_{A^0}^2 M_{Z^0}^2 \, c_{2\beta}^2 \quad \text{from } \det\left(M_{\varphi^0}^2\right) \,. \end{split}$$

 $c_{2\beta}^2$, from book-keeping device $c_{\beta}=rac{v_1}{v}$, $s_{\beta}=rac{v_2}{v}$

Usually one takes $M_{A^0}, M_{Z^0}(v^2), t_\beta(c_{2\beta}^2)$ as input parameters, and derive $\underline{M_{H^0}}$ and M_{h^0} but What is $\tan\beta$?

The mass eigenstates in the Higgs sector are given, through rotation, by

$$\begin{pmatrix} G^{0} \\ A^{0} \end{pmatrix} = U(\beta) \begin{pmatrix} \varphi_{1}^{0} \\ \varphi_{2}^{0} \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \varphi_{1}^{0} \\ \varphi_{2}^{0} \end{pmatrix},$$

$$\begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = U(\beta) \begin{pmatrix} \varphi_{1}^{\pm} \\ \varphi_{2}^{\pm} \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \varphi_{1}^{\pm} \\ \varphi_{2}^{\pm} \end{pmatrix},$$

$$\begin{pmatrix} H^{0} \\ h^{0} \end{pmatrix} = U(\alpha) \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix} = \begin{pmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix}.$$

The mass eigenstates in the Higgs sector are given, through rotation, by

$$\begin{pmatrix} G^{0} \\ A^{0} \end{pmatrix} = U(\beta) \begin{pmatrix} \varphi_{1}^{0} \\ \varphi_{2}^{0} \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \varphi_{1}^{0} \\ \varphi_{2}^{0} \end{pmatrix},$$

$$\begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = U(\beta) \begin{pmatrix} \varphi_{1}^{\pm} \\ \varphi_{2}^{\pm} \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \varphi_{1}^{\pm} \\ \varphi_{2}^{\pm} \end{pmatrix},$$

$$\begin{pmatrix} H^{0} \\ h^{0} \end{pmatrix} = U(\alpha) \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix} = \begin{pmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix}.$$

An angle used for a change of basis is physical? v_2/v_1 angle same as this rotation angle?

The mass eigenstates in the Higgs sector are given, through rotation, by

$$\begin{pmatrix} G^{0} \\ A^{0} \end{pmatrix} = U(\beta) \begin{pmatrix} \varphi_{1}^{0} \\ \varphi_{2}^{0} \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \varphi_{1}^{0} \\ \varphi_{2}^{0} \end{pmatrix},$$

$$\begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = U(\beta) \begin{pmatrix} \varphi_{1}^{\pm} \\ \varphi_{2}^{\pm} \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \varphi_{1}^{\pm} \\ \varphi_{2}^{\pm} \end{pmatrix},$$

$$\begin{pmatrix} H^{0} \\ h^{0} \end{pmatrix} = U(\alpha) \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix} = \begin{pmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix}.$$

An angle used for a change of basis is physical? v_2/v_1 angle same as this rotation angle?

Not necessarily so...at higher orders

The mass eigenstates in the Higgs sector are given, through rotation, by

$$\begin{pmatrix} G^{0} \\ A^{0} \end{pmatrix} = U(\beta) \begin{pmatrix} \varphi_{1}^{0} \\ \varphi_{2}^{0} \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \varphi_{1}^{0} \\ \varphi_{2}^{0} \end{pmatrix},$$

$$\begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = U(\beta) \begin{pmatrix} \varphi_{1}^{\pm} \\ \varphi_{2}^{\pm} \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \varphi_{1}^{\pm} \\ \varphi_{2}^{\pm} \end{pmatrix},$$

$$\begin{pmatrix} H^{0} \\ h^{0} \end{pmatrix} = U(\alpha) \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix} = \begin{pmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix}.$$

An angle used for a change of basis is physical? v_2/v_1 angle same as this rotation angle?

Not necessarily so...at higher orders

At the quantum level mixing between fields will be re-introduced, (like in the SM $Z-\gamma$ mixing,..) and one has to <u>re-diagonalise</u>again, not exactly the same and equivalent as to how $\tan \beta$ will be renormalised, defined

ullet Here you have to address the issue of loops. Were it not for the quantum corrections the MSSM would have been a forgotten elegant idea,... $M_h < M_Z$.

- m extstyle extstyle
- ${\color{red} \blacktriangleright}$ Definition of $\tan\beta$ and thus its physical meaning is given by a choice of a renormalisation scheme ...

- ullet Here you have to address the issue of loops. Were it not for the quantum corrections the MSSM would have been a forgotten elegant idea,... $M_h < M_Z$.
- ${\color{red} \blacktriangleright}$ Definition of $\tan\beta$ and thus its physical meaning is given by a choice of a renormalisation scheme ...
- This choice is crucial not only in extracting the numerical value of this quantity

- m extstyle extstyle
- ${\color{red} \blacktriangleright}$ Definition of $\tan\beta$ and thus its physical meaning is given by a choice of a renormalisation scheme ...
- This choice is crucial not only in extracting the numerical value of this quantity
- but is directly related to gauge invariance the relation between $\tan\beta$ and observables better be gauge independent otherwise a physical interpretation is not possible

- m extstyle extstyle
- ${\color{red} \blacktriangleright}$ Definition of $\tan\beta$ and thus its physical meaning is given by a choice of a renormalisation scheme ...
- This choice is crucial not only in extracting the numerical value of this quantity
- but is directly related to gauge invariance the relation between $\tan\beta$ and observables better be gauge independent otherwise a physical interpretation is not possible
- scheme dependence

in particular this means that the corresponding counterterm (choice of input/definition) even if gauge invariant and leads to finite results has to be a good one: the (finite) corrections should not be excessively large because of a bad choice of input

(perturbation should be maintained or trusted).

$\tan\beta$ ubiquitous in the MSSM

Higgs Potential

$\tan\beta$ ubiquitous in the MSSM

Higgs Potential

Higgs masses

Couplings of Higgses to fermions

an eta ubiquitous in the MSSM

Higgs Potential

Higgs masses

Couplings of Higgses to fermions

D terms fermion masses,...,

chargino and neutralino properties (mixing)

How to track gauge invariance

Practical, gauge parameter independence through a generalised gauge-fixing

slightly a be a bit more formal is Freitas-Stockinger hep-ph/0205281

Non-linear gauge implementation

$$\mathcal{L}_{GF} = -\frac{1}{\xi_{W}} |\partial .W^{+} + \xi_{W} \frac{g}{2} vG^{+}|^{2}$$
$$-\frac{1}{2\xi_{Z}} (\partial .Z + \xi_{Z} \frac{g}{2c_{W}} v + G^{0})^{2} - \frac{1}{2\xi_{\gamma}} (\partial .A)^{2}$$

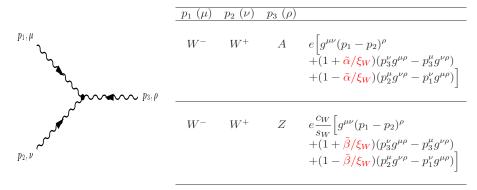
This only affects the propagators. Usually calculations done with $\xi=1$, otherwise large expressions, higher rank tensors, unphysical thresholds,..

$$\frac{1}{k^2 - M_W^2} \left(g_{\mu\nu} - (1 - \xi_W) \frac{k_\mu k_\nu}{k^2 - \xi_W M_W^2} \right)$$

Non-linear gauge implementation

$$\mathcal{L}_{GF} = -\frac{1}{\xi_{W}} |(\partial_{\mu} - ie\tilde{\alpha}A_{\mu} - igc_{W}\tilde{\beta}Z_{\mu})W^{\mu} + \xi_{W}\frac{g}{2}(v + \tilde{\delta}h + \tilde{\omega}H + i\tilde{\rho}A^{0} + i\tilde{\kappa}G^{0})G^{+}|^{2}$$
$$-\frac{1}{2\xi_{Z}} (\partial.Z + \xi_{Z}\frac{g}{2c_{W}}(v + \tilde{\epsilon}h + \tilde{\gamma}H)G^{0})^{2} - \frac{1}{2\xi_{\gamma}}(\partial.A)^{2}$$

- ullet quite a handful of gauge parameters, but with $\xi_i=1$, no "unphysical threshold", no higher rank tensors, gauge parameter dependence in gauge/Goldstone/ghosts vertices.
- more important: no need for higher (than the minimal set) for higher rank tensors and tedious algebraic manipulations



• we take the gauge fixing to be renormalised (not necessary to have **all** Green's functions

- From $X_L=(m_1,m_2,m_{12},g,g',v_1,v_2)$ we take e,M_W,M_Z (as in SM) and $M_{A^0},T_{\phi^0_1},T_{\phi^0_2};$ with " t_β " to be defined.

- From $X_L=(m_1,m_2,m_{12},g,g',v_1,v_2)$ we take e,M_W,M_Z (as in SM) and $M_{A^0},T_{\phi^0_1},T_{\phi^0_2};$ with " t_β " to be defined.
- ullet this means that mass mixing "masses" will appear: A^0Z^0, Hh, \ldots and diagonal masses shifted

- From $X_L=(m_1,m_2,m_{12},g,g',v_1,v_2)$ we take e,M_W,M_Z (as in SM) and $M_{A^0},T_{\phi^0_1},T_{\phi^0_2};$ with " t_β " to be defined.
- ullet this means that mass mixing "masses" will appear: A^0Z^0, Hh, \ldots and diagonal masses shifted
- but the angles defined in the rotation matrices are <u>renormalised</u> (no shift)

$$\begin{pmatrix} G^0 \\ A^0 \end{pmatrix}_0 = U(\beta) \begin{pmatrix} \varphi_1^0 \\ \varphi_2^0 \end{pmatrix}_0 \quad \text{implies also} \quad \begin{pmatrix} G^0 \\ A^0 \end{pmatrix} = U(\beta) \begin{pmatrix} \varphi_1^0 \\ \varphi_2^0 \end{pmatrix}.$$

- From $X_L=(m_1,m_2,m_{12},g,g',v_1,v_2)$ we take e,M_W,M_Z (as in SM) and $M_{A^0},T_{\phi^0_1},T_{\phi^0_2};$ with " t_β " to be defined.
- ullet this means that mass mixing "masses" will appear: A^0Z^0, Hh, \ldots and diagonal masses shifted
- but the angles defined in the rotation matrices are renormalised (no shift)

$$\left(\begin{array}{c} G^0 \\ A^0 \end{array} \right)_0 = U(\beta) \left(\begin{array}{c} \varphi_1^0 \\ \varphi_2^0 \end{array} \right)_0 \quad \text{implies also} \quad \left(\begin{array}{c} G^0 \\ A^0 \end{array} \right) = U(\beta) \left(\begin{array}{c} \varphi_1^0 \\ \varphi_2^0 \end{array} \right) \, .$$

In any case filed renormalisation (before or after rotation) still needed this will imply

$$\begin{pmatrix} G^{0} \\ A^{0} \end{pmatrix}_{0} = \overbrace{U(\beta)Z_{\varphi^{0}}U(-\beta)}^{Z_{P}} \begin{pmatrix} G^{0} \\ A^{0} \end{pmatrix} = \begin{pmatrix} Z_{G^{0}G^{0}}^{1/2} & Z_{G^{0}A^{0}}^{1/2} \\ Z_{A^{0}G^{0}}^{1/2} & Z_{A^{0}A^{0}}^{1/2} \end{pmatrix} \begin{pmatrix} G^{0} \\ A^{0} \end{pmatrix}.$$

Example of two-point functions

$$\begin{cases} \hat{\Sigma}_{G^0G^0}(q^2) = \Sigma_{G^0G^0}(q^2) + \delta M_{G^0}^2 - q^2 \delta Z_{G^0} \\ \hat{\Sigma}_{G^0A^0}(q^2) = \Sigma_{G^0A^0}(q^2) + \delta M_{G^0A^0}^2 - \frac{1}{2}q^2 \delta Z_{G^0A^0} - \frac{1}{2}(q^2 - M_{A^0}^2) \delta Z_{A^0G^0} \\ \hat{\Sigma}_{A^0A^0}(q^2) = \Sigma_{A^0A^0}(q^2) + \delta M_{A^0}^2 - (q^2 - M_{A^0}^2) \delta Z_{A^0} \end{cases}$$

$$\begin{cases} \hat{\Sigma}_{G^\pm G^\pm}(q^2) = \Sigma_{G^\pm G^\pm}(q^2) + \delta M_{G^\pm}^2 - q^2 \delta Z_{G^\pm} \\ \hat{\Sigma}_{G^\pm H^\pm}(q^2) = \Sigma_{G^\pm H^\pm}(q^2) + \delta M_{G^\pm H^\pm}^2 - \frac{1}{2}q^2 \delta Z_{G^\pm H^\pm} - \frac{1}{2}(q^2 - M_{H^\pm}^2) \delta Z_{H^\pm G^\pm} \\ \hat{\Sigma}_{H^\pm H^\pm}(q^2) = \Sigma_{H^\pm H^\pm}(q^2) + \delta M_{H^\pm}^2 - (q^2 - M_{H^\pm}^2) \delta Z_{H^\pm} \end{cases}$$

$$\begin{cases} \hat{\Sigma}_{H^0H^0}(q^2) = \Sigma_{H^0H^0}(q^2) + \delta M_{H^0}^2 - (q^2 - M_{H^0}^2) \delta Z_{H^0} \\ \hat{\Sigma}_{H^0h^0}(q^2) = \Sigma_{H^0h^0}(q^2) + \delta M_{H^0h^0}^2 - \frac{1}{2}(q^2 - M_{H^0}^2) \delta Z_{H^0h^0} - \frac{1}{2}(q^2 - M_{h^0}^2) \delta Z_{h^0h^0} \end{cases}$$

$$\hat{\Sigma}_{h^0h^0}(q^2) = \Sigma_{h^0h^0}(q^2) + \delta M_{h^0}^2 - (q^2 - M_{h^0}^2) \delta Z_{h^0}$$

Renormalisation Conditions, On-Shell in...Nut Shell

- ullet (e,M_W,M_Z) as in the SM
- In the minimum condition requires the one-loop tadpole contribution generated by one-loop diagrams, $T_{\phi_i^0}^{\text{loop}}$ is cancelled by the tadpole counterterm. $\delta T_{\phi_i^0} = -T_{\phi_i^0}^{\text{loop}}$
- lacksquare Higgs masses as pole masses. Taking M_{A^0} as an input $\delta M_{A^0}^2 = -Re\Sigma_{A^0A^0}(M_{A^0}^2)$.

Renormalisation Conditions, On-Shell in...Nut Shell

- ullet (e, M_W, M_Z) as in the SM
- The minimum condition requires the one-loop tadpole contribution generated by one-loop diagrams, $T_{\phi_i^0}^{\text{loop}}$ is cancelled by the tadpole counterterm. $\delta T_{\phi_i^0} = -T_{\phi_i^0}^{\text{loop}}$
- ${\color{blue} \blacktriangleright}$ Higgs masses as pole masses. Taking M_{A^0} as an input $\delta M_{A^0}^2 = -Re\Sigma_{A^0A^0}(M_{A^0}^2)$.
- charged Higgs mass gets corrected
- sum rule for neutral CP Higgs get corrected

$$\begin{split} &M_{h^0,1\mathrm{loop}}^2 + M_{H^0,1\mathrm{loop}}^2 = M_{A^0}^2 + M_{Z^0}^2 + Re\Sigma_{h^0h^0}(M_{h^0}^2) + Re\Sigma_{H^0H^0}(M_{H^0}^2) \\ &+ \frac{g}{2M_{W^\pm}} \bigg(c_{\alpha-\beta} \delta T_{H^0} - s_{\alpha-\beta} \delta T_{h^0} \bigg) - Re\Sigma_{A^0A^0}(M_{A^0}^2) - Re\Pi_{Z^0Z^0}^T(M_{Z^0}^2) \,. \end{split}$$

Renormalisation Conditions, On-Shell in...Nut Shell

- ullet (e, M_W, M_Z) as in the SM
- In the minimum condition requires the one-loop tadpole contribution generated by one-loop diagrams, $T_{\phi_i^0}^{\text{loop}}$ is cancelled by the tadpole counterterm. $\delta T_{\phi_i^0} = -T_{\phi_i^0}^{\text{loop}}$
- lacksquare Higgs masses as pole masses. Taking M_{A^0} as an input $\delta M_{A^0}^2 = -Re\Sigma_{A^0A^0}(M_{A^0}^2)$.
- charged Higgs mass gets corrected
- sum rule for neutral CP Higgs get corrected

$$\begin{split} &M_{h^0,1\mathrm{loop}}^2 + M_{H^0,1\mathrm{loop}}^2 = M_{A^0}^2 + M_{Z^0}^2 + Re\Sigma_{h^0h^0}(M_{h^0}^2) + Re\Sigma_{H^0H^0}(M_{H^0}^2) \\ + &\frac{g}{2M_{W^\pm}} \bigg(c_{\alpha-\beta} \delta T_{H^0} - s_{\alpha-\beta} \delta T_{h^0} \bigg) - Re\Sigma_{A^0A^0}(M_{A^0}^2) - Re\Pi_{Z^0Z^0}^T(M_{Z^0}^2) \,. \end{split}$$

• But need to define $\tan \beta$ to predict either one, or use one of the CP even Higgs masses as a definition for $\tan \beta$.

Renormalisation Conditions, On-Shell in...Nut Shell

- ullet (e, M_W, M_Z) as in the SM
- The minimum condition requires the one-loop tadpole contribution generated by one-loop diagrams, $T_{\phi_i^0}^{\text{loop}}$ is cancelled by the tadpole counterterm. $\delta T_{\phi_i^0} = -T_{\phi_i^0}^{\text{loop}}$
- lacksquare Higgs masses as pole masses. Taking M_{A^0} as an input $\delta M_{A^0}^2 = -Re\Sigma_{A^0A^0}(M_{A^0}^2)$.
- charged Higgs mass gets corrected
- sum rule for neutral CP Higgs get corrected

$$\begin{split} &M_{h^0,1\mathrm{loop}}^2 + M_{H^0,1\mathrm{loop}}^2 = M_{A^0}^2 + M_{Z^0}^2 + Re\Sigma_{h^0h^0}(M_{h^0}^2) + Re\Sigma_{H^0H^0}(M_{H^0}^2) \\ + & \frac{g}{2M_{W^\pm}} \bigg(c_{\alpha-\beta} \delta T_{H^0} - s_{\alpha-\beta} \delta T_{h^0} \bigg) - Re\Sigma_{A^0A^0}(M_{A^0}^2) - Re\Pi_{Z^0Z^0}^T(M_{Z^0}^2) \,. \end{split}$$

- But need to define $\tan \beta$ to predict either one, or use one of the CP even Higgs masses as a definition for $\tan \beta$.
- Wave function renormalisation takes care of residue 1 and no mixing when on shell

$$\begin{split} Re\hat{\Sigma}_{A^0A^0}^{'}(M_{A^0}^2) &= Re\hat{\Sigma}_{H^\pm H^\pm}^{'}(M_{H^\pm}^2) = Re\hat{\Sigma}_{H^0H^0}^{'}(M_{H^0}^2) = Re\hat{\Sigma}_{h^0h^0}^{'}(M_{h^0}^2) = Re\hat{\Sigma}_{H^0h^0}^{'}(M_{h^0}^2) = Re\hat{\Sigma}_{H^0h^0}^{'}(M_{h^0}^2) = 0 \end{split}$$

Renormalisation Conditions, On-Shell in...Nut Shell

- ullet (e, M_W, M_Z) as in the SM
- The minimum condition requires the one-loop tadpole contribution generated by one-loop diagrams, $T_{\phi_i^0}^{\text{loop}}$ is cancelled by the tadpole counterterm. $\delta T_{\phi_i^0} = -T_{\phi_i^0}^{\text{loop}}$
- lacksquare Higgs masses as pole masses. Taking M_{A^0} as an input $\delta M_{A^0}^2 = -Re\Sigma_{A^0A^0}(M_{A^0}^2)$.
- charged Higgs mass gets corrected
- sum rule for neutral CP Higgs get corrected

$$\begin{split} & M_{h^0,1\mathrm{loop}}^2 + M_{H^0,1\mathrm{loop}}^2 = M_{A^0}^2 + M_{Z^0}^2 + Re\Sigma_{h^0h^0}(M_{h^0}^2) + Re\Sigma_{H^0H^0}(M_{H^0}^2) \\ + & \frac{g}{2M_{W^\pm}} \bigg(c_{\alpha-\beta} \delta T_{H^0} - s_{\alpha-\beta} \delta T_{h^0} \bigg) - Re\Sigma_{A^0A^0}(M_{A^0}^2) - Re\Pi_{Z^0Z^0}^T(M_{Z^0}^2) \,. \end{split}$$

- But need to define $\tan \beta$ to predict either one, or use one of the CP even Higgs masses as a definition for $\tan \beta$.
- Wave function renormalisation takes care of residue 1 and no mixing when on shell

$$Re\hat{\Sigma}'_{A^0A^0}(M^2_{A^0}) = Re\hat{\Sigma}'_{H^{\pm}H^{\pm}}(M^2_{H^{\pm}}) = Re\hat{\Sigma}'_{H^0H^0}(M^2_{H^0}) = Re\hat{\Sigma}'_{h^0h^0}(M^2_{h^0}) = Re\hat{\Sigma}'_{H^0h^0}(M^2_{H^0}) = Re\hat{\Sigma}_{H^0h^0}(M^2_{h^0}) = 0$$

What about A^0Z^0 and A^0G^0 transitions? E BOUDJEMA, aneta and Gauge Invariance, Lisbon, Sep. 09 – p. 12/3

Dabelstein-Chankowski-Pokorski-Rosiek Scheme (DCPR)

$$\frac{\delta t_{\beta}}{t_{\beta}}^{\rm DCPR} = -\frac{1}{M_{Z^0} s_{2\beta}} Re \Sigma_{A^0 Z^0}(M_{A^0}^2) \, . \label{eq:delta_poly}$$

This is not gauge invariant! based on $\hat{\Sigma}_{A^0Z^0}(M_{A^0}^2)=0$ which is widely used (together with $\hat{\Sigma}_{A^0G^0}(M_{A^0}^2)=0$) but which is not true in all gauges.

There is a strong constraint coming from a Ward identity.

Dabelstein-Chankowski-Pokorski-Rosiek Scheme (DCPR)

$$\frac{\delta t_{\beta}}{t_{\beta}}^{\rm DCPR} = -\frac{1}{M_{Z^0} s_{2\beta}} Re \Sigma_{A^0 Z^0}(M_{A^0}^2) \, . \label{eq:delta_poly}$$

This is not gauge invariant! based on $\hat{\Sigma}_{A^0Z^0}(M_{A^0}^2)=0$ which is widely used (together with $\hat{\Sigma}_{A^0G^0}(M_{A^0}^2)=0$) but which is not true in all gauges.

There is a strong constraint coming from a Ward identity.

Moreover in our approach $\delta Z_{G^0A^0}$ and $\delta an eta$ come together

$$\hat{\Sigma}_{A^0 Z^0}(q^2) = \Sigma_{A^0 Z^0}(q^2) + \frac{M_{Z^0}}{2} \left(\delta Z_{G^0 A^0} + s_{2\beta} \frac{\delta t_{\beta}}{t_{\beta}} \right)$$

$\tan \beta$ Ward identity

BRST transformation on the ("ghost") operator

$$\langle 0|\overline{c}^Z(x)A^0(y)|0\rangle = 0, \longrightarrow$$

$$q^{2}\hat{\Sigma}_{A^{0}Z^{0}}(q^{2}) + M_{Z^{0}}\hat{\Sigma}_{A^{0}G^{0}}(q^{2}) = (q^{2} - M_{Z^{0}}^{2}) \frac{1}{(4\pi)^{2}} \frac{e^{2}M_{Z^{0}}}{s_{2W}^{2}} s_{2\beta}\mathcal{F}_{GA}^{\tilde{\epsilon},\tilde{\gamma}}(q^{2})$$

$$+ \frac{M_{Z^{0}}}{2} (q^{2} - M_{A^{0}}^{2}) \left(\frac{1}{(4\pi)^{2}} \frac{2e^{2}}{s_{2W}^{2}} \mathcal{F}_{cc}^{\tilde{\epsilon},\tilde{\gamma}}(q^{2}) + s_{2\beta} \frac{\delta t_{\beta}}{t_{\beta}} - \delta Z_{A^{0}G^{0}} \right).$$

 $\mathcal{F}_{GA}^{\tilde{\epsilon},\tilde{\gamma}}(q^2)$ and $\mathcal{F}_{cc}^{\tilde{\epsilon},\tilde{\gamma}}(q^2)$ are functions which vanish in the linear gauge with $\tilde{\epsilon}=\tilde{\gamma}=0$.

The constraint shows that even in the linear gauge $q^2\hat{\Sigma}_{A^0Z^0}(q^2)+M_{Z^0}\hat{\Sigma}_{A^0G^0}(q^2)$ is zero only for $q^2=M_{A^0}^2$ and not for any q^2 .

but in linear gauge can impose both $\hat{\Sigma}_{A^0Z^0}(M_A^2)=\hat{\Sigma}_{A^0G^0}(M_A^2)=0$ no longer in a general gauge!

similar thing in the charged sector

$$\mathcal{M}_{\text{ext. leg}}^{A^0, G, Z} = \frac{\hat{\Sigma}_{A^0 G^0}(M_{A^0}^2) V_G + q. V_Z \hat{\Sigma}_{A^0 Z^0}(M_{A^0}^2)}{M_{A^0}^2 - M_{Z^0}^2}$$

$$= \frac{V_G}{M_{A^0}^2 - M_{Z^0}^2} \left(\hat{\Sigma}_{A^0 G^0}(M_{A^0}^2) + M_{Z^0} \hat{\Sigma}_{A^0 Z^0}(M_{A^0}^2)\right).$$

$$\begin{split} \mathcal{M}_{\text{ext. leg}}^{A^0,G,Z} &= \frac{\hat{\Sigma}_{A^0G^0}(M_{A^0}^2)V_G + q.V_Z\hat{\Sigma}_{A^0Z^0}(M_{A^0}^2)}{M_{A^0}^2 - M_{Z^0}^2} \\ &= \frac{V_G}{M_{A^0}^2 - M_{Z^0}^2} \left(\hat{\Sigma}_{A^0G^0}(M_{A^0}^2) + M_{Z^0}\hat{\Sigma}_{A^0Z^0}(M_{A^0}^2)\right) \,. \end{split}$$

impose

$$\hat{\Sigma}_{A^0G^0}(M_{A^0}^2) \; + \; M_{Z^0}\hat{\Sigma}_{A^0Z^0}(M_{A^0}^2) = 0 \, . \label{eq:sigma_approx}$$

$$\begin{split} \mathcal{M}_{\text{ext. leg}}^{A^0,G,Z} &= \frac{\hat{\Sigma}_{A^0G^0}(M_{A^0}^2)V_G + q.V_Z\hat{\Sigma}_{A^0Z^0}(M_{A^0}^2)}{M_{A^0}^2 - M_{Z^0}^2} \\ &= \frac{V_G}{M_{A^0}^2 - M_{Z^0}^2} \left(\hat{\Sigma}_{A^0G^0}(M_{A^0}^2) + M_{Z^0}\hat{\Sigma}_{A^0Z^0}(M_{A^0}^2)\right) \,. \end{split}$$

$$\hat{\Sigma}_{A^0Z^0}(M_{A^0}^2) = -\frac{1}{M_{Z^0}}\hat{\Sigma}_{A^0G^0}(M_{A^0}^2) = \frac{1}{(4\pi)^2} \frac{e^2 M_{Z^0}}{s_{2W}^2} s_{2\beta} \mathcal{F}_{GA}^{\tilde{\epsilon},\tilde{\gamma}}(M_{A^0}^2).$$

To be consistent with the Ward identity

$$\frac{A}{\hat{\Sigma}_{G^0A^0}(M_A^2)} - \frac{G^0}{-} - \frac{A}{V_G} + \frac{A}{\hat{\Sigma}_{A^0Z}(M_A^2)} \underbrace{\hat{\Sigma}_{A^0Z}(M_A^2)}_{V_Z} \underbrace{\hat{\Sigma}_{A^0Z}(M_A^2)}_{V_Z} = \mathcal{M}_{\text{ext. leg}}^{A^0,G,Z}$$

$$\mathcal{M}_{\text{ext. leg}}^{A^0,G,Z} = \frac{\hat{\Sigma}_{A^0G^0}(M_{A^0}^2)V_G + q.V_Z\hat{\Sigma}_{A^0Z^0}(M_{A^0}^2)}{M_{A^0}^2 - M_{Z^0}^2}$$

$$= \frac{V_G}{M_{A^0}^2 - M_{Z^0}^2} \left(\hat{\Sigma}_{A^0G^0}(M_{A^0}^2) + M_{Z^0}\hat{\Sigma}_{A^0Z^0}(M_{A^0}^2)\right).$$

$$\delta Z_{G^0A^0} = -s_{2\beta} \frac{\delta t_\beta}{t_\beta} - 2 \frac{\Sigma_{A^0Z^0}^{\rm tad}(M_{A^0}^2)}{M_{Z^0}} + \frac{2}{(4\pi)^2} \frac{e^2}{s_{2W}^2} s_{2\beta} \mathcal{F}_{GA}^{\tilde{\epsilon},\tilde{\gamma}}(M_{A^0}^2) \,.$$

• $A_{\tau\tau}$ -scheme.

$$\mathcal{L}_{A_{\tau\tau}}^0 == i \frac{g m_{\tau}}{2 M_{W^{\pm}}} \tan \beta \, \bar{\tau} \gamma_5 \tau \, A^0$$

- m I is extracted from the decay $A^0 \to \tau^+ \tau^-$ to which the QED corrections have been subtracted, which in this neutral decay constitutes a gauge invariant subset. This leads to a gauge-independent counterterm and is physically unambiguous defined. Not exactly a definition from within the Higgs potential but nonetheless from Higgs physics/phenomenology.
- Criticism that it is not defined from 2—point functions is unfounded. Remember G_{μ}/M_{W} . Technically one has the tools
- sure it is flavour dependent But, one needs to measure this partial width with enough precision. !

• DCPR-scheme .

$$\frac{\delta t_{\beta}}{t_{\beta}}^{DCPR} = -\frac{1}{M_Z s_{2\beta}} Re \Sigma_{A^0 Z^0}(M_{A^0}^2).$$

(in DCPR $H_i \to (1+\frac{1}{2}\delta Z_{H_i})H_i$ i=1,2, then $v_i \to v_i \left(1-\frac{\tilde{\delta}v_i}{v_i}+\frac{1}{2}\delta Z_{H_i}\right)$ impose $\frac{\tilde{\delta}v_1}{v_1}=\frac{\tilde{\delta}v_2}{v_2}$ such that in effect $\frac{\delta t_\beta}{t_\beta}=\frac{1}{2}(\delta Z_{H_2}-\delta Z_{H_1})$, a physical quantity related to a wave function renormalisation constant is (almost) always dubious!)

• MH-scheme.

$$Re\hat{\Sigma}_{H^0H^0}(M_{H^0}^2) = 0$$

Here the heaviest CP-even Higgs mass M_{H^0} is taken as input. This definition is obviously gauge independent and process independent, but expect it to be unstable

• MH-scheme.

$$Re\hat{\Sigma}_{H^0H^0}(M_{H^0}^2) = 0$$

Here the heaviest CP-even Higgs mass ${\cal M}_{H^0}$ is taken as input. This definition is obviously gauge independent and process independent, but expect it to be unstable from

$$t_{\beta} = \sqrt{\frac{M_{A^0} M_{Z^0} + M_{H^0} \sqrt{M_{A^0}^2 + M_{Z^0}^2 - M_{H^0}^2}}{M_{A^0} M_{Z^0} - M_{H^0} \sqrt{M_{A^0}^2 + M_{Z^0}^2 - M_{H^0}^2}}}.$$

$$\frac{\delta t_\beta}{t_\beta} \simeq \frac{1}{M_{H^0}^2/M_{A^0}^2-1} \left(-\frac{\delta M_{A^0}^2}{M_{A^0}^2} + \frac{\delta M_{H^0}^2}{M_{H^0}^2}\right).$$
 $\to 0$ in the decoupling regime

- \bullet \overline{DR} -scheme.
 - In this scheme the counterterm for $\tan \beta$ is taken (from some quantity to be a pure divergence proportional to the ultraviolet (UV) factor, $C_{UV}=1/\epsilon+...$, in dimensional reduction.
 - In HHW prescription of Hollik, Heinemeyer and Weiglein (not GI in general) $\frac{\delta t_\beta}{t_\beta}^{\overline{\rm DR}-{\rm HHW}} = \frac{1}{2c_{2\alpha}}(Re\Sigma_{h^0h^0}^{'}(M_{h^0}^2) Re\Sigma_{H^0H^0}^{'}(M_{H^0}^2))^{\infty} \,.$
 - Pierce and Papadopoulos have defined δt_{β} by relating it to the *divergent* part of $M_{H^0}^2 M_{h^0}^2$ (GI)

Examples, non gauge invariance

Parameter	Value	Parameter	Value	Constant	Value
s_W	0.48076	m_{μ}	0.1057	m_s	0.2
e	0.31345	$m_{ au}$	1.777	m_t	174.3
g_s	1.238	m_u	0.046	m_b	3
M_{Z^0}	91.1884	m_d	0.046	M_{A^0}	500
m_e	0.000511	m_c	1.42	t_eta	3;50

mhmax	Value	nomix	Value	large μ	Value
μ	-200	μ	-200	μ	1000
M_2	200	M_2	200	M_2	400
M_3	800	M_3	800	M_3	200
$M_{ ilde{F}_L}$	1000	$M_{ ilde{F}_L}$	1000	$M_{ ilde{F}_L}$	400
$M_{ ilde{f}_R}$	1000	$M_{ ilde{f}_R}$	1000	$M_{ ilde{f}_R}$	400
A_f	2000+ μ/t_{eta}	A_f	μ/t_eta	A_f	-300+ μ/t_{eta}

Examples, finite and infinite part of $\tan\beta$

$$\delta t_{\beta} = \delta t_{\beta}^{\rm fin} + \delta t_{\beta}^{\infty} C_{UV}$$

$$\text{nlgs} = 10 \rightarrow \tilde{\alpha} = 10, \tilde{\beta} = 10, \dots$$

Examples, finite and infinite part of $\tan\beta$

$$\delta t_{\beta} = \delta t_{\beta}^{\rm fin} + \delta t_{\beta}^{\infty} C_{UV}$$

$$\mathrm{nlgs} = 10 \rightarrow \tilde{\alpha} = 10, \tilde{\beta} = 10, \dots$$

δt_{eta}^{∞}	nlgs = 0	nlgs = 10
DCPR	-3.19×10 ⁻²	-1.04 ×10 ^{−1}
OS_{M_H}	-3.19×10 ⁻²	-3.19×10^{-2}
$\mathrm{OS}_{A_{ au au}}$	-3.19×10 ⁻²	-3.19×10^{-2}
DR-HHW	-3.19×10 ⁻²	+5.32 ×10 ⁻²
DR-PP	-3.19×10^{-2}	-3.19×10^{-2}

for the set *mhmax* at $t_{\beta} = 3$.

Examples, finite and infinite part of $\tan \beta$

$$\delta t_{\beta} = \delta t_{\beta}^{\rm fin} + \delta t_{\beta}^{\infty} C_{UV}$$

nlgs =
$$10 \rightarrow \tilde{\alpha} = 10, \tilde{\beta} = 10, \dots$$

δt_eta^∞	nlgs = 0	nlgs = 10
DCPR	-3.19×10 ⁻²	-1.04 ×10 ⁻¹
OS_{M_H}	-3.19×10^{-2}	-3.19×10^{-2}
$\mathrm{OS}_{A_{ au au}}$	-3.19×10^{-2}	-3.19×10 ⁻²
DR-HHW	-3.19×10^{-2}	+5.32 ×10 ⁻²
DR-PP	-3.19×10^{-2}	-3.19×10 ⁻²

δt_{eta}^{fin}	nlgs = 0	nlgs = 10
DCPR	-0.10	-0.27
OS_{M_H}	+0.92 (30%)	+0.92 (30%)
$\mathrm{OS}_{A_{ au au}}$	-0.10 (3%)	-0.10 (3%)
DR-HHW	0	0
DR-PP	0	0

for the set \overline{m} at $t_{\beta} = 3$.

scheme dependence in the usual linear gauge (finite part) with $\xi_{W,Z,\gamma}=1$

$t_{\beta} = 3$	mhmax	large μ	nomix	$t_{\beta} = 50$	mhmax	large μ	nomix
DCPR	-0.10	-0.06	-0.08	DCPR	+3.42	+14.57	+0.48
OS_{M_H}	+0.92	-1.31	+0.64	OS_{M_H}	-385.53	-2010.84	-290.18
$\mathrm{OS}_{A_{ au au}}$	-0.10	-0.06	-0.08	$\mathrm{OS}_{A_{ au au}}$	+0.12	-4.72	+0.16
DR	0	0	0	DR	0	0	0

$$\frac{\delta t_{\beta}}{t_{\beta}}^{DCPR} \simeq -\frac{t_{\beta}}{s_{2\beta}} \frac{g^2}{c_W^2 M_Z^2} \frac{1}{4\pi^2} \left(3m_b^2 B_0(M_{A^0}^2, m_b^2, m_b^2) + m_{\tau}^2 B_0(M_{A^0}^2, m_{\tau}^2, m_{\tau}^2) \right) .$$

$$\propto t_{\beta}^2$$

Examples, Mass of ${\cal M}_h$

$t_{\beta} = 3$	mhmax	large μ	nomix
$M_{h^0}^{TL} = 72.51$			
DCPR	134.28	97.57	112.26
OS_{M_H}	140.25	86.68	117.37
$OS_{A_{ au au}}$	134.25	97.59	112.27
$\overline{\rm DR}\overline{\mu}=M_{A^0}$	134.87	98.10	112.86
$\overline{ m DR}\overline{\mu}=M_t$	134.47	97.55	112.38
$t_{\beta} = 50$	mhmax	large μ	nomix
$t_{\beta} = 50$ $M_{h^0}^{TL} = 91.11$	mhmax	large μ	nomix
— —	<i>mhmax</i> 144.50	<i>large</i> μ	nomix 124.80
$M_{h^0}^{TL} = 91.11$			
$M_{h^0}^{TL} = 91.11$ DCPR	144.50	35.88	124.80
$M_{h^0}^{TL} = 91.11$ DCPR OS_{M_H}	144.50 143.76	35.88 13.21	124.80 124.16

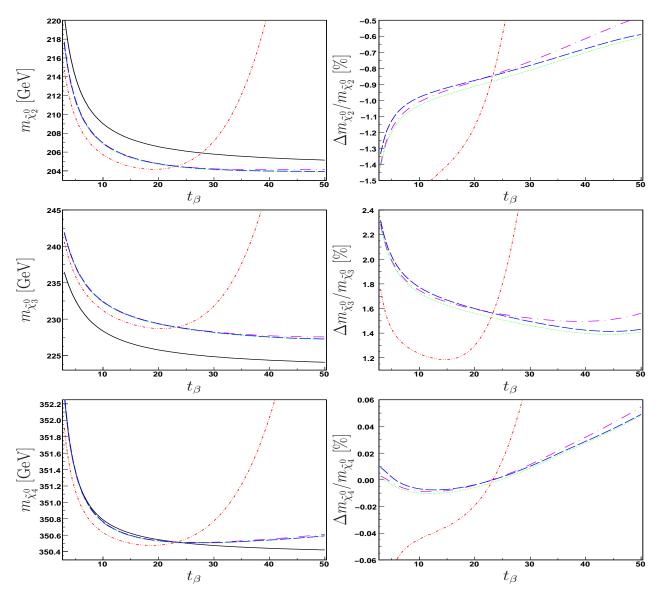
$A^0 ightarrow au^+ au^-$, the non QED one-loop corrections

$t_{\beta} = 3$	mhmax	large μ	nomix
$\Gamma^{TL} = 9.40 \times 10^{-3}$			
DCPR	+3.56×10 ⁻⁵	-8.71×10 ⁻⁶	-7.37×10 ⁻⁶
OS_{M_H}	+6.41×10 ⁻³	-7.82×10 ^{−3}	+4.56×10 ⁻³
$OS_{A_{ au au}}$	0	0	0
$\overline{\rm DR}\overline{\mu}=M_{A^0}$	+6.51×10 ⁻⁴	+3.94×10 ⁻⁴	+5.18×10 ⁻⁴
$\overline{ m DR}\overline{\mu}=M_t$	+2.30×10 ⁻⁴	-2.66×10 ⁻⁵	+9.67×10 ⁻⁵
$t_{\beta} = 50$	mhmax	large μ	nomix
$\Gamma^{TL} = 2.61 \times 10^0$			
DCPR	+3.45×10 ⁻¹	+2.01×10 ⁰	$+3.35 \times 10^{-2}$
OS_{M_H}	-4.03 ×10 ¹	-2.09×10^2	-3.03×10^{1}
$OS_{A_{ au au}}$	0	0	0
$\overline{\rm DR}\overline{\mu}=M_{A^0}$	-1.21×10 ⁻²	+4.92×10 ⁻¹	-1.66×10 ⁻²
$\overline{ m DR}\overline{\mu}=M_t$	-3.00×10^{-2}	+4.75×10 ⁻¹	-3.44×10^{-2}

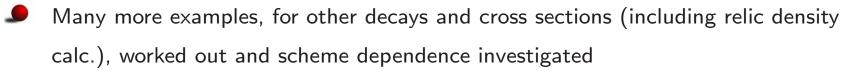
$H^0 o Z^0 Z^0$ and $A^0 o Z^0 h^0$ (suppressed at tree-level)

$t_{\beta} = 3$	mhmax	large μ	nomix
$\Gamma^{TL} = 8.97 \times 10^{-3}$			
DCPR	+1.59×10 ⁻²	-6.32×10^{-3}	+8.47×10 ⁻³
OS_{M_H}	+1.40×10 ⁻²	-4.00×10^{-3}	+7.12×10 ⁻³
$\mathrm{OS}_{A_{ au au}}$	+1.59×10 ⁻²	-6.32×10^{-3}	+8.47×10 ⁻³
$\overline{\rm DR} \overline{\mu} = M_{A^0}$	+1.57×10 ⁻²	-6.44×10^{-3}	+8.32×10 ⁻³
$\overline{ m DR}\overline{\mu}=M_t$	+1.58×10 ⁻²	-6.32×10 ⁻³	+8.44×10 ⁻³
$t_{\beta} = 50$	mhmax	large μ	nomix
$t_{\beta} = 50$ $\Gamma^{TL} = 6.40 \times 10^{-5}$	mhmax	large μ	nomix
1-	<i>mhmax</i> +2.18×10 ⁻⁵	large μ	** 10^{-5}
$\Gamma^{TL} = 6.40 \times 10^{-5}$			
$\Gamma^{TL} = 6.40 \times 10^{-5}$ DCPR	+2.18×10 ⁻⁵	-5.14×10 ⁻⁴	+3.89×10 ⁻⁵
$\Gamma^{TL} = 6.40 \times 10^{-5}$ DCPR OS_{M_H}	$+2.18 \times 10^{-5}$ $+1.01 \times 10^{-2}$	-5.14×10^{-4} $+4.66 \times 10^{-3}$	$+3.89 \times 10^{-5}$ $+7.81 \times 10^{-4}$

Neutralino masses, $(M_A = 100 \text{GeV})$



Tree-level and at one-loop by using the $A_{\tau\tau}$ -scheme, the \overline{DR} scheme the DCPR-scheme and the MH-scheme as a function of t_{β} .



- MH-scheme is GI but most often not recommended (cancelation of large terms from
 2-point function of CP even Higgses in Higgs sector not at work), true for other
 formal GI schemes defined from the Higgs potential (see Freitas and Stockinger,
 hep-ph-0205281)
- ${\color{red} \blacktriangleright}$ DCPR not GI and even in linear gauge may also show problems, introduces large corrections, for high $\tan\beta$

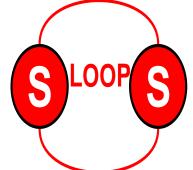
- MH-scheme is GI but most often not recommended (cancelation of large terms from
 2-point function of CP even Higgses in Higgs sector not at work), true for other
 formal GI schemes defined from the Higgs potential (see Freitas and Stockinger,
 hep-ph-0205281)
- ${\color{blue} }$ DCPR not GI and even in linear gauge may also show problems, introduces large corrections, for high $\tan\beta$
- lacktriangledown used most often is not generally GI, problems at two-loop anyway with GI even in the linear gauge (Yamada '01). Use at one-loop within lin. Feynman gauge.

- MH-scheme is GI but most often not recommended (cancelation of large terms from
 2-point function of CP even Higgses in Higgs sector not at work), true for other
 formal GI schemes defined from the Higgs potential (see Freitas and Stockinger,
 hep-ph-0205281)
- ${\color{red} \blacktriangleright}$ DCPR not GI and even in linear gauge may also show problems, introduces large corrections, for high $\tan\beta$
- $m{D}R$ used most often is not generally GI, problems at two-loop anyway with GI even in the linear gauge (Yamada '01). Use at one-loop within lin. Feynman gauge.
- $m{P}$ $A_{\tau\tau}$ scheme seems best: GI and stable with results in most cases very close to \overline{DR} . But will it be chosen in practice when data are there? Depends on how precisely it is extracted experimentally.

- MH-scheme is GI but most often not recommended (cancelation of large terms from
 2-point function of CP even Higgses in Higgs sector not at work), true for other
 formal GI schemes defined from the Higgs potential (see Freitas and Stockinger,
 hep-ph-0205281)
- ${\color{blue} }$ DCPR not GI and even in linear gauge may also show problems, introduces large corrections, for high $\tan\beta$
- $oldsymbol{D}\overline{R}$ used most often is not generally GI, problems at two-loop anyway with GI even in the linear gauge (Yamada '01). Use at one-loop within lin. Feynman gauge.
- $m{P}$ $A_{\tau\tau}$ scheme seems best: GI and stable with results in most cases very close to \overline{DR} . But will it be chosen in practice when data are there? Depends on how precisely it is extracted experimentally.
- This does require a specific flavour dependent observable, goes against intuition of $\tan \beta$ totally within the Higgs potential (see parameterisation invariants of 2HDM)

- MH-scheme is GI but most often not recommended (cancelation of large terms from
 2-point function of CP even Higgses in Higgs sector not at work), true for other
 formal GI schemes defined from the Higgs potential (see Freitas and Stockinger,
 hep-ph-0205281)
- ${\color{blue} }$ DCPR not GI and even in linear gauge may also show problems, introduces large corrections, for high $\tan\beta$
- $m{D}R$ used most often is not generally GI, problems at two-loop anyway with GI even in the linear gauge (Yamada '01). Use at one-loop within lin. Feynman gauge.
- $m{P}$ $A_{\tau\tau}$ scheme seems best: GI and stable with results in most cases very close to \overline{DR} . But will it be chosen in practice when data are there? Depends on how precisely it is extracted experimentally.
- This does require a specific flavour dependent observable, goes against intuition of $\tan \beta$ totally within the Higgs potential (see parameterisation invariants of 2HDM)
- Issue of mixing very subtle (renormalisation of CKM matrix in the SM, many people), sfermion mixing in the MSSM (see Baro and FB'09, Espinosa and Yamada hep-ph/0207351)

- MH-scheme is GI but most often not recommended (cancelation of large terms from
 2-point function of CP even Higgses in Higgs sector not at work), true for other
 formal GI schemes defined from the Higgs potential (see Freitas and Stockinger,
 hep-ph-0205281)
- ${\color{red} }$ DCPR not GI and even in linear gauge may also show problems, introduces large corrections, for high $\tan\beta$
- $m{D}R$ used most often is not generally GI, problems at two-loop anyway with GI even in the linear gauge (Yamada '01). Use at one-loop within lin. Feynman gauge.
- $m{P}$ $A_{\tau\tau}$ scheme seems best: GI and stable with results in most cases very close to \overline{DR} . But will it be chosen in practice when data are there? Depends on how precisely it is extracted experimentally.
- This does require a specific flavour dependent observable, goes against intuition of $\tan \beta$ totally within the Higgs potential (see parameterisation invariants of 2HDM)
- Issue of mixing very subtle (renormalisation of CKM matrix in the SM, many people), sfermion mixing in the MSSM (see Baro and FB'09, Espinosa and Yamada hep-ph/0207351)
- Scheme dependence of the MSSM needs to be further studied



N. Baro, FB, G. Chalons, S. Hao, Ninh Le Duc, A. Semenov, (D. Temes)

- Need for an automatic tool for susy calculations
- handles large numbers of diagrams both for tree-level
- and loop level
- ${\color{red} \blacksquare}$ able to compute loop diagrams at v=0 : dark matter, LSP, move at galactic velocities, $v=10^{-3}$
- ability to check results: UV and IR finiteness but also gauge parameter independence for example
- ability to include different models easily and switch between different renormalisation schemes
- Used for SM one-loop multi-leg: new powerful loop libraries (with Ninh Le Duc)

Strategy: Exploiting and interfacing modules from different codes

Lagrangian of the model defined in LanHEP

- particle content
- interaction terms
- shifts in fields and parameters
- ghost terms constructed by BRST

Evaluation via FeynArts-FormCalc

LoopTools modified!! tensor reduction inappropriate for small relative velocities (Zero Gram determinants)

Renormalisation scheme

- definition of renorm. const. in the classes model

Non-Linear gauge-fixing constraints, gauge parameter dependence checks

From the Lagrangian to the Feynman Rules

```
vector
    A/A: (photon, gauge),
    Z/Z: ('Z boson', mass MZ = 91.1875, gauge),
    'W+'/'W-': ('W boson', mass MW = MZ*CW, gauge).
scalar H/H: (Higgs, mass MH = 115).
transform A \rightarrow A*(1+dZAA/2)+dZAZ*Z/2, Z \rightarrow Z*(1+dZZZ/2)+dZZA*A/2,
    'W+'->'W+'*(1+dZW/2), 'W-'->'W-'*(1+dZW/2).
transform H\rightarrow H*(1+dZH/2), Z.f'\rightarrow Z.f'*(1+dZZf/2),
    'W+.f'->'W+.f'*(1+dZWf/2), 'W-.f'->'W-.f'*(1+dZWf/2).
let pp = { -i*'W+.f', (vev(2*MW/EE*SW)+H+i*'Z.f')/Sqrt2 },
PP=anti(pp).
lterm -2*lambda*(pp*anti(pp)-v**2/2)**2
     where
    lambda=(EE*MH/MW/SW)**2/16, v=2*MW*SW/EE .
let Dpp^mu^a = (deriv^mu+i*g1/2*B0^mu)*pp^a +
     i*g/2*taupm^a^b^c*WW^mu^c*pp^b.
let DPP^mu^a = (deriv^mu-i*g1/2*B0^mu)*PP^a
    -i*g/2*taupm^a^b^c*{'W-'^mu,W3^mu,'W+'^mu}^c*PP^b.
lterm DPP*Dpp.
  Gauge fixing and BRS transformation
let G_Z = deriv*Z+(MW/CW+EE/SW/CW/2*nle*H)*'Z.f'.
lterm -G_A**2/2 - G_Wp*G_Wm - G_Z**2/2.
lterm -'Z.C'*brst(G_Z).
```

From the Lagrangian to the Feynman Rules

```
vector
    A/A: (photon, gauge),
    Z/Z:('Z boson', mass MZ = 91.1875, gauge),
    'W+'/'W-': ('W boson', mass MW = MZ*CW, gauge).
scalar H/H: (Higgs, mass MH = 115).
transform A\rightarrow A*(1+dZAA/2)+dZAZ*Z/2, Z\rightarrow Z*(1+dZZZ/2)+dZZA*A/2,
    'W+'->'W+'*(1+dZW/2),'W-'->'W-'*(1+dZW/2).
transform H->H*(1+dZH/2), 'Z.f'->'Z.f'*(1+dZZf/2),
    'W+.f'->'W+.f'*(1+dZWf/2),'W-.f'->'W-.f'*(1+dZWf/2).
let pp = \{ -i*'W+.f', (vev(2*MW/EE*SW)+H+i*'Z.f')/Sqrt2 \},
PP=anti(pp).
lterm -2*lambda*(pp*anti(pp)-v**2/2)**2
     where
    lambda=(EE*MH/MW/SW)**2/16, v=2*MW*SW/EE .
let Dpp^mu^a = (deriv^mu+i*g1/2*B0^mu)*pp^a +
     i*g/2*taupm^a^b^c*WW^mu^c*pp^b.
let DPP^mu^a = (deriv^mu-i*g1/2*B0^mu)*PP^a
    -i*g/2*taupm^a^b^c*{'W-'^mu,W3^mu,'W+'^mu}^c*PP^b.
lterm DPP*Dpp.
  Gauge fixing and BRS transformation
let G_Z = deriv*Z+(MW/CW+EE/SW/CW/2*nle*H)*'Z.f'.
lterm -G_A**2/2 - G_Wp*G_Wm - G_Z**2/2.
lterm -'Z.C'*brst(G_Z).
```

Output of Feynman Rules with Counterterms!!

```
M$CouplingMatrices = {
 (*----*)
  C[S[3], S[3]] == -I *
{ 0 , dZH },
\{ 0, MH^2 dZH + dMHsq \}
},
 (*----*)
  C[S[2], -S[2]] == -I *
{ 0 , dZWf },
{ 0, 0 }
}, (*----*)
  C[V[1], V[2]] == 1/2 I / CW^2 MW^2 *
{ 0, 0 },
{ 0 , dZZA },
{ 0, 0 }
},
(*----*)
  C[S[3], S[3], S[3]] == -3/4 I EE / MW / SW *
\{ 2 MH^2 , 3 MH^2 dZH ^2 MH^2 / SW dSW ^2 MH^2 / MW^2 dMWsq
 (*----*)
  C[S[3], S[2], -S[2]] == -1/4 I EE / MW / SW *
\{ 2 MH^2 , MH^2 dZH + 2 MH^2 dZWf ^2 MH^2 / SW dSW ^2 MH^2
},
 (*----*) W-.C A.c W+ ----*)
  C[-U[3], U[1], V[3]] == -I EE *
{ 1 },
{ - nla }
},
```

From the Lagrangian to the Feynman Rules

```
vector
    A/A: (photon, gauge),
    Z/Z:('Z boson', mass MZ = 91.1875, gauge),
    'W+'/'W-': ('W boson', mass MW = MZ*CW, gauge).
scalar H/H: (Higgs, mass MH = 115).
transform A\rightarrow A*(1+dZAA/2)+dZAZ*Z/2, Z\rightarrow Z*(1+dZZZ/2)+dZZA*A/2,
    'W+'->'W+'*(1+dZW/2),'W-'->'W-'*(1+dZW/2).
transform H\rightarrow H*(1+dZH/2), Z.f'\rightarrow Z.f'*(1+dZZf/2),
    'W+.f'->'W+.f'*(1+dZWf/2),'W-.f'->'W-.f'*(1+dZWf/2).
let pp = \{ -i*'W+.f', (vev(2*MW/EE*SW)+H+i*'Z.f')/Sqrt2 \},
PP=anti(pp).
lterm -2*lambda*(pp*anti(pp)-v**2/2)**2
     where
    lambda=(EE*MH/MW/SW)**2/16, v=2*MW*SW/EE .
let Dpp^mu^a = (deriv^mu+i*g1/2*B0^mu)*pp^a +
     i*g/2*taupm^a^b^c*WW^mu^c*pp^b.
let DPP^mu^a = (deriv^mu-i*g1/2*B0^mu)*PP^a
    -i*g/2*taupm^a^b^c*{'W-'^mu,W3^mu,'W+'^mu}^c*PP^b.
lterm DPP*Dpp.
  Gauge fixing and BRS transformation
let G_Z = deriv*Z+(MW/CW+EE/SW/CW/2*nle*H)*'Z.f'.
lterm -G_A**2/2 - G_Wp*G_Wm - G_Z**2/2.
lterm -'Z.C'*brst(G_Z).
```

```
RenConst[ dMHsq ] := ReTilde[SelfEnergy[prt["H"] -> prt["H"], MH]]
RenConst[ dZH ] := -ReTilde[DSelfEnergy[prt["H"] -> prt["H"], MH]]
RenConst[ dZZf ] := -ReTilde[DSelfEnergy[prt["Z.f"] -> prt["Z.f"],
MZ]] RenConst[ dZWf ] := -ReTilde[DSelfEnergy[prt["W+.f"] ->
prt["W+.f"], MW]]
```

Output of Feynman Rules with Counterterms!!

```
M$CouplingMatrices = {
 (*----*)
  C[S[3], S[3]] == -I *
{ 0 , dZH },
\{ 0, MH^2 dZH + dMHsq \}
},
 (*----*)
  C[S[2], -S[2]] == -I *
{ 0 , dZWf },
{ 0, 0 }
}, (*----*)
  C[V[1], V[2]] == 1/2 I / CW^2 MW^2 *
{ 0, 0 },
{ O , dZZA },
{ 0, 0 }
},
(*----*)
  C[S[3], S[3], S[3]] == -3/4 I EE / MW / SW *
\{ 2 MH^2 , 3 MH^2 dZH ^2 MH^2 / SW dSW ^2 MH^2 / MW^2 dMWsq
 (*----*)
  C[S[3], S[2], -S[2]] == -1/4 I EE / MW / SW *
\{ 2 MH^2 , MH^2 dZH + 2 MH^2 dZWf ^2 MH^2 / SW dSW ^2 MH^2
},
 (*----*)
  C[-U[3], U[1], V[3]] == -I EE *
{ 1 },
{ - nla }
},
```

TREE LEVEL CALCULATIONS

Comparison with public codes: Grace and CompHEP

Cross-section [pb]	SloopS	CompHEP	Grace	_
$h^0h^0 \rightarrow h^0h^0$	3.932×10^{-2}	3.932×10 ⁻²	3.929×10^{-2}	7
$W^+W^- \rightarrow \tilde{t}_1\tilde{t}_1$	7.082×10^{-1}	7.082×10^{-1}	7.083×10^{-1}	
$e^+e^- ightarrow ilde{ au}_1 ilde{ au}_2$	2.854×10^{-3}	2.854×10^{-3}	2.854×10^{-3}	
$H^+H^- \rightarrow W^+W^-$	6.643×10^{-1}	6.643×10^{-1}	6.644×10^{-1}	11.000
Decay [GeV]	***	VA.	***	# 200 processes checked
$A^0 \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$	1.137×10 ⁰	1.137×10 ⁰	1.137×10 ⁰	
$\tilde{\chi}_1^+ \rightarrow t \tilde{b}_1$	5.428 × 10 0	5.428×10 0	5.428×10^{-0}	
$H^0 \rightarrow \tilde{\tau}_1 \tilde{\tilde{\tau}}_1$	7.579×10^{-3}	7.579×10^{-3}	7.579×10^{-3}	
$H^+ \to \tilde{\chi}_1^+ \tilde{\chi}_1^0$	1.113×10 ⁻¹	1.113×10 ⁻¹	1.113×10 ⁻¹	_

Default: on-shell, GI, renormalisation in **ALL** sectors

- Default: on-shell, GI, renormalisation in ALL sectors
- possibility to switch to other schemes easily (DRbar,..)

- Default: on-shell, GI, renormalisation in ALL sectors
- possibility to switch to other schemes easily (DRbar,..)
- Mixing and rotations: no renormalisation of diagonalisation matrices! ditto gauge-fixing

- Default: on-shell, GI, renormalisation in ALL sectors
- possibility to switch to other schemes easily (DRbar,..)
- Mixing and rotations: no renormalisation of diagonalisation matrices! ditto gauge-fixing
- Wave-function renormalisation to get rid of all mixing between physical fields when on-shell.

- Default: on-shell, GI, renormalisation in ALL sectors
- possibility to switch to other schemes easily (DRbar,..)
- Mixing and rotations: no renormalisation of diagonalisation matrices! ditto gauge-fixing
- Wave-function renormalisation to get rid of all mixing between physical fields when on-shell.
- Issues with definition of $\tan \beta$, many defs not gauge invariant!

- Default: on-shell, GI, renormalisation in ALL sectors
- possibility to switch to other schemes easily (DRbar,..)
- Mixing and rotations: no renormalisation of diagonalisation matrices! ditto gauge-fixing
- Wave-function renormalisation to get rid of all mixing between physical fields when on-shell.
- Issues with definition of aneta, many defs not gauge invariant!
- Same for mixing angle in the sfermion sector.

- Default: on-shell, GI, renormalisation in ALL sectors
- possibility to switch to other schemes easily (DRbar,..)
- Mixing and rotations: no renormalisation of diagonalisation matrices! ditto gauge-fixing
- Wave-function renormalisation to get rid of all mixing between physical fields when on-shell.
- m extstyle extstyle
- Same for mixing angle in the sfermion sector.
- Good scale dependence of ren. csts.