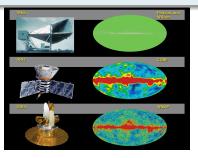
SLOOPS AND DARK MATTER ANNIHILATION AT ONE-LOOP

N. Baro, F. Boudjema, G. Chalons, Sun Hao



ERA OF PRECISION MEASUREMENTS

RELIC DENSITY OF DARK MATTER

- WMAP : $0.0997 < \Omega_{DM}h^2 < 0.1221 \ (10\% \ precision)$
- PLANCK : 2% precision

PRECISION MEASUREMENTS

Must be matched by th. calculations \Rightarrow One-loop

COSMOLOGY AND PARTICLE PHYSICS

RELIC DENSITY IN THE STANDARD COSMOLOGICAL SCENARIO

$$\Omega_{DM} h^2 \simeq rac{3 imes 10^{-27} cm^3 s^{-1}}{\langle \sigma(\chi\chi o {\it SM}) v
angle}$$

PRECISION

- Need for precise theoretical predictions w.r.t experimental measurements.
- Precision needed at the level of $\sigma \Rightarrow$ One-loop calculations (at least).
- If SUSY found ⇒ Reconstruction of fundamental underlying parameters.
- Radiative corrections must be under control to be able to constrain the cosmological underlying scenario.

SOME PREVIOUS WORK AT 1-L IN SUSY

One-loop calculation EW + QCD corrections

- $oldsymbol{ ilde{\chi}}_1^0 ilde{\chi}_1^0 o \gamma \gamma, Z \gamma, gg$: Boudjema,Semenov,Temes, *Phys. Rev.* **D72**, 055024 (2005)
- $\tilde{\chi}^0_1 \tilde{\chi}^0_1 \to ZZ, W^+W^-$: Baro, Boudjema, Semenov, Phys. Lett. **B660** (2008) 550 Baro, Boudjema, Chalons, Sun Hao, Phys. Rev D81 (2008) 015005
- $\tilde{\chi}^0_1 \tilde{\chi}^0_1 \to \tau^+ \tau^-$, $b\bar{b}$: Baro,Boudjema,Semenov, Phys. Lett **B660** (2008) 550
- ullet Co-annihilation with $ilde{ au}$: Baro,Boudjema,Semenov, Phys. Lett **B660** (2008) 550,

QCD corrections

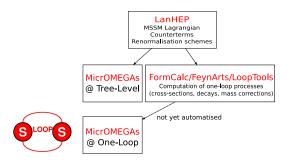
- Co-annihilation with \tilde{t} Freitas Phys. Lett. B652 (2007) 280
- Annihilation into massive quarks Hermann, Klasen, Kovarik Phys. Rev. D79 (2009) Herrmann, Klasen, Phys. Rev. D76 (2007) 117704

Herrmann, Klasen and Kovarik, Phys. Rev. D80 (2009) 085025

FROM TREE TO LOOPS: NEED FOR AUTOMATION

- At tree-level we have for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to WW$ 7 diagrams.
- Relic density predictions involve many annihilation (and coannihilation) channels.

Some efficient tree-level codes already exist for relic density calculations :

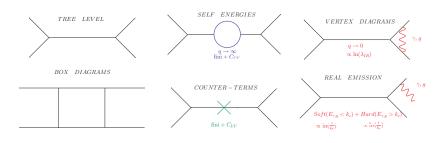

- DarkSUSY [Bergström et al. (2004)]
- micrOMEGAs [Bélanger, Boudjema, Pukhov, Semenov (2002)]
- Mainly $2 \rightarrow 2$ processes are taken into account in the computation.

At one-loop we have $\simeq 7000$ diagrams

Then for an accurate and reliable relic density prediction at one-loop order we need:

- $\,\rightarrow\,$ A coherent renormalisation scheme and a choice of input parameters.
- → To generate counter-terms, for SUSY gigantic task.
- → To compute a huge amount of loop diagrams.
- \rightarrow Loop Integrals library to handle Gram determinant when $\nu \rightarrow 0$.
- → To deal with IR and collinear divergencies → include bremsstrahlung.
- \rightarrow To evaluate many processes entering $\langle \sigma v \rangle$.

SLOOPS CODE

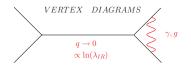

- Evaluation of one-loop diagrams including a complete and coherent renormalisation of each sector of the MSSM with an OS scheme.
- Modularity between different renormalisation schemes.
- Non-linear gauge fixing.
- Handles a large number of Feynman diagrams.
- Checks: results UV,IR finite and gauge independent.

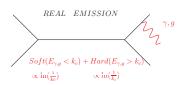
http://code.sloops.free.fr/

RADIATIVE CORRECTIONS-RENORMALISATION

DIVERGENCES

• Due to perturbative development in the coupling constant.




REGULARISATION

Isolate infinite parts in loops

- UV : $\ln \Lambda_{UV}$ with cut-off, $1/\epsilon_{UV}$ poles in DR.
- IR : $\ln \lambda_{IR}$ with cut-off, $1/\epsilon_{IR}$ poles in DR.

A WORD ABOUT INFRARED DIVERGENCIES

- Originate from
 - \hookrightarrow Massless gauge bosons (γ, g) coupling to on-shell external legs.
 - Soft and collinear regions of integration over boson momenta (appear as double log $\ln^2(\lambda_{IR})$ or $1/\epsilon_{IR}^2$).
- Adding real emission remove unphysical dependency in the cut-off λ_{IR} or $1/\epsilon_{IR}^2$.
- Integration over 3-particles phase space can be complicated.
- Usually for DM calculation $2 \rightarrow 2$ processes are enough, but if real corrections \simeq vertex corrections, $2 \rightarrow 3$ processes should also be included.

A WORD ABOUT INFRARED DIVERGENCIES

- Originate from
 - \hookrightarrow Massless gauge bosons (γ, g) coupling to on-shell external legs.
 - Soft and collinear regions of integration over boson momenta (appear as double log $\ln^2(\lambda_{IR})$ or $1/\epsilon_{IR}^2$).
- Adding real emission remove unphysical dependency in the cut-off λ_{IR} or $1/\epsilon_{IR}^2$.
- Integration over 3-particles phase space can be complicated.
- Usually for DM calculation $2 \rightarrow 2$ processes are enough, but if real corrections \simeq vertex corrections, $2 \rightarrow 3$ processes should also be included.
- If c.m energy $\sqrt{s} \gg M_V$, EW bosons behave like a photon \Rightarrow Mass singularities in soft and collinear logs $\propto \ln^2(s/M_W^2)$

ON-SHELL RENORMALISATION OF THE MSSM SECTORS

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $| m_f, \alpha(0), M_W, M_Z |$

HIGGS SECTOR

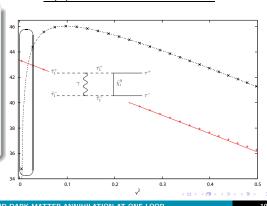
Input parameters : $M_{A^0}, t_{eta} = v_2/v_1$. Several definitions for δt_{eta} :

- \overline{DR} : δt_{β} is a pure divergence
- $MH:\delta t_{eta}$ is defined from the measurement of the mass m_H
- $A^0 au au$: δt_eta is defined from the decay $A^0 o au^+ au^-$ (vertex $\propto m_ au t_eta$)

SFERMIONS SECTOR

Input parameters : $\boxed{\text{3 sfermions masses } m_{\tilde{d_1}}, m_{\tilde{d_2}}, m_{\tilde{u_1}} \text{ and 2 conditions for } A_{u,d}}$

NEUTRALINOS/CHARGINOS SECTOR


Input parameters : $\boxed{ \text{2 charginos } m_{ ilde{\chi}_1^\pm}, m_{ ilde{\chi}_2^\pm} \text{ and 1 neutralino } ilde{\chi}_1^0 }$

ANNIHILATION INTO FERMIONS

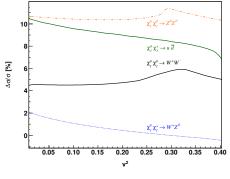
- Baro, Boudjema, Semenov, Phys. Lett B660 (2008) 550
- annihilation cross section $\propto m_f \Rightarrow$ mainly into heavy ones (τ, b, t) .
- bulk region in mSUGRA paradigm
- coannihilation with staus

$$\begin{bmatrix} \sigma v [10^{-26} \text{cm}^3/\text{s}] \end{bmatrix}$$
 $\tilde{\tau}_1^+ \tilde{\tau}_1^+ \to \tau^+ \tau^+ (23\%)$

- \bullet Example : bino-scenario : coannihilation with $\tilde{\tau}$
- Chirality suppression mechanism no more at play at 1L
- Peculiar feature when $v \to 0$ for $\tilde{\tau}_1^+ \tilde{\tau}_1^+ \to \tau^+ \tau^+$
- ⇒ Coulomb effect
- $\frac{\sigma_1^{Coul}}{\sigma_0} = -\frac{\pi\alpha}{v}$
- No sensitive effect on $\Omega_{\gamma} h^2$

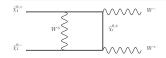
ANNIHILATION INTO FERMIONS

Second example : annihilation into $b\bar{b}$

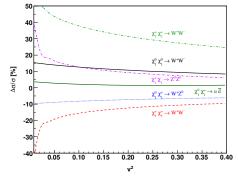

- Mixed case : bino-higgsino
- Important A^0 -exchange in s-channel $m_{\tilde{\chi}^0_1}=106$ GeV, $m_{A^0}=300$ GeV
- $\sigma v = a + bv^2$
- ullet δt_{eta} scheme dependency
- Important corrections to $A^0 \rightarrow b\bar{b}$ vertex \rightarrow anomalous dimension, Δm_b
- Modified Yukawa coupling implemented in micrOMEGAs

$ ilde{\chi}_1^0 ilde{\chi}_1^0 ightarrow b \overline{b}$	$A_{ au au}$	$\overline{ m DR}$	MH
$\delta a/a$ EW	-1%	+3%	+31%
$\delta a/a$ QCD	-26%	-26%	-26%
$\delta b/b$ EW	-1%	+3%	+29%
$\delta b/b$ QCD	-30%	-30%	-30%

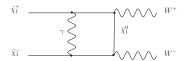
ANNIHILATION INTO GAUGE BOSONS: HIGGSINO


- Baro, Boudjema, Chalons, Sun Hao, Phys. Rev D81 (2008) 015005
- Most difficult channels : Gauge invariance plays a prominent role.

Parameter	M_1	M_2	μ	t_{β}	<i>M</i> ₃	$M_{\tilde{L},\tilde{Q}}$	A_i	M_{A^0}	
Value	400	350	-250	4	1000	650	0	800	
$\tilde{\chi}_1^0 = 0.11\tilde{B} - 0.31\tilde{W} - 0.70\tilde{H}_1^0 - 0.63\tilde{H}_2^0$									


 $\begin{array}{cccc} & A_{\tau\tau} & \overline{\rm DR} & {\rm MH} \\ \hline \delta\Omega h^2/\Omega h^2 & -2.4\% & -2.5\% & -3.3\% \end{array}$

- Bulk of corrections to the s-wave coefficient
- ullet Small δt_eta scheme dependence
- QCD corrections to $u\bar{d} \simeq 3 \%$
- $\begin{tabular}{ll} \bullet & {\sf Bump} = \tilde{\chi}_1^{\pm} & {\sf threshold in boxes, not present at Tree-Level} \\ \end{tabular}$
- a + bv² expansion doesn't work anymore at 1-L


ANNIHILATION INTO GAUGE BOSONS: LIGHT-WINO

Parameter	M_1	M_2	μ	t_{β}	M_3	$M_{\tilde{u}_I}$	M _e ,	$M_{\tilde{u}_R,\tilde{e}_R}$	A_i	M_{A^0}
Value	550	210			1200		360	800	0	700
$\tilde{\chi}_1^0 = 0.005\tilde{B} - 0.99\tilde{W} - 0.15\tilde{H}_1^0 - 0.05\tilde{H}_2^0$										

 $\begin{array}{c|ccccc} & A_{\tau\tau} & \overline{\rm DR} & {\sf MH} \\ \hline \delta\Omega h^2/\Omega h^2 & -1.9\% & -1.9\% & -1.9\% \end{array}$

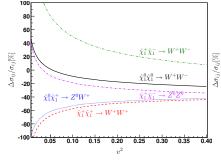
- At 1-L new feature appear for v → 0 : Coulomb effect
- Possible to capture its one-loop manifestation
- Degeneracy lifted between processes
- Large corrections
- Almost no δt_{β} scheme dependence
- Strong cancellations between QCD/EW corrections

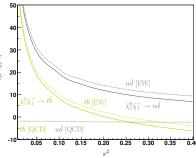
ANNIHILATION INTO GAUGE BOSONS: HEAVY-WINO

Parameter	M_1	M_2	μ	t_{eta}	M_3	$M_{\tilde{L},\tilde{Q}}$	A_i	M_{A^0}
Value(GeV)					5000	5000	0	5000
$ ilde{\chi}_1^0 = 0.000 ilde{B} - 0.999 ilde{W} + 0.004 ilde{H}_1^0 + 0.032 ilde{H}_2^0$								

		Tree
$ ilde{\chi}_{1}^{0} ilde{\chi}_{1}^{0} ightarrow W^{+} W^{-} \ [10\%]$	а	+2.43
	Ь	+0.52
$\tilde{\chi}_1^+ \tilde{\chi}_1^+ \to W^+ W^+ [10\%]$	а	+1.22
	Ь	+0.26
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{+} \rightarrow Z^{0}W^{+}$ [9%]	а	+0.51
	Ь	+0.12
$ ilde{\chi}_1^0 ilde{\chi}_1^+ ightarrow t ar{b} \ [9\%]$	а	+0.54
	Ь	-0.23
$\tilde{\chi}_1^0 \tilde{\chi}_1^+ \rightarrow u \bar{d} \ [9\%]$	а	+0.54
	Ь	-0.23
$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} \to Z^{0}Z^{0}$ [6%]	а	+0.73
	Ь	+0.16
$\tilde{\chi}_1^+ \tilde{\chi}_1^- \to W^+ W^- [6\%]$	а	+0.65
11	Ь	+0.17
$\Omega_{\chi} h^2$		0.0997

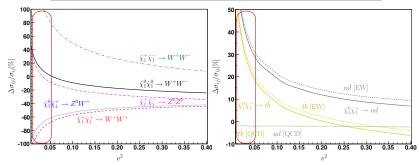
$$m_{ ilde{\chi}_1^0} = 1799.1 \; {
m GeV}$$

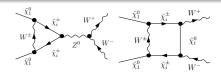

$$\delta(m_{{ ilde \chi}_1^+} - m_{{ ilde \chi}_1^0}) = 0.0003 \; {
m GeV}$$


- ullet $m_{ ilde{\chi}^0_1}$, $m_{ ilde{\chi}^\pm_1}$ almost degenerate
- Coannihilation very important
- Degeneracy between processes $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to W^+ W^-$ and $\tilde{\chi}_1^+ \tilde{\chi}_1^+ \to W^+ W^+$
- A lot of processes contribute

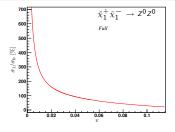
ANNIHILATION INTO GAUGE BOSONS: HEAVY-WINO

Virtual corrections $+ \gamma$ bremsstrahlung


Parameter	M_1	M_2	μ	t_{eta}	M_3	$M_{ ilde{L}, ilde{Q}}$	A_i	M_{A^0}
Value(GeV)	3500	1800	4500	15	5000	5000	0	5000

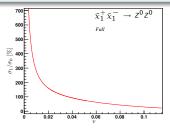


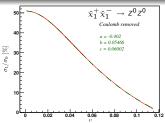
ANNIHILATION INTO GAUGE BOSONS: HEAVY-WINO


Parameter	M_1	M_2	μ	t_{β}	M_3	$M_{\tilde{L},\tilde{Q}}$	A_i	M_{A^0}
Value(GeV)	3500	1800	4500	15	5000	5000	0	5000

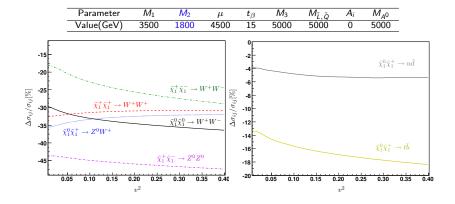
- $M_W/m_{\widetilde{\chi}_1^0}=0.045\Rightarrow W^\pm, Z^0$ bosons almost considered as massless.
- $v \rightarrow 0$: Large Sommerfeld (QED+EW) enhancement.

- The EW Sommerfeld effect is expected to be cut-off, as opposed to the QED one.
- To extract it, remove the QED Coulomb effect first.

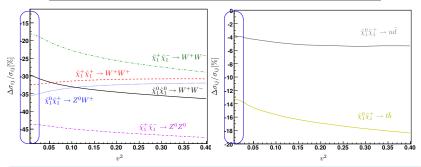

•
$$S_{nr} = X_{nr}/(1 - e^{-X_{nr}})$$
 $X_{nr} = 2\pi\alpha Q_i Q_j/v$

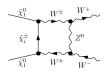

•
$$S_{1L} = \frac{\pi \alpha}{V} \times \sigma_0 Q_i Q_j$$

- The EW Sommerfeld effect is expected to be cut-off, as opposed to the QED one.
- To extract it, remove the QED Coulomb effect first.
- Then, as behavior expected to be cut-off, fit with,

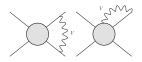

$$\sigma_1/\sigma_0 = a + \frac{b}{\sqrt{v^2 + c^2}}$$

where c is supposed to be the cut-off, of order $M_W/m_{\widetilde{\chi}_1^0}$.




• Large corrections but < QED Sommerfeld for $v \rightarrow 0$.

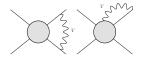
Parameter	M_1	M_2	μ	t_{β}	М3	$M_{\tilde{L},\tilde{Q}}$	A_i	M_{A^0}
Value(GeV)	3500	1800	4500	15	5000	5000	0	5000

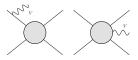

• Even after substraction of Sommerfeld effect, still large corrections of Sudakov type $(m_{\nabla^0_i} \gg M_W, M_Z)$ for individual processes.

SUDAKOV VIRTUAL CORRECTIONS

- Originate from vertex and box diagrams involving virtual bosons.
- General form of one-loop Sudakov corrections

$$\alpha \left[C_2 \ln^2 \left(\frac{s}{M_V^2} \right) + C_1 \ln^1 \left(\frac{s}{M_V^2} \right) + C_0 \right] + \mathcal{O} \left(\frac{M_V^2}{s} \right) \quad V = \gamma, W^{\pm}, Z^0$$

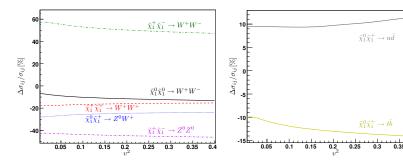



- The $\ln(s/M_V^2)$ represents mass singularities and originate from soft and collinear regions.
- For QED corrections always present ($M_{\gamma} \rightarrow 0$), for EW ones when $s \gg M_{W,Z}^2$.

SUDAKOV VIRTUAL CORRECTIONS

- Originate from vertex and box diagrams involving virtual bosons.
- General form of one-loop Sudakov corrections

$$\alpha \left[C_2 \ln^2 \left(\frac{s}{M_V^2} \right) + C_1 \ln^1 \left(\frac{s}{M_V^2} \right) + C_0 \right] + \mathcal{O} \left(\frac{M_V^2}{s} \right) \quad V = \gamma, W^{\pm}, Z^0$$
LL



- The $\ln(s/M_V^2)$ represents mass singularities and originate from soft and collinear regions.
- For QED corrections always present ($M_{\gamma} \to 0$), for EW ones when $s \gg M_{W,Z}^2$.
- Dependency on M_{γ} unphysical \Rightarrow removed by adding real emission as stated by the Bloch-Nordsieck theorem [Bloch,Nordsieck(1937)].
- For EW corrections, $M_{W,Z}$ physical and retained in the calculation.
- Adding real emission can counterbalance virtual corrections.

ADDING REAL EMISSION AND SUBSTRACTING SOMMERFELD

- \bullet For a specific channel adding the Z^0 reduces the overall corrections.
- But result still potentially large

- Not a complete cancellation due to Bloch-Norsieck violations [Ciafaloni, Comelli (2000)]
- W^\pm emission changes isospin \to one state of a mutliplet turned into another state of the same multiplet.
- By summing/averaging over all members of the same multiplet, the cancellation should take place

 Summing over all channels and processes.
- W^{\pm} real emission must also be added to form an isospin singlet.

AVERAGING OVER THE ISOSPIN

Virtual + real 2
$$\rightarrow$$
 2 + γ , Z^0 , W^{\pm} .

Values of various cross section for $v = 0.3c$									
Process	Tree-Level	1-Loop	W+Z emission	Total					
$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow W^+ W^-$	2.668051510	-0.232723594 (-9%)	0.608162875 (+23%)	3.043490791 (+12%)					
$\tilde{\chi}_1^+ \tilde{\chi}_1^+ \rightarrow W^+ W^+ \times 2$	2.667542171	-1.542918600 (-58%)	0.196086090 (+7.3%)	1.320709661 (-50.7%)					
$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow W^+ W^-$	0.713966584	0.364979903 (+51%)	0.541233676 (+76%)	1.620180163 (+127%)					
$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow Z^0 Z^0$	0.805841752	-0.147277293 (-18%)	0.008798936 (+1%)	0.649765523 (-17%)					
$\tilde{\chi}_1^0 \tilde{\chi}_1^+ \rightarrow W^+ Z^0 \times 2$	1.127875389	-0.605309188 (-54%)	0.250488943 (+22%)	0.773055144 (-32%)					
$\tilde{\chi}_1^0 \tilde{\chi}_1^+ \rightarrow t \bar{b} \times 2$	1.111269832	0.099235806 (+9%)	0.041938145 (+3.8%)	1.252443783 (+12.8%)					
$\tilde{\chi}_1^0 \tilde{\chi}_1^+ \rightarrow u \bar{d} \times 2$	1.116433207	0.222165895 (+20%)	0.156287258 (+14%)	1.494886360 (+34%)					
Total	10.210980445	-1.841847071 (-18%)	1.802995923 (+17.6%)	10.172129297 (-0.4%)					
Total only gauge	7.983277406	-2.163248772 (-27%)	1.604770520 (+20%)	7.424799154 (-7%)					

- Large corrections for individual processes ⇒ important effect for Indirect Detection [Chalons PhD Thesis, Strumia et al]
- For relic density calculation, in the thermal bath sum over all members of the isospin multiplet automatically done [Chalons PhD Thesis] → small effect expected.

CONCLUSIONS AND PERSPECTIVES

- Importance of radiative corrections in the relic density calculations, can be very large.
- Need to control them to be able to extract informations from it and to constrain the underlying cosmological scenario.
- For some cases scheme dependence.
- For a heavy neutralino scenarios taking into account $2 \rightarrow 3$ processes is necessary.
- Large corrections due to soft/collinear logs and Sommerfeld enhancement.
- Corrections can be even larger for Indirect Detection, rate and spectra for specific signatures.
- In all cases for $\Omega_{\chi} h^2$ @ 1-2% \Rightarrow one-loop corrections mandatory.
- Study of the dependency of the results on the chargino/neutralino renormalisation scheme.
- Improve the interface with micrOMEGAs.