ondesgravitationnelles
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
ondesgravitationnelles [2023/02/11 19:45] – daniele.steer | ondesgravitationnelles [2023/03/08 15:08] (current) – daniele.steer | ||
---|---|---|---|
Line 4: | Line 4: | ||
La communauté scientifique française est très investie dans la recherche sur les OG, et a porté des avancées majeures sur un large spectre de sujets, allant du développement des détecteurs à l’analyse et l’interprétation des observations astrophysiques, | La communauté scientifique française est très investie dans la recherche sur les OG, et a porté des avancées majeures sur un large spectre de sujets, allant du développement des détecteurs à l’analyse et l’interprétation des observations astrophysiques, | ||
- | Autre que LIGO-Virgo-Kagra (fréquence caractéristique ~Hz), plusieurs grandes experiences sur les ondes gravitationnelles vont continuer à voir le jour, et avec les nouvelles données il y aura d' | + | Autre que LIGO-Virgo-Kagra (fréquence caractéristique ~10 à 10^3 Hz), plusieurs grandes experiences sur les ondes gravitationnelles vont continuer à voir le jour, et avec les nouvelles données il y aura d' |
* LIGO-Virgo-Kagra va commencer son //O4 run// (mai 2023) puis //O5//, et on peut s' | * LIGO-Virgo-Kagra va commencer son //O4 run// (mai 2023) puis //O5//, et on peut s' | ||
* A basses fréquences (10-9–10-7 Hz) IPTA va bientot sortir des données de 25 pulsars (si pas deja fait). Nançay Radio Telescope (NRT) | * A basses fréquences (10-9–10-7 Hz) IPTA va bientot sortir des données de 25 pulsars (si pas deja fait). Nançay Radio Telescope (NRT) | ||
* La France est aujourd’hui un des principaux contributeurs à LISA (lancement prévu en 2035, fréquences mHz) avec une communauté nombreuse et dynamique. | * La France est aujourd’hui un des principaux contributeurs à LISA (lancement prévu en 2035, fréquences mHz) avec une communauté nombreuse et dynamique. | ||
* La France est aussi très impliquée dans le projet European, Einstein Telescope, futur détecteur 3G au sol (fréquences semblables à celles de LIGO-Virgo [un peu plus larges à bases frequences] , mais avec bien meilleure sensibilité). On pourra voir les OG émisses de sources individuelles à des redshift z ≲ 100. | * La France est aussi très impliquée dans le projet European, Einstein Telescope, futur détecteur 3G au sol (fréquences semblables à celles de LIGO-Virgo [un peu plus larges à bases frequences] , mais avec bien meilleure sensibilité). On pourra voir les OG émisses de sources individuelles à des redshift z ≲ 100. | ||
- | * Très forte implication dans [[ondes_gravitationnelles_rubrique_a_integrer_dans_une_autre_rubrique_generale|Atom interferometry]], 0.1 Hz- 10Hz | + | * Très forte implication dans l' |
Il est également important de souligner l’implication française dans les aspects de prédiction et suivi des signaux multi-messagers, | Il est également important de souligner l’implication française dans les aspects de prédiction et suivi des signaux multi-messagers, | ||
Line 20: | Line 20: | ||
* developments to higher PN, with spins and tidal effects, all needed for future detectors especially LISA. Computation of both conservative equations of motion plus effects of gravitational radiation reaction. Computation of waveforms (modes, especially the dominant quadrupole mode 22) and flux balance equations for secular evolution of the binary. | * developments to higher PN, with spins and tidal effects, all needed for future detectors especially LISA. Computation of both conservative equations of motion plus effects of gravitational radiation reaction. Computation of waveforms (modes, especially the dominant quadrupole mode 22) and flux balance equations for secular evolution of the binary. | ||
* Inclusion of eccentricity to higher PN, unbound hyperbolic orbits etc. Relation between unbound and bound (elliptical) orbits including tail effects. | * Inclusion of eccentricity to higher PN, unbound hyperbolic orbits etc. Relation between unbound and bound (elliptical) orbits including tail effects. | ||
- | * Effective Field theory techniques, amplitudes. These, together with ``classical'' | + | * Effective Field theory techniques, amplitudes. These, together with ``classical'' |
* Effective one body: under-developed in France, but crucial to match inspiral to ringdown waveforms and for practical implementation of data analysis. | * Effective one body: under-developed in France, but crucial to match inspiral to ringdown waveforms and for practical implementation of data analysis. | ||
* Numerical relativity. Tremendous progress over the last decades. A field which is under-developed in France. Connection with the community working of neutron star equations of state. | * Numerical relativity. Tremendous progress over the last decades. A field which is under-developed in France. Connection with the community working of neutron star equations of state. | ||
- | * Quasinormal modes to higher (second) order: | + | * Quasinormal modes to higher (second) order: |
- | * Recent progress on the gravitational self force problem for compact binaries, now solved numerically to second order in the mass ratio. | + | * Recent progress on the gravitational self force problem for compact binaries, now solved numerically to second order in the mass ratio, in the simplest case of the quasi-circular inspiral of nonspinning binaries. Much work remains |
- | * Study of resonances in EMRIs (extreme mass ration inspirals), and whether or not they' | + | * Study of resonances in EMRIs (extreme mass ration inspirals), and whether or not they' |
+ | * Tidal deformability of black holes in GR and alternative theories of gravity, impact on waveforms for EMRIs, tidally-induced multipole moments and test of the black hole no-hair theorem. | ||
* All these questions can be repeated in modified gravity theories, see [[gravity|Théories de gravité]], where there are many developments to refine. For the moment scalar-tensor theories (generalized Brans-Dicke) are the only ones with accurate waveforms predicted. | * All these questions can be repeated in modified gravity theories, see [[gravity|Théories de gravité]], where there are many developments to refine. For the moment scalar-tensor theories (generalized Brans-Dicke) are the only ones with accurate waveforms predicted. | ||
* Wave forms from other individual sources: important to understand other possible GW signals (continuous waves, bursts, boson stars, other exotic possibilities etc): there could well be new discoveries in the next 10 years, and one needs to be prepared. | * Wave forms from other individual sources: important to understand other possible GW signals (continuous waves, bursts, boson stars, other exotic possibilities etc): there could well be new discoveries in the next 10 years, and one needs to be prepared. | ||
Line 31: | Line 32: | ||
**Astrophysics, | **Astrophysics, | ||
+ | |||
+ | In the next decade the number of GW events which will be detected will rapidly increase. | ||
+ | * O4 2023-2025 -- order 1000-10^4 BBH and BNS | ||
+ | * O5 2026-2028 -- 10^5 BBH or more | ||
+ | * O6? 2030-2032 -- 10^6 BBH or more. | ||
+ | With this data, it should be possible to determine, amongst other things, the population of BH in the local universe (mass and redshift distribution), | ||
+ | Regarding Astrophysics and Cosmology: | ||
+ | |||
+ | |||
* Using individual sources to measure the Hubble constant and other cosmological parameters (e.g. equation of state of DE), see [[cosmologie|cosmologie]]. Unless there are many GW events with EM counterparts, | * Using individual sources to measure the Hubble constant and other cosmological parameters (e.g. equation of state of DE), see [[cosmologie|cosmologie]]. Unless there are many GW events with EM counterparts, | ||
* probing anisotropic expansion or the cosmological principle with GW data | * probing anisotropic expansion or the cosmological principle with GW data | ||
Line 36: | Line 46: | ||
* understanding GW lensing, crucial for interpreting data and extracting parameters from events at higher redshift. | * understanding GW lensing, crucial for interpreting data and extracting parameters from events at higher redshift. | ||
* Multi-messenger tidal disruption events (TDEs) | * Multi-messenger tidal disruption events (TDEs) | ||
- | * For analysis of all the data, dealing with overlapping signals etc, necessary to develop techniques of [[futur|Machine Learning, IA, Quantum Computing]] | + | * For analysis of all the data, dealing with overlapping signals etc, necessary to develop techniques of [[futur|Machine Learning, IA, Quantum Computing]]. Indeed, it will be necessary to develop very refined detection methods to separate the signal from the noise, especially |
- | * Stochastic GW background (SGWB). Need to understand the astrophysical background to then probe the cosmological one, and hence early universe cosmology. | + | * Stochastic GW background (SGWB). Need to understand the astrophysical background to then probe the cosmological one, and hence early universe cosmology. This cosmological SGWB can probe energy scales where the universe is opaque to EM radiation, and hence is particularly exciting. |
- | * Calculation of templates, particularly for LISA. Different early universe sources e.g.: phase transitions, | + | * Calculation of templates, particularly for LISA. Different early universe sources e.g.: phase transitions, |
* These sources can also be probed in different frequency bands (PTA, LISA, ET, CE, LIGO...), so giving a broader picture. | * These sources can also be probed in different frequency bands (PTA, LISA, ET, CE, LIGO...), so giving a broader picture. | ||
* Fluctuations of the SGWB. | * Fluctuations of the SGWB. | ||
Line 44: | Line 54: | ||
* [[DM|Dark matter]] and primordial black holes. GW bursts at high redshifts. | * [[DM|Dark matter]] and primordial black holes. GW bursts at high redshifts. | ||
* Etude des corrélations croisées entre les cartes des grands relevés de [[Cosmologie|Cosmologie]] et celles des [[ondesgravitationnelles|Ondes Gravitationnelles]] pour comprendre l' | * Etude des corrélations croisées entre les cartes des grands relevés de [[Cosmologie|Cosmologie]] et celles des [[ondesgravitationnelles|Ondes Gravitationnelles]] pour comprendre l' | ||
- | * Dark energy/ | + | * Dark energy/ |
- | * Probing the QCD equation of state with neutron stars, using both inspiral (equilibrium | + | * Probing the QCD equation of state with neutron stars, using both inspiral (equilibrium) and ringdown (out of equilibrium) phases. With Virgo_nEXT, ET, expect new results. CompOSE data tables developed in France. See also [[physique_des_particules|particle physics]]. Note that multimessenger signals from neutron star mergers also contribute to understanding QCD but they need important new calculations of neutrino transport that contributes to the rapid cooling after mergers and controls what is emitted afterwards |
- | * Impact on astrophysics: | + | * Impact on astrophysics: |
* Voir la contribution de [[ondesgravitationnelles_vanhoveog|Pierre Vanhove au Sondage INP]] | * Voir la contribution de [[ondesgravitationnelles_vanhoveog|Pierre Vanhove au Sondage INP]] | ||
- | + | ||
+ | |||
+ | ===Détection d' | ||
+ | |||
+ | Le développement d' | ||
+ | |||
+ | |||
+ | ==Interférométrie atomique== | ||
+ | |||
+ | * Domaine de sensibilité GW 0.1 Hz- 10Hz (moins sensible au bruit sismique) | ||
+ | * MIGA (LSBB) Démonstrateur pour les futurs détecteurs GW terrestres sub-Hz | ||
+ | * Validation des modèles du bruit newtonien sur MIGA | ||
+ | * Recherche de matière noire | ||
+ | * Test de la relativité générale (EP, Lens-Thirring, | ||
+ | |||
+ | => Plateformes et méthodes expérimentales : | ||
+ | * horloges atomiques (microonde, optique), horloges à ions | ||
+ | * Interférométrie atomique | ||
+ | * à grande échelle | ||
+ | * sur terre | ||
+ | * dans l' | ||
+ | |||
+ | |||
+ | * refroidissement des degrés de liberté internes et externes, manipulation cohérente, ingénierie quantique des différents degrés de liberté et technologies quantiques | ||
+ | * utilisation de références de fréquence métrologiques sur réseau fibré | ||
+ | * développement de réseaux de capteurs et d' | ||
+ | |||
+ | |||
+ | ==Interférométrie optique== | ||
+ | |||
+ | * Advanced Virgo+, réduction du bruit quantique squeezing dépendant de la fréquence, recyclage du signal | ||
+ | * Mise en réseau des OIs (LIGO-india, | ||
+ | |||
+ | * Modélisation des sources et des détecteurs dans le cadre de théories fondamentales alternatives | ||
+ | |||
+ | == Contributeurs == | ||
+ | |||
+ | Systèmes de Référence Temps-Espace, | ||
ondesgravitationnelles.1676141148.txt.gz · Last modified: 2023/02/11 19:45 by daniele.steer