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The model : the asymmetric exclusion process
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q

q

p

p

p

ring geometry of L sites,
fixed number N of particles,
jump rates p to the right, q to
the left.

W =
L∑

i=1


0 0 0 0
0 −q p 0
0 q −p 0
0 0 0 0


i ,i+1
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Quantity of interest : the current Qt

Qt = #jumps of particle to the right −#jumps of particle to the left

Generating function:
〈esQt 〉 ∝

t→∞
eµ1(s)t

where µ1(s) is the eigenvalue with largest real part of the modfied
transition matrix:

Ŵs =
L∑

i=1


0 0 0 0
0 −q pes 0
0 qe−s −p 0
0 0 0 0


i ,i+1

Similar to the Hamiltonian of the asymmetric XXZ spin chain
but. . .
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Bethe equations & hydrodynamical scalings

ψ(x<) =
∑
σ∈SN

Aσ({zi})
N∏

i=1

zxi
σ(i)

zL
k = (−1)N−1

∏
j 6=k

pes + qe−szjzk − (p + q)zk

pes + qe−szjzk − (p + q)zj

Hydrodynamical scalings:

L → ∞
N/L → ρ

p − q ∼ ν

L
s ∼ γ

L

∆ =
p + q
2
√

pq

' 1 +
ν2

2L2

e2H =

√
p
q

es

' 1 +
γ + ν

L

Couplings vanishing as L→∞
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Why these scalings ?

From probability theory, existence of a nice hydrodynamical limit as
p − q = ν/L :

Lµ1(γ/L)→ sup
g ,J,v

(
γJ −

∫ 1

0

[
(J+v(g(x)−ρ)−νσ(g(x)))2

2σ(g(x)) + g ′(x)2

8σ(g(x))

]
dx
)

Research of an optimal profile g(x), with an optimal velocity v

1 g(x) : real density profile
2 v : macroscopic velocity
3 J : current
4 σ(g) = g(1− g) : conductivity x

g(x)

v
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)

Research of an optimal profile g(x), with an optimal velocity v
g(x)

ρ

γ > γc , flat
µ̃1(γ) = ρ(1− ρ)(γ2 + γν)

g(x)

γ < γc , traveling wave
µ̃1(γ) = elliptic int.

Phase transition and classical integrability for the macroscopic limit
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Bethe Ansatz approach (microscopic)
T − Q approach (after change of variable zk = f (uk)):

TL,N(Z)QN(Z) = esLpN
(

Z
√

p
q

+ 1
)L

QN

(
q
p

Z
)

+ qN
(

Z
√

q
p

+ 1
)L

QN

(
p
q

Z
)
(1)

As usual, resolvent:

W (Z ) =
1
L

N∑
i=1

1
Z − uk

hydro. lim.−−−−−−→
∫

Γ

ρ(u)du
Z − u

= w(Z )

satisfying for the ground state:

t(z) = cosh
(
γ

2
+ ρν +

νZ
1 + Z

− 2νZw(Z )

)
Not a quadratic equation in w(Z )
but use of the Riemann surface of cosh−1 !
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Properties of the cut of the resolvent

t(Z) = cosh Φ(Z)

Φ(Z) =
γ

2
+ ρν +

νZ
1 + Z

− 2νZw(Z)

ρ = lim
Z→∞

Zw(Z)

0 = γρ + 2ρν + 2νw(−1)

+conditions :

1 t(Z) holomorphic on C− {−1}
2 Φ(Z) has the same cuts as w(Z)

Along a cut Γ:

∆(±)Φ(Z ) = lim
ε→0,ε⊥Γ

(
Φ(Z + ε)± Φ(Z − ε)

)
and necessarily :

∆(+)Φ = 2iπm, m ∈ Z or ∆(−)Φ = 2iπn, n ∈ Z∗
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Choice of ∆(±), phase transition

1 Gaussian phase: one cut with ∆(+) = 0
'semi-circle/Marchenko-Pastor density on Γ and one recovers

µ̃gauss1 (γ) = ρ(1− ρ)(γ2 + γν) (2)

2 transition : one cut with ∆(+) = 0 and one point with ∆(−) = 2iπ

3 travelling wave phase: one cut Γ = Γ1 ∪ Γ2 ∪ Γ3
Γ1 : ∆(+)Φ = 0
Γ2 : ∆(−)Φ = 2iπ
Γ3 : ∆(+)Φ = 0

µ̃trav1 (γ) = same elliptic integrals (3)
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Bethe roots profile

x

ρΓ(x)

a0 a1

x 7→ 1/x

Gaussian phase

x

ρΓ(x)

a0 a1

x 7→ 1/x

b0 b1
Traveling wave phase
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Conclusion

1 ASEP in hydro. regime (nice theory), XXZ with non-standard scaling
couplings

2 non-quadratic equation for the resolvent: other Riemann surfaces and
other types of cuts (piecewise structure)

3 relation with classical hydrodynamical integrable theory

Open questions :
1 relation between Bethe root density on the cut and the real traveling

wave profile (spatial correlations?)

2 other models/generality ?
3 finite size effects at the transition ?
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