RAQIS'10, Annecy, France

A generalization of Shapiro-Shapiro conjecture

E. Mukhin *
(Indiana University Purdue University Indianapolis)

* joint with V. Tarasov (IUPUI), A. Varchenko (UNC)

Theorem 0. Let $p(x) \in \mathbb{C}[x]$ be a polynomial with complex coefficients. If all roots of $p(x)$ are real then there exists a non-zero constant $a \in \mathbb{C}^{*}$ so that the polynomial $c p(x)$ has real coefficients.

Proof. By the fundamental theorem of algebra

$$
p(x)=c \prod_{i=1}^{n}\left(x-z_{i}\right)
$$

Take $a=1 / c$.

Theorem 1 (A. Eremenko, A. Gabrielov, 2002). Let $G(z)$ be a rational function with complex coefficients. Assume that all critical points of $G(z)$ are real. Then there exists a linear fractional transformation ϕ such that $\phi(G(z))$ is a rational function with real coefficients.

Let $G(z)=p(z) / q(z)$, where $p(z), q(z) \in \mathbb{C}[z]$.
Then if all roots of the polynomial

$$
p^{\prime}(x) q(x)-p(x) q^{\prime}(x)
$$

are real, then there exist complex numbers a, b, c, d such that $a d-$ $b c \neq 0$ and polynomials

$$
a p(x)+b q(x), \quad c p(x)+d q(x)
$$

have real coefficients.
In the theorem $\phi(z)=(a z+b) /(c z+d)$.

Theorem 2 (MTV, 2005). Let $p_{1}(x), \ldots, p_{N}(x) \in \mathbb{C}[x]$ be polynomials with complex coefficients. Assume that all roots of the polynomial $\operatorname{Wr}\left(p_{1}, \ldots, p_{N}\right)$ are real. Then the complex vector space

$$
\operatorname{span}\left\{p_{1}(x), \ldots, p_{N}(x)\right\} \subset \mathbb{C}[x]
$$

has a basis consisting of polynomials with real coefficients.
Here the Wronskian is

$$
\operatorname{Wr}\left(p_{1}(x), \ldots, p_{N}(x)\right)=\operatorname{det}\left(p_{i}^{(j-1)}\right)_{i, j=1, \ldots, N} .
$$

Theorem 3 (MTV, 2007). Let $p_{1}(x), \ldots, p_{N}(x) \in \mathbb{C}[x]$ be polynomials with complex coefficients. Let $\lambda_{1}, \ldots, \lambda_{N}$ be real numbers. Assume that all roots of the quasi-exponential function $\mathrm{Wr}\left(p_{1} e^{\lambda_{1} x}, \ldots, p_{N} e^{\lambda_{N} x}\right)$ are real. Then the complex vector space

$$
\operatorname{span}\left\{p_{1}(x) e^{\lambda_{1} x}, \ldots, p_{N}(x) e^{\lambda_{N} x}\right\}
$$

has a basis consisting of quasi-exponentials with real coefficients.

Theorem 3 has the following curious reformulation.

Theorem 3'. If the numbers $\lambda_{1}, \ldots, \lambda_{N}$ are real and distinct, and all eigenvalues of the matrix

$$
\left(\begin{array}{ccccc}
a_{1} & \frac{1}{\lambda_{2}-\lambda_{1}} & \frac{1}{\lambda_{3}-\lambda_{1}} & \cdots & \frac{1}{\lambda_{N}-\lambda_{1}} \\
\frac{1}{\lambda_{1}-\lambda_{2}} & a_{2} & \frac{1}{\lambda_{3}-\lambda_{2}} & \cdots & \frac{1}{\lambda_{N}-\lambda_{2}} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\frac{1}{\lambda_{1}-\lambda_{N}} & \frac{1}{\lambda_{2}-\lambda_{N}} & \frac{1}{\lambda_{3}-\lambda_{N}} & \cdots & a_{N}
\end{array}\right)
$$

are real then the numbers a_{1}, \ldots, a_{N} are real.

Theorem 2 corresponds to the statement that the nilpotent matrices of that form has real diagonal elements.

This reformulation is related to properties of Calogero-Moser spaces. It also implies a criterion for the reality of irreducible representations of Cherednik algebras, (E. Horozov, M. Yakimov).

Theorem 4 (MTV, 2007). Let $p_{1}(x), \ldots, p_{N}(x) \in \mathbb{C}[x]$ be polynomials with complex coefficients. Let Q_{1}, \ldots, Q_{N} and h be non-zero real numbers. Assume that all roots z_{1}, \ldots, z_{n} of the quasi-exponential function $\mathrm{Wr}_{h}^{d}\left(p_{1} Q_{1}^{x}, \ldots, p_{N} Q_{N}^{x}\right)$ are real and that $\left|z_{i}-z_{j}\right| \geqslant|2 h|$ for all $i \neq j$. Then the complex vector space

$$
\operatorname{span}\left\{p_{1}(x) Q_{1}^{x}, \ldots, p_{N}(x) Q_{N}^{x}\right\}
$$

has a basis consisting of quasi-exponentials with real coefficients.

The discrete Wronskian $\mathrm{Wr}_{h}^{d}\left(f_{1}, \ldots, f_{N}\right)$ of functions $f_{1}(x), \ldots, f_{N}(x)$ (aka the Casorati determinant) is the determinant
$\operatorname{det}\left(\begin{array}{cccc}f_{1}(x-h(N-1)) & f_{1}(x-h(N-3)) & \ldots & f_{1}(x+h(N-1)) \\ f_{2}(x-h(N-1)) & f_{2}(x-h(N-3)) & \ldots & f_{2}(x+h(N-1)) \\ \ldots & \ldots & \ldots & \ldots \\ f_{N}(x-h(N-1)) & f_{N}(x-h(N-3)) & \ldots & f_{N}(x+h(N-1))\end{array}\right)$.
The case $N=2$ was first treated by A. Eremenko, A. Gabrielov, M. Shapiro, and A. Vainshtein (2004).

Theorem 4 also has a matrix reformulation.

Theorem 4'. Let Q_{i} be real disctinct numbers. Assume that the eigenvalues z_{i} of the matrix

$$
\left(\begin{array}{ccccc}
a_{1} & \frac{Q_{1}}{Q_{2}-Q_{1}} & \frac{Q_{1}}{Q_{3}-Q_{1}} & \cdots & \frac{Q_{1}}{Q_{N}-Q_{1}} \\
\frac{Q_{2}}{Q_{1}-Q_{2}} & a_{2} & \frac{Q_{2}}{Q_{3}-Q_{2}} & \cdots & \frac{Q_{2}-Q_{2}}{Q_{N}-} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\frac{Q_{N}}{Q_{1}-Q_{N}} & \frac{Q_{N}}{Q_{2}-Q_{N}} & \frac{Q_{N}}{Q_{3}-Q_{N}} & \cdots & a_{N}
\end{array}\right) .
$$

are all real and differ at least by $1,\left|z_{i}-z_{j}\right| \geqslant 1$ for all $i \neq j$. Then the diagonal entries a_{i} are all real.

The main result of this presentation is the following theorem.

Theorem 5. Let $p_{1}(x), \ldots, p_{N}(x) \in \mathbb{C}[x]$ be polynomials with complex coefficients. Let $\tilde{Q}_{1}, \ldots, \tilde{Q}_{N}$ be non-zero real numbers. Let h be a purely imaginery number. Assume that the quasiexponential function $\operatorname{Wr}_{h}^{d}\left(p_{1} \tilde{Q}_{1}^{x}, \ldots, p_{N} \tilde{Q}_{N}^{x}\right)$ has real coefficients and that all complex zeroes of this function have imaginery part at most $|h|$. Then the complex vector space

$$
\operatorname{span}\left\{p_{1}(x) \tilde{Q}_{1}^{x}, \ldots, p_{N}(x) \tilde{Q}_{N}^{x}\right\}
$$

has a basis consisting of quasi-exponentials with real coefficients.

Taking the limit $h \rightarrow 0$, one can deduce differential Theorems 2 and 3 from either one of the difference Theorems 4 or 5 .

The matrix reformulation of Theorem 5 has the following form.

Theorem 5'. Let $\lambda_{1}, \ldots, \lambda_{N}$ be distinct real numbers. Assume that the characteristic polynomial of the matrix

$$
\left(\begin{array}{ccccc}
a_{1} & \frac{1}{\sin \left(\lambda_{1}-\lambda_{2}\right)} & \frac{1}{\sin \left(\lambda_{1}-\lambda_{3}\right)} & \cdots & \frac{1}{\sin \left(\lambda_{1}-\lambda_{N}\right)} \\
\frac{1}{\sin \left(\lambda_{2}-\lambda_{1}\right)} & a_{2} & \frac{1}{\sin \left(\lambda_{2}-\lambda_{3}\right)} & \cdots & \frac{1}{\sin \left(\lambda_{2}-\lambda_{N}\right)} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{1}{\sin \left(\lambda_{N}-\lambda_{1}\right)} & \frac{1}{\sin \left(\lambda_{N}-\lambda_{2}\right)} & \frac{1}{\sin \left(\lambda_{N}-\lambda_{3}\right)} & \cdots & a_{N}
\end{array}\right)
$$

has real coefficients. Assume that all eigenvalues have imaginery part at most 1 . Then the numbers a_{1}, \ldots, a_{N} are real.

THE PROOF via BETHE ANSATZ

Theorem 2

$\mathfrak{s l}_{N}$ Gaudin model
Theorem $3 \Longleftrightarrow$ quasi-periodic $\mathfrak{s l}_{N}$ Gaudin model
Theorems 4 and $5 \Longleftrightarrow$ Non-homogeneous $\mathfrak{s l}_{N}$ XXX model

Spaces of quasi-exponentials $\Longleftrightarrow \quad$ Bethe vectors
Coeff. of diff. operators \Longleftrightarrow Eigenvalues of transfer matrices Spaces are real \Longleftrightarrow Transfer matrices are Hermitian

Generic situation \Longleftrightarrow Tensor products of vector representations

THE XXX MODEL

Yangian is the algebra generated by elements of $N \times N$ matrix $T(x)$ with relations

$$
R_{(12)}(x-y) T_{(13)}(x) T_{(23)}(y)=T_{(23)}(y) T_{(13)}(x) R_{(12)}(x-y),
$$

where $R(x)=x+P$.

Let $Q=\operatorname{diag}\left(Q_{1}, \ldots, Q_{N}\right)$ be the diagonal matrix and set

$$
\mathcal{D}_{Q}=\operatorname{rdet}\left(1-Q T(x) e^{-\partial}\right)
$$

Then
$\mathcal{D}_{\boldsymbol{Q}}=1-B_{1, \boldsymbol{Q}}(x) e^{-\partial}+B_{2, \boldsymbol{Q}}(x) e^{-2 \partial}-\cdots+(-1)^{N} B_{N, \boldsymbol{Q}}(x) e^{-N \partial}$, where $B_{i, \boldsymbol{Q}}(x)$ are series in x^{-1} with coefficients in $Y\left(\mathfrak{g l}_{N}\right)$. The series $B_{i}(x)$ are commuting series called transfer-matrices.
$T_{i j}(u)$ acts on $V(z)=\mathbb{C}^{N}=\left\langle v_{i}\right\rangle_{i=1}^{N}$ by series $\delta_{i j}+E_{j i} /(x-z)$.

XXX problem: diagonalize $B_{i, \boldsymbol{Q}}(x)$ on $V\left(z_{1}\right) \otimes \cdots \otimes V\left(z_{n}\right)$.

THE SYMMETRIES OF TRANSFER MATRICES

The form on $V\left(z_{1}\right) \otimes \cdots \otimes V\left(z_{n}\right)$ is given by

$$
\left\langle v_{a_{1}} \otimes \cdots \otimes v_{a_{n}}, v_{b_{1}} \otimes \cdots \otimes v_{b_{n}}\right\rangle=\prod_{i=1}^{n} \delta_{a_{i} b_{i}} .
$$

It is a sesquilinear, positive-definite form.

Lemma 6. For $j=0, \ldots, N$, and $v, w \in \boldsymbol{W}(\boldsymbol{z})$,

$$
\left\langle B_{j, \boldsymbol{Q}, \boldsymbol{z}}(x) v, w\right\rangle=b_{\boldsymbol{Q}, \boldsymbol{z}}(x)\left\langle v, B_{N-j, \bar{Q}^{-1},-\bar{z}}(-\bar{x}-1) w\right\rangle,
$$

where

$$
b_{Q, z}(x)=(-1)^{N} \prod_{j=1}^{N} Q_{j} \prod_{i=1}^{n} \frac{x-z_{i}+1}{x-z_{i}} .
$$

Here $B_{j, \boldsymbol{Q}, \boldsymbol{z}}(x) \in \operatorname{End}\left(C^{N}\right)^{\otimes n}$ are the images of $B_{j, \boldsymbol{Q}}(x)$ acting in $V\left(z_{1}\right) \otimes \cdots \otimes V\left(z_{n}\right)$.

Corollary 7. If $Q_{i} \bar{Q}_{i}=1$ for $i=1, \ldots, N$,
$-\bar{z}_{2 j-1}=z_{2 j} \quad$ for $j=1, \ldots, k$, and $\quad-\bar{z}_{j}=z_{j}$ for $j>2 k$, then for $j=0, \ldots, N$,

$$
\left(B_{j, \boldsymbol{Q}, \boldsymbol{z}}(x)\left(b_{\boldsymbol{Q}, \boldsymbol{z}}(x)\right)^{-1}\right)^{*}=B_{N-j, \boldsymbol{Q}, \boldsymbol{z}}(-\bar{x}-1)
$$

with respect to the modified form $\langle\cdot, \cdot\rangle_{k}$ given by

$$
\langle v, w\rangle_{k}=\left\langle v, \prod_{i=1}^{k} R_{(2 i-1,2 i)}^{\vee}\left(z_{2 i-1}-z_{2 i}\right) w\right\rangle
$$

Here $R^{\vee}(x)=P R(x)=P x+1$.

The modified form is positive-definite if $\operatorname{Re} z_{i}<1 / 2$. Therefore the eigenvalues of $B_{j, \boldsymbol{Q}, \boldsymbol{z}}(x)\left(b_{\boldsymbol{Q}, \boldsymbol{z}}(x)\right)^{-1}$ and $B_{N-j, \boldsymbol{Q}, \boldsymbol{z}}(-\bar{x}-1)$ are complex conjugated to each other on each eigenvector.

The theorem follows.

