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Theorem 0. Let p(x) € Clx] be a polynomial with complex
coefficients. If all roots of p(x) are real then there exists a

non-zero constant a € C* so that the polynomial cp(x) has real
coefficients.

Proof. By the fundamental theorem of algebra

n

p(x) = CH(CU — ).

1=1

Take a = 1/c. ]
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Theorem 1 (A. Eremenko, A. Gabrielov, 2002). Let G(z) be a
rational function with complex coefficients. Assume that all
critical points of G(z) are real. Then there exists a linear frac-
tional transformation ¢ such that ¢(G(z)) is a rational func-

tion with real coefficients.

Let G(z) = p(z)/q(z), where p(z), q(2) € Clz].
Then if all roots of the polynomial

p(x)q(z) — p(z)q (v)

are real, then there exist complex numbers a, b, ¢, d such that ad —

bc # 0 and polynomials

ap(r) +bg(x),  ep(z)+dq(z)

have real coefhicients.
In the theorem ¢(z) = (az +b)/(cz + d).
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Theorem 2 (MTV, 2005). Let p1(x),...,pn(x) € Clz] be poly-
nomials with complex coefficients. Assume that all roots of the

polynomial Wr(py,...,pn) are real. Then the complex vector
space

span{pi(z), ..., pn(z)} C Cla]

has a basis consisting of polynomaials with real coefficients.

Here the Wronskian is

Wl”(p1(ﬂf), . 7PN(35)) = det(pgj_l))i,sz...,N-

Theorem 3 (MTV, 2007). Let p1(x),...,pn(x) € Clz] be poly-
nomials with complex coefficients. Let A1, ..., Ay be real num-
bers. Assume that all roots of the quasi-exponential function

Wr(peM?, ..., pyeNT) are real. Then the complex vector space

span{py(x)eM”, ... py(x)e"}

has a basis consisting of quasi-exponentials with real coeffi-

cients.



Theorem 3 has the following curious reformulation.

Theorem 3°. If the numbers A1, ..., Ay are real and distinct,

and all eigenvalues of the matrix
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are real then the numbers aq,...,ay are real.

Theorem 2 corresponds to the statement that the nilpotent ma-

trices of that form has real diagonal elements.

This reformulation is related to properties of Calogero-Moser
spaces. It also implies a criterion for the reality of irreducible

representations of Cherednik algebras, (E. Horozov, M. Yakimov).
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Theorem 4 (MTV, 2007). Let p1(x),...,pn(x) € Clz] be poly-
nomials with complex coefficients. Let Q)1,...,QxN and h be
non-zero real numbers. Assume that all roots z1,...,z, of the
quasi-exponential function Wr%(plQ”f , ..., pNQ%) are real and
that |z — zj| = |2h| for all i # j. Then the complex vector
space

span{p1(2)Q7, ..., pn(7)QN}

has a basis consisting of quasi-exponentials with real coeffi-

cients.

The discrete Wronskian Wi (fy, ..., fv) of functions fi(z), ..., fy(z)
(aka the Casorati determinant) is the determinant

( filz =h(N =1)) filz —h(N=3)) ... filz+h(N -1)) \

o | PE— N =1) Sz =h(N=3) ... flz+h(N=1)

\ /n(@—h(N=1)) fu(z—h(N=3) ... fy(z+h(N-1)) )

The case N = 2 was first treated by A. Eremenko, A. Gabrielov,
M. Shapiro, and A. Vainshtein (2004).



Theorem 4 also has a matrix reformulation.

Theorem 4’. Let (); be real disctinct numbers. Assume that

the eigenvalues z; of the matrix

( 4 Q1 Q1 Q1 \
L Q- QsQQ1 QNQ—QQl

QT
Q1 —Q, P Qs—Qy T Qn—Qy

QN QN QN o
\Ql_QN Q—Qv Q—Qn )
are all real and differ at least by 1, |2; —z;| > 1 for all i # j. Then

the diagonal entries a; are all real.



The main result of this presentation is the following theorem.

Theorem 5. Let pi(z),...,pn(x) € Clz] be polynomials with

complex coefficients. Let Q1,...,Qx be non-zero real numbers.
Let h be a purely imaginery number. Assume that the quasi-
exponential function Wr%(plc?”f, e ,pNQ}”V) has real coefficients

and that all complex zeroes of this function have imaginery part

at most |h|. Then the complex vector space

span{pi(z)Q7, ..., pn(z)QN}

has a basis consisting of quasi-exponentials with real coeffi-

cients.

Taking the limit A — 0, one can deduce differential Theorems 2

and 3 from either one of the difference Theorems 4 or 5.
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The matrix reformulation of Theorem 5 has the following form.

Theorem 5°. Let \q,.

.., Ay be distinct real numbers. As-

sume that the characteristic polynomial of the matrix

(

inery part at most 1. Then the numbers aq, ..

a1
1

Siﬂ()\g — )\1)

1

1

1 1
Siﬂ()\l — )\2) Siﬂ()\l — )\3)
1
2 Siﬂ()\g — )\3)
1 1

sin(A; — Aw)
1

\ sin(Ay — A1) sin(Ay — Ag) sin(Ay — A3)

has real coefficients. Assume that all eigenvalues have tmag-

sin(A2 — Aw)

an

.,ay are real.

)

/
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THE PROOF via BETHE ANSATZ

Theorem 2 <— sy Gaudin model
Theorem 3 <= quasi-periodic sly Gaudin model

Theorems 4 and 5 <= Non-homogeneous sly XXX model

Spaces of quasi-exponentials <= Bethe vectors
Coeft. of diff. operators <= Eigenvalues of transfer matrices

Spaces are real <= Transfer matrices are Hermitian

Generic situation <= Tensor products of vector representations
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THE XXX MODEL

Yangian is the algebra generated by elements of N X N matrix
T'(z) with relations

Ry (x — y) T3y (2) T3y (y) = Ties) () T3y (2) Rwzy (z — y),

where R(x) =z + P.

Let @Q = diag(Q, . .., Qn) be the diagonal matrix and set
Do = rdet(1 — QT (z)e™?).
Then
Do =1-Big(r)e ™’ +Brglw)e™ =+ (=1)"Byg(z)e ™",

where B; g(z) are series in ' with coefficients in Y (gly). The

series B;(x) are commuting series called transfer-matrices.
T;;(u) acts on V(z) = CV = (v;), by series §;; + E;;/(x — 2).

XXX problem: diagonalize B; g(x) on V(z1) ® - - - @ V (zy,).
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THE SYMMETRIES OF TRANSFER MATRICES

The form on V(21) ® - - - ® V(z,) is given by
</UCL1 ® . ® Uan7 Ubl ® ’Ubn H 5@1

[t is a sesquilinear, positive-definite form.

Lemma 6. For j =0,..., N, and v,w € W (z),

<Bj>Q>Z($)U7 w> - bQ%(x) <U? BN_%Q_l,_g(_f - 1)w>7

where

bo.() = NH@JHQC;?;

1=

Here Bjg..(z) € End(C™)®" are the images of B, g(z) acting
nViz)®- - @V(z,).
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Corollary 7. If Q;Q;, =1 fori=1,...,N,
—Zoj1 =2 forj=1,...k, and —Z;=2z; forj > 2k,
then for 7 =0,..., N,

(Bjx(2)(bgx(7)) )" = By—jqa(—7 — 1)

with respect to the modified form (-, )i given by

k
(v, w)e = (v, | [ Rlo1.20(221 — 220)w).

1=1

Here RY(x) = PR(z) = Px + 1.

The modified form is positive-definite if Re z; < 1/2. Therefore
the eigenvalues of Bj g »(z)(bg.(x)) ' and By_;g.(—% — 1) are

complex conjugated to each other on each eigenvector.

The theorem follows.



