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Theorem 0. Let p(x) ∈ C[x] be a polynomial with complex

coefficients. If all roots of p(x) are real then there exists a

non-zero constant a ∈ C
∗ so that the polynomial cp(x) has real

coefficients.

Proof. By the fundamental theorem of algebra

p(x) = c
n

∏

i=1

(x − zi).

Take a = 1/c. �
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Theorem 1 (A. Eremenko, A. Gabrielov, 2002). Let G(z) be a

rational function with complex coefficients. Assume that all

critical points of G(z) are real. Then there exists a linear frac-

tional transformation φ such that φ(G(z)) is a rational func-

tion with real coefficients.

Let G(z) = p(z)/q(z), where p(z), q(z) ∈ C[z].

Then if all roots of the polynomial

p′(x)q(x) − p(x)q′(x)

are real, then there exist complex numbers a, b, c, d such that ad−

bc 6= 0 and polynomials

ap(x) + bq(x), cp(x) + dq(x)

have real coefficients.

In the theorem φ(z) = (az + b)/(cz + d).
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Theorem 2 (MTV, 2005). Let p1(x), . . . , pN(x) ∈ C[x] be poly-

nomials with complex coefficients. Assume that all roots of the

polynomial Wr(p1, . . . , pN) are real. Then the complex vector

space

span{p1(x), . . . , pN(x)} ⊂ C[x]

has a basis consisting of polynomials with real coefficients.

Here the Wronskian is

Wr(p1(x), . . . , pN(x)) = det(p
(j−1)
i )i,j=1,...,N .

Theorem 3 (MTV, 2007). Let p1(x), . . . , pN(x) ∈ C[x] be poly-

nomials with complex coefficients. Let λ1, . . . , λN be real num-

bers. Assume that all roots of the quasi-exponential function

Wr(p1e
λ1x, . . . , pNeλNx) are real. Then the complex vector space

span{p1(x)eλ1x, . . . , pN(x)eλNx}

has a basis consisting of quasi-exponentials with real coeffi-

cients.
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Theorem 3 has the following curious reformulation.

Theorem 3’. If the numbers λ1, . . . , λN are real and distinct,

and all eigenvalues of the matrix




















a1
1

λ2 − λ1

1

λ3 − λ1
. . .

1

λN − λ1
1

λ1 − λ2
a2

1

λ3 − λ2
. . .

1

λN − λ2

. . . . . . . . . . . . . . .

1

λ1 − λN

1

λ2 − λN

1

λ3 − λN
. . . aN





















are real then the numbers a1, . . . , aN are real.

Theorem 2 corresponds to the statement that the nilpotent ma-

trices of that form has real diagonal elements.

This reformulation is related to properties of Calogero-Moser

spaces. It also implies a criterion for the reality of irreducible

representations of Cherednik algebras, (E. Horozov, M. Yakimov).
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Theorem 4 (MTV, 2007). Let p1(x), . . . , pN(x) ∈ C[x] be poly-

nomials with complex coefficients. Let Q1, . . . , QN and h be

non-zero real numbers. Assume that all roots z1, . . . , zn of the

quasi-exponential function Wrd
h(p1Q

x
1, . . . , pNQx

N) are real and

that |zi − zj| > |2h| for all i 6= j. Then the complex vector

space

span{p1(x)Qx
1, . . . , pN(x)Qx

N}

has a basis consisting of quasi-exponentials with real coeffi-

cients.

The discrete Wronskian Wrdh(f1, . . . , fN) of functions f1(x), . . . , fN(x)

(aka the Casorati determinant) is the determinant

det













f1(x − h(N − 1)) f1(x − h(N − 3)) . . . f1(x + h(N − 1))

f2(x − h(N − 1)) f2(x − h(N − 3)) . . . f2(x + h(N − 1))

. . . . . . . . . . . .

fN(x − h(N − 1)) fN(x − h(N − 3)) . . . fN(x + h(N − 1))













.

The case N = 2 was first treated by A. Eremenko, A. Gabrielov,

M. Shapiro, and A. Vainshtein (2004).
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Theorem 4 also has a matrix reformulation.

Theorem 4’. Let Qi be real disctinct numbers. Assume that

the eigenvalues zi of the matrix




















a1
Q1

Q2 − Q1

Q1

Q3 − Q1
. . .

Q1

QN − Q1
Q2

Q1 − Q2
a2

Q2

Q3 − Q2
. . .

Q2

QN − Q2

. . . . . . . . . . . . . . .

QN

Q1 − QN

QN

Q2 − QN

QN

Q3 − QN
. . . aN





















.

are all real and differ at least by 1, |zi−zj| > 1 for all i 6= j. Then

the diagonal entries ai are all real.
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The main result of this presentation is the following theorem.

Theorem 5. Let p1(x), . . . , pN(x) ∈ C[x] be polynomials with

complex coefficients. Let Q̃1, . . . , Q̃N be non-zero real numbers.

Let h be a purely imaginery number. Assume that the quasi-

exponential function Wrd
h(p1Q̃

x
1, . . . , pNQ̃x

N) has real coefficients

and that all complex zeroes of this function have imaginery part

at most |h|. Then the complex vector space

span{p1(x)Q̃x
1, . . . , pN(x)Q̃x

N}

has a basis consisting of quasi-exponentials with real coeffi-

cients.

Taking the limit h → 0, one can deduce differential Theorems 2

and 3 from either one of the difference Theorems 4 or 5.
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The matrix reformulation of Theorem 5 has the following form.

Theorem 5’. Let λ1, . . . , λN be distinct real numbers. As-

sume that the characteristic polynomial of the matrix




















a1
1

sin(λ1 − λ2)

1

sin(λ1 − λ3)
. . .

1

sin(λ1 − λN)
1

sin(λ2 − λ1)
a2

1

sin(λ2 − λ3)
. . .

1

sin(λ2 − λN)

. . . . . . . . . . . . . . .

1

sin(λN − λ1)

1

sin(λN − λ2)

1

sin(λN − λ3)
. . . aN





















.

has real coefficients. Assume that all eigenvalues have imag-

inery part at most 1. Then the numbers a1, . . . , aN are real.
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THE PROOF via BETHE ANSATZ

Theorem 2 ⇐⇒ slN Gaudin model

Theorem 3 ⇐⇒ quasi-periodic slN Gaudin model

Theorems 4 and 5 ⇐⇒ Non-homogeneous slN XXX model

Spaces of quasi-exponentials ⇐⇒ Bethe vectors

Coeff. of diff. operators ⇐⇒ Eigenvalues of transfer matrices

Spaces are real ⇐⇒ Transfer matrices are Hermitian

Generic situation ⇐⇒ Tensor products of vector representations
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THE XXX MODEL

Yangian is the algebra generated by elements of N × N matrix

T (x) with relations

R(12)(x − y)T(13)(x)T(23)(y) = T(23)(y)T(13)(x)R(12)(x − y),

where R(x) = x + P .

Let Q = diag(Q1, . . . , QN) be the diagonal matrix and set

DQ = rdet(1 − QT (x)e−∂).

Then

DQ = 1−B1,Q(x)e−∂ +B2,Q(x)e−2∂ −· · ·+(−1)NBN,Q(x)e−N∂,

where Bi,Q(x) are series in x−1 with coefficients in Y (glN). The

series Bi(x) are commuting series called transfer-matrices.

Tij(u) acts on V (z) = C
N = 〈vi〉

N
i=1 by series δij + Eji/(x − z).

XXX problem: diagonalize Bi,Q(x) on V (z1) ⊗ · · · ⊗ V (zn).
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THE SYMMETRIES OF TRANSFER MATRICES

The form on V (z1) ⊗ · · · ⊗ V (zn) is given by

〈va1
⊗ · · · ⊗ van

, vb1 ⊗ · · · ⊗ vbn〉 =
n

∏

i=1

δaibi.

It is a sesquilinear, positive-definite form.

Lemma 6. For j = 0, . . . , N , and v, w ∈ W (z),

〈Bj,Q,z(x)v, w〉 = bQ,z(x)〈v, B
N−j,Q̄

−1
,−z̄

(−x̄ − 1)w〉,

where

bQ,z(x) = (−1)N
N
∏

j=1

Qj

n
∏

i=1

x − zi + 1

x − zi
.

Here Bj,Q,z(x) ∈ End(CN)⊗n are the images of Bj,Q(x) acting

in V (z1) ⊗ · · · ⊗ V (zn).
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Corollary 7. If QiQ̄i = 1 for i = 1, . . . , N ,

−z̄2j−1 = z2j for j = 1, . . . , k, and −z̄j = zj for j > 2k,

then for j = 0, . . . , N ,

(Bj,Q,z(x)(bQ,z(x))−1)∗ = BN−j,Q,z(−x̄ − 1)

with respect to the modified form 〈·, ·〉k given by

〈v, w〉k = 〈v,
k

∏

i=1

R∨
(2i−1,2i)(z2i−1 − z2i)w〉.

Here R∨(x) = PR(x) = Px + 1.

The modified form is positive-definite if Re zi < 1/2. Therefore

the eigenvalues of Bj,Q,z(x)(bQ,z(x))−1 and BN−j,Q,z(−x̄− 1) are

complex conjugated to each other on each eigenvector.

The theorem follows.


