Symmetries of spin systems and Birman-Wenzl-Murakami algebra

Nenad Manojlović
Grupo de Física Matemática da Universidade de Lisboa
Av. Prof. Gama Pinto 2, PT-1649-003 Lisboa, Portugal
and
Departamento de Matemática, F. C. T., Universidade do Algarve
Campus de Gambelas, PT-8005-139 Faro, Portugal

nmanoj@ualg.pt

Abstract

W consider integrable open spin chains related to the quantum affine algebras $\mathcal{U}_{q}(()(3))$ and $\mathcal{U}_{q}\left(A_{2}^{(2)}\right)$. We discuss the symmetry algebras of these chains with the local \mathbb{C}^{3} space related to the Birman-Wenzl-Murakami algebra. The symmetry algebra and the Birman-Wenzl-Murakami algebra centralize each other in the representation
space $\mathcal{H}=\otimes^{N} \mathbb{C}^{3}$ of the system, and this determines the structure of the spin system spectra Consequently the corresponding multiplet struc ture of the energy spectra is obtained.
In collaboration with Petr P. Kulish and Zoltán Nagy.

1. Introduction

$\int \mathrm{N}$ the case of the isotropic Heisenberg chain of spin $1 / 2$ the symme\mathbf{I} try algebra is $s l_{2}$, the Hamiltonian is an element of the group algebra $\mathbb{C}\left[\mathfrak{S}_{N}\right]$ of the symmetric group \mathfrak{S}_{N}. The RLL-relations define an infinite dimensional quantum algebra - the Yangian $\mathcal{Y}\left(s l_{2}\right)$. The actions of $s l_{2}$
and \mathfrak{S}_{N} on the state of space $\mathcal{H}=\otimes_{1}^{N} \mathbb{C}^{2}$ are mutually commuting (the and \mathfrak{S}_{N} on the state of space $\mathcal{H}=\otimes_{1}^{N} \mathbb{C}^{2}$ are mutually commuting (the
Schur-Weyl duality). Here we consider a generalization to the case of Schur-Weyl duality). Here we consider a generalization to the case of
the Birman-Wenzl-Murakami (BMW) algebra [1] and its specific reprethe Birman-Wenzl-Murakami (BMW) algebra [1] and its specific repre-
sentations in $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$ given by the spectral parameter dependent R matrices. These R -matrices correspond to different quantum affine algebras $\mathcal{U}_{q}(\widehat{o(3)}), \mathcal{U}_{q}\left(A_{2}^{(2)}\right), \mathcal{U}_{q}(\widehat{o s p(1 \mid 2)})$ and $\mathcal{U}_{q}\left(s l(1 \mid 2)^{(2)}\right)$. Although corresponding spin systems were analyzed in a variety of papers, we stress the connection of the open spin chains with the BMW algebra as a centralizer of the symmetry algebra and thus unveil the multiplet structure of the energy spectra of the corresponding Hamiltonians.
For the XXZ-model of spin 1 the appropriate dynamical symmetry algebra is $\mathcal{U}_{q}\left(\widehat{o(3))}\right.$ and its symmetry algebra is $\mathcal{U}_{q}(o(3))$ [2]. The correspond ing R-matrix was found in [3], see also [4].
The R-matrix of $\mathcal{U}_{q}\left(A_{2}^{(2)}\right)$ in $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$ was found in [5] and the correspond ing periodic spin chain was solved by algebraic Bethe ansatz in [6]. These two spectral parameter dependent R-matrices are the two ver sions of the Yang-Baxterization procedure for a given representation of the BMW algebra $W_{2}\left(q, \nu=q^{-2}\right)$ in $\mathbb{C}^{3} \otimes \mathbb{C}^{3}[7,8]$.
The two additional R -matrices related to the quantum affine super-algebras can be obtained by considering the BMW algebra $W_{2}\left(-q,-q^{-2}\right)$. In this case the BMW algebra is the centralizer of the $\mathcal{U}_{q}(\operatorname{osp}(1 \mid 2))$ action in the tensor product of its fundamental representation.

2. R-matrix of $X X Z$ spin-1chain

THE 9×9 R-matrix $R(\lambda, \eta)$ of the XXZ-chain of spin one satisfies the Yang-Baxter equation (YBE) in the space $\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$ and has the following properties:

- He reguarity condition at $\lambda=0 R(0, \eta)=$
- the untatary $R_{R_{2}(\lambda)} R_{2}(-\lambda)=\rho(\lambda) 1$
- the crossing symmety $R(\lambda)=(Q \otimes 1) R^{k}(-\lambda-\eta)(Q \otimes 1)$,

In the braid group form $\check{R}(\lambda, \eta)=\mathcal{P} R(\lambda, \eta)$, can be expressed as
$\check{R}(\lambda, \eta)=\frac{e^{\eta}}{4}\left(e^{2 \lambda}-1\right) \check{R}(\eta)+(\sinh \eta \sinh 2 \eta) \mathbb{1}+\frac{e^{-\eta}}{4}\left(e^{-2 \lambda}-1\right) \check{R}^{-1}(\eta)$.
The constant R-matrix $\check{R}^{ \pm 1}(\eta)=\lim _{\lambda \rightarrow \pm \infty}(4 \exp (\mp(2 \lambda+\eta)) \check{R}(\lambda, \eta))$ is a solution of the YBE in the braid group form $\check{R}_{12} \check{R}_{23} \check{R}_{12}=\breve{R}_{23} \check{R}_{12} \check{R}_{23}$, and has the spectral decomposition $\left(q=e^{2 \eta}\right) \check{R}(\eta)=q P_{5}(\eta)-\frac{1}{q} P_{3}(\eta)+\frac{1}{q^{2}} P_{1}(\eta)$. It is related to the quantum group $\mathcal{U}_{q}(o(3))$,
To establishing a relation with the BMW algebra, the projector $P_{1}(\eta)$ is related to the rank one matrix $\mathcal{E}(\eta)=\mu P_{1}(\eta)$, with $\mu=q+1+1 / q$. Then

$$
\begin{aligned}
\mathcal{E}^{2}(\eta) & =\mu \mathcal{E}(\eta), \\
\check{R}(\eta) \mathcal{E}(\eta) & =\mathcal{E}(\eta) \check{R}(\eta)=\frac{1}{q^{2}} \mathcal{E}(\eta), \\
\check{R}(\eta)-\check{R}^{-1}(\eta) & =\omega(q)(\mathbb{1}-\mathcal{E}(\eta)),
\end{aligned}
$$

where $\omega(q)=q-1 / q$. Thus $\check{R}, \check{R}^{-1}$ and \mathcal{E} provide a realization of the BMW algebra $W_{N}\left(q, 1 / q^{2}\right)$ in the space $\mathcal{H}=\otimes_{1}^{N} \mathbb{C}^{3}$.

3. Izergin-Korepin R-matrix

ThE Izergin-Korepin R-matrix $R(\lambda, \eta)$ satisfies the YBE and has the following properties:

- the $U(1)$ symmety $\left(h_{1}+h_{2}, R_{p z}(\lambda, \eta)=0\right.$
the reguaritiy condition at $\lambda=0=R(0, \eta)=$
-the unitarity $R_{L_{2}(\lambda)} R_{R_{2}(-\lambda)}(-\bar{p}(\lambda) 11$
- the crosing symmertr $R(x)=($ Con the matio Q is given by above.

In the braid group form this R-matrix can be expressed as
$\check{R}(\lambda, \eta)=\frac{e^{3 \eta}}{2}\left(1-e^{-\lambda}\right) \check{R}(\eta)-2(\cosh 3 \eta \sinh 2 \eta) \mathbb{I}-\frac{e^{-3 \eta}}{2}\left(1-e^{\lambda}\right) \check{R}^{-1}(\eta)$, where the constant R-matrix is defined ptrviously.

At the degeneration point $\lambda=4 \eta$ this R -matrix is proportional to the rank 3 projector $P_{3}(\eta)$ which is a q-analogue of the antisymmetrizer in $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$. One can further obtain the rank one antisymmetrizer in $\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$ as determinant q -det $L(\lambda)$ of operator valued L-matrix $L(\lambda)$ satisfying the RLL-relation

```
\(\check{R}_{12}(\lambda-\mu) L_{1}(\lambda) L_{2}(\mu)=L_{1}(\mu) L_{2}(\lambda) \check{R}_{12}(\lambda-\mu)\),
```

In this case, the quantum determinant is given by
$\mathrm{q}-\operatorname{det} L(\lambda) \simeq \check{R}_{12}(4 \eta, \eta) \check{R}_{23}(8 \eta, \eta) \check{R}_{12}(4 \eta, \eta) L_{1}(\lambda) L_{2}(\lambda-4 \eta) L_{3}(\lambda-8 \eta)$.

4. Birman-Wenzl-Murakami algebra $W_{N}(q, \nu)$

The defining relations of the BMW algebra $W_{N}(q, \nu)$, for the generators 1, $\sigma_{i}, \sigma_{i}^{-1}$ and $e_{i}, i=1, \ldots, N-1$, are
$-\sigma_{2}^{-1}=\omega(q)\left(1-e_{i}\right) \quad$ where $\omega(q)=q-1 / q$.
It can be shown that its dimension is $(2 N-1)!!$. Many useful relations follow from the definition above, for example $e_{i}{ }^{2}=\mu e_{i}$, with $\mu=\frac{(q-\nu)(\nu+1 / q)}{\nu \omega}$, and also a cubic relation $\left(\sigma_{i}-q\right)\left(\sigma_{i}+q^{-1}\right)\left(\sigma_{i}-\nu\right)=0$. pendent elements

$$
\sigma_{i}^{(\pm)}(u)=\frac{1}{\omega}\left(u^{-1} \sigma_{i}-u \sigma_{i}^{-1}\right)+\frac{\nu \pm q^{ \pm 1}}{u \nu \pm q^{ \pm 1} u^{-1}} e_{i} .
$$

They satisfy the YBE in the braid group form

$\sigma_{i}^{(\pm)}(u) \sigma_{i+1}^{(\pm)}(u v) \sigma_{i}^{(\pm)}(v)=\sigma_{i+1}^{(\pm)}(v) \sigma_{i}^{(\pm)}(u v) \sigma_{i+1}^{(\pm)}(u)$.

Their unitarity relation is $\sigma_{i}^{(\pm)}(u) \sigma_{i}^{(\pm)}\left(u^{-1}\right)=\left(1-\omega^{-2}\left(u-u^{-1}\right)^{2}\right)$. These elements are normalized so that $\sigma_{i}^{(\pm)}(\pm 1)= \pm 1$. We set $\nu=1 / q^{2}$ and find that $\sigma_{i}^{(-)}\left(e^{-\lambda}\right) \simeq \check{R}_{i, i+1}(\lambda, \eta)$ of $X X Z_{1}$ and $\sigma_{i}^{(+)}\left(e^{\lambda / 2}\right) \simeq \check{R}_{i, i+1}(\lambda, \eta)$ of zergin-Korepin.
The irreducible representations of the BMW algebra $W_{N}(q, \nu)$ are more complicated than the irreducible representations of the symmetric group \mathcal{S}_{N} or the Hecke algebra $\mathrm{H}_{N}(q)$, although they can be parameterzed by the Young diagrams.
The simplest, one-dimensional irreducible representations are defined by the symmetrizer and antisymmetrizer, respectively. The symmetrizer is given by
$\mathcal{S}_{N}=\frac{1}{[N] q_{1}} \sigma_{1}^{(-)}\left(q^{-1}\right) \sigma_{2}^{(-)}\left(q^{-2}\right) \cdots \sigma_{N-1}^{(-)}\left(q^{-(N-1)}\right) \mathcal{S}_{N-1}$
with $\mathcal{S}_{1}=1$ and $\mathcal{S}_{2}=\frac{1}{12} \sigma_{1}^{(-)}\left(q^{-1}\right)$. We use the standard notation for the q-factorial $[n]_{q}!\stackrel{\left[1 q_{q}\right.}{=}[n]_{q}[n-1]_{q} \cdots[2]_{q}[1]_{q}$ and the q-numbers $n_{q}=(q-q$
The elements $\mathcal{S}_{n}, n=1, \ldots, N$ are idempotents, i.e. $\mathcal{S}^{2}=\mathcal{S}_{n}$. In addition, the symmetrizer \mathcal{S}_{N} is also central
In the realization of the BMW algebra $W_{2}\left(q, q^{-2}\right)$ on $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$
$\sigma_{1}=\check{R}(\eta)=q P_{5}-q^{-1} P_{3}+q^{-2} P_{1}, \quad$ and $\quad e_{1}=\mu P_{1}=\left(q+1+q^{-1}\right) P_{1}$.
Thus $\mathcal{S}_{2} \propto \sigma_{1}^{(-)}\left(q^{-1}\right)=\left(q+q^{-1}\right) P_{5}, \quad$ and $\sigma_{1}^{ \pm 1} P_{5}=q^{ \pm 1} P_{5}, \quad e_{1} P_{5}=0$. Similarly, the antisymmetrizer of the $W_{N}(q, \nu)$ is given by
$\mathcal{A}_{N}=\frac{1}{[N]!} \sigma_{1}^{(+)}(q) \sigma_{2}^{(+)}\left(q^{2}\right) \cdots \sigma_{N-1}^{(+)}\left(q^{N-1}\right) \mathcal{A}_{N-1}$,
with $\mathcal{A}_{1}=1$ and $\mathcal{A}_{2}=\frac{1}{2 \mid \sigma_{1}} \sigma_{1}^{(+)}(q)$. The elements $\mathcal{A}_{n}, n=1, \ldots, N$ are idempotents and the antisymmetrizer \mathcal{A}_{N} is also central. Also

$$
\mathcal{A}_{3} \simeq \sigma_{1}^{(+)}(q) \sigma_{2}^{(+)}\left(q^{2}\right) \sigma_{1}^{(+)}(q)=\sigma_{2}^{(+)}(q) \sigma_{1}^{(+)}\left(q^{2}\right) \sigma_{2}^{(+)}(q)
$$

In the realization on $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$

$$
\sigma_{1}^{(+)}(q)=[2]_{q} P_{3}, \quad \text { and } \quad \sigma_{1}^{ \pm 1} P_{3}=-q^{\mp 1} P_{3}, \quad e_{1} P_{3}=0 .
$$

In the Izergin-Korepin realization (with $\left.\sigma_{+}^{(+)}\left(e^{\lambda / 2}\right) \simeq \check{R}_{i, i+1}(\lambda, \eta)\right)$ the antisymmetrizer \mathcal{A}_{3} has rank one, as it was already noticed
A straightforward calculation yields $\mathcal{A}_{4}=0$. Consequently all the higher antisymmetrizers vanish identically, $\mathcal{A}_{n} \equiv 0$, for $n>4$.

5. Open Spin Chain

The R-matrix $R(u, q)$ can be used to construct an L-operator for an integrable spin system $L_{0}(u)=R_{0}(u, q)$, in the case of $X X Z_{1} u=\exp (-\lambda)$. Then the monodromy matrix of a spin chain with N sites is
$T(u)=L_{0 N}(u) L_{0 N-1}(u) \cdots L_{01}(u)$
For integrable spin chains with non-periodic boundary condition one has to us the Sklyanin $[9]$ formalism. The monodromy matrix $\mathcal{T}(u)$ con sists of the two matrices $T(u)$ and a reflection matrix $K^{-}(u) \in \operatorname{End}(V)$
$\mathcal{T}(u)=T(u) K^{-}(u) T^{-1}\left(u^{-1}\right)$,

The generating function $\tau(u)$ of the integrals of motion is the trace of $\mathcal{T}(u)$ over the auxiliary space with an extra reflection matrix $K^{+}(u)$

$$
\tau(u)=\operatorname{tr}_{0}\left(K_{0}^{+}(u) \mathcal{T}(u)\right) .
$$

The reflection matrices $K^{ \pm}(u)$ are solutions of the reflection equation with a property $K^{-}(1)=\mathbb{1} \in \operatorname{End}(V)$ and $\tau(1) \simeq \mathbb{1}$. The Hamiltonian of the open chain is given by $H=\left.\frac{1}{2} \frac{d}{2 u} \ln \tau(u)\right|_{u=1}$,

The Hamiltonian density $h_{i, i+1}=\left.\frac{d}{d u} \check{R}_{i, i+1}(u)\right|_{u=1}$ is a function of the generators of $W_{N}\left(q, q^{-2}\right)$ on the space $\mathcal{H}=\otimes_{1}^{N} \mathbb{C}^{3}$. The two exta boundary terns are contributions form the two refeccion matrices $K^{\ddagger}(u)$ at the sites 1 and N. We can take the constant K.-matrices $K^{-}(u)=1$
and $K^{\dagger}+(u)=Q^{2}$. 1 It easy to check that a non-zero contribution at the site N is proporional to the identit, hence it does

In the space \mathcal{H} algebras $\mathcal{U}_{q}(o(3))$ and $W_{N}\left(q, q^{-2}\right)$ are mutual centraliz ers. This induces the decomposition of the representation space \mathcal{H} into direct sum of irreducible representations of both algebras, as a generalisation of the Schur-Weyl duality,

$$
\mathcal{H}=\stackrel{N}{1} \mathbb{C}^{3}=\sum_{s=0}^{N} \mathbb{C}^{2 s+1} \otimes U_{s}
$$

where $\mathbb{C}^{2 s+1}$ is an irrep. of $\mathcal{U}_{q}(o(3))$ while U_{s} is some irrep. of $W_{N}\left(q, q^{-2}\right)$ The dimension of an irreducible representation of $W_{N}\left(q, q^{-2}\right)$ is equal to the multiplicity of the corresponding irreducible representation of cen tralizer algebra $\mathcal{U}_{q}(o(3))$, and vice versa

$$
m\left(\mathbb{C}^{2 s+1}\right)=\operatorname{dim} U_{s}, \quad m\left(U_{s}\right)=\operatorname{dim} \mathbb{C}^{2 s+1} .
$$

The above decomposition permits to determine the structure of the mul tiplets of the Hamiltonian

$$
H=\sum_{i=1}^{N-1} h_{i, i+1}, \quad h_{i, i+1}=\left.\frac{d}{d \lambda} \check{R}(\lambda, \eta)\right|_{\lambda=0}=f\left(\check{R}_{i}\right) \in W_{N}\left(q, q^{-2}\right) .
$$

The R-matrices define the local Hamiltonian density for two sites of the corresponding spin chains. For the $X X Z_{1}$-model one gets

$$
h_{X X Z}=\left.\frac{d}{d \lambda} \check{R}(\lambda, \eta)\right|_{\lambda=0} \simeq q \check{R}(\eta)-\check{R}^{-1}(\eta) .
$$

In the $A_{2}^{(2)}$-case one gets

$$
h_{A}=\left.\frac{d}{d \lambda} \check{R}(\lambda, \eta)\right|_{\lambda=0} \simeq q \check{R}(\eta)+\frac{1}{q^{2}} \check{R}^{-1}(\eta) .
$$

Let us consider the case of $N=3$ when the algebra $W_{3}\left(q, q^{-2}\right)$ is real ized on $\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$ and the corresponding Hamiltonians ($H=h_{12}+h_{23}$) are:

$$
H_{X X Z} \mathcal{S}_{3}=2\left(q+1+\frac{1}{g}\right) \mathcal{S}_{3}, \quad H_{X X Z} \mathcal{A}_{3}=2 \mathcal{A}_{3}
$$

$$
H_{A} \mathcal{S}_{3}=2\left(q^{2}+\frac{1}{q^{3}}\right) \mathcal{S}_{3}, \quad H_{A} \mathcal{A}_{3}=-2\left(1+\frac{1}{q}\right) \mathcal{A}_{3} .
$$

In this case there are four irreps. of W_{3} : two one-dimensional irreps. generated by \mathcal{S}_{3} and \mathcal{A}_{3}, respectively, the three-dim. irrep. d_{3} (corresponding to the one-box Young diagram) and the two-dim. irrep. sponding to the one-box Young diagram) and the two-dim.
(corresponding to the three-box Young diagram with two rows). Thus for $N=3$ the above Hamiltonians can have up to seven distinct eigenvalues. Their multiplicities are obtained from the correspondence between the irreps of W_{3} and $\mathcal{U}_{q}(o(3)): U\left(\mathcal{S}_{3}\right) \sim \mathbb{C}^{7}, U\left(\mathcal{A}_{3}\right) \sim \mathbb{C}$ $U\left(d_{3}\right) \sim \mathbb{C}^{3} \quad U\left(d_{2}\right) \sim \mathbb{C}^{5}$. The degeneracies of corresponding eigen values are $m\left(\epsilon\left(\mathcal{S}_{3}\right)\right)=7, m\left(\epsilon\left(\mathcal{A}_{3}\right)\right)=1, m\left(\epsilon_{j}\left(d_{3}\right)\right)=3, m\left(\epsilon_{k}\left(d_{2}\right)\right)$ are

$$
\begin{aligned}
& \epsilon\left(\mathcal{S}_{3}\right)=2\left(q+1+\frac{1}{q}\right), \quad \epsilon\left(\mathcal{A}_{3}\right)=2, \\
& \left.\epsilon_{1}\left(d_{3}\right)=1, \quad \epsilon_{2,3}\left(d_{3}\right)=\left(\frac{1}{2} \pm \sqrt{\frac{1}{2}+2\left(q+3+\frac{1}{q}\right.}\right)\right) \\
& \epsilon_{1}\left(d_{2}\right)=\left(q+1+\frac{1}{q}\right), \quad \epsilon_{2}\left(d_{2}\right)=\left(q+3+\frac{1}{q}\right) .
\end{aligned}
$$

References

[1] J. S. Birman and H. Wenzl, Trans. Amer. Math. Soc. 313 (1989) 249-273.
[2] R. I. Nepomechie, J. Phys. A 33 (2000) L21-L26
[3] A. B. Zamolodchikov and V. A. Fateev, Soviet J. Nuclear Phys. 32 (1980) 298-303
[4] M. Jimbo, Commun. Math. Phys. 102 (1986) 537-547.
[5] A. G. Izergin and V. E. Korepin, Commun. Math. Phys. 79 (1981), 303-316.
[6] V. O. Tarasov, Theoret. and Math. Phys. 76 (1988), 793-803 [7] V. F. R. Jones, Commun. Math. Phys. 125 (1989) 459-467. [8] A. P. Isaev, Preprint MPIM 04-132 (2004).
[9] E. K. Sklyanin, J. Phys. A 21 (1988) 2375-2389.

