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Abstract

WE consider integrable open spin chains related to the quantum
affine algebras Uq(ô(3)) and Uq(A(2)

2 ). We discuss the symmetry
algebras of these chains with the local C3 space related to the Birman-
Wenzl-Murakami algebra. The symmetry algebra and the Birman-
Wenzl-Murakami algebra centralize each other in the representation
spaceH = ⊗N1 C3 of the system, and this determines the structure of the
spin system spectra. Consequently, the corresponding multiplet struc-
ture of the energy spectra is obtained.
In collaboration with Petr P. Kulish and Zoltán Nagy.

1. Introduction

IN the case of the isotropic Heisenberg chain of spin 1/2 the symme-
try algebra is sl2, the Hamiltonian is an element of the group algebra

C[SN ] of the symmetric group SN . The RLL-relations define an infinite
dimensional quantum algebra – the Yangian Y(sl2). The actions of sl2
and SN on the state of space H = ⊗N1 C2 are mutually commuting (the
Schur-Weyl duality). Here we consider a generalization to the case of
the Birman-Wenzl-Murakami (BMW) algebra [1] and its specific repre-
sentations in C3 ⊗ C3 given by the spectral parameter dependent R-
matrices. These R-matrices correspond to different quantum affine al-
gebras Uq(ô(3)), Uq(A(2)

2 ), Uq( ̂osp(1|2)) and Uq(sl(1|2)(2)). Although corre-
sponding spin systems were analyzed in a variety of papers, we stress
the connection of the open spin chains with the BMW algebra as a cen-
tralizer of the symmetry algebra and thus unveil the multiplet structure
of the energy spectra of the corresponding Hamiltonians.
For the XXZ-model of spin 1 the appropriate dynamical symmetry alge-
bra is Uq(ô(3)) and its symmetry algebra is Uq(o(3)) [2]. The correspond-
ing R-matrix was found in [3], see also [4].
The R-matrix of Uq(A(2)

2 ) in C3⊗C3 was found in [5] and the correspond-
ing periodic spin chain was solved by algebraic Bethe ansatz in [6].
These two spectral parameter dependent R-matrices are the two ver-
sions of the Yang-Baxterization procedure for a given representation of
the BMW algebra W2(q, ν = q−2) in C3 ⊗ C3 [7, 8].
The two additional R-matrices related to the quantum affine
super-algebras can be obtained by considering the BMW algebra
W2(−q,−q−2). In this case the BMW algebra is the centralizer of the
Uq(osp(1|2)) action in the tensor product of its fundamental representa-
tion.

2. R-matrix of XXZ spin-1chain

THE 9 × 9 R-matrix R(λ, η) of the XXZ-chain of spin one satisfies the
Yang-Baxter equation (YBE) in the space C3⊗C3⊗C3 and has the

following properties:
• the U(1) symmetry [h1 + h2, R12(λ, η)] = 0

• the regularity condition at λ = 0 R(0, η) = sinh(η) sinh(2η)P

• the unitarity R12(λ)R21(−λ) = ρ(λ)1

• the PT-symmetry Rt
12(λ) = R21(λ)

• the crossing symmetry R(λ) = (Q⊗ 1)Rt2(−λ− η)(Q⊗ 1),

where t2 denotes the transpose in the second space and the matrix Q is given by Q =

 0 0 −e−η
0 1 0
−eη 0 0

 .

In the braid group form Ř(λ, η) = PR(λ, η), can be expressed as

Ř(λ, η) =
eη

4

(
e2λ − 1

)
Ř(η) + (sinh η sinh 2η) 1 +

e−η

4

(
e−2λ − 1

)
Ř−1(η).

The constant R-matrix Ř±1(η) = limλ→±∞
(
4 exp(∓(2λ + η))Ř(λ, η)

)
is a

solution of the YBE in the braid group form Ř12Ř23Ř12 = Ř23Ř12Ř23, and
has the spectral decomposition (q = e2η) Ř(η) = qP5(η)−1

qP3(η)+ 1
q2P1(η).

It is related to the quantum group Uq(o(3)).
To establishing a relation with the BMW algebra, the projector P1(η) is
related to the rank one matrix E(η) = µP1(η), with µ = q + 1 + 1/q. Then

E2(η) = µE(η),

Ř(η)E(η) = E(η)Ř(η) =
1

q2
E(η),

Ř(η)− Ř−1(η) = ω(q) (1− E(η)) ,

where ω(q) = q − 1/q. Thus Ř, Ř−1 and E provide a realization of the
BMW algebra WN(q, 1/q2) in the space H = ⊗N1 C3.

3. Izergin-Korepin R-matrix

THE Izergin-Korepin R-matrix R(λ, η) satisfies the YBE and has the
following properties:

• the U(1) symmetry [h1 + h2, R12(λ, η)] = 0

• the regularity condition at λ = 0 R(0, η) = −2 cosh(3η) sinh(2η)P

• the unitarity R12(λ)R21(−λ) = ρ̃(λ)1

• the PT-symmetry Rt
12(λ) = R21(λ)

• the crossing symmetry R(λ) = (Q⊗ 1)Rt2(−λ+ 6η + ıπ)(Q⊗ 1),
the matrix Q is given by above.

In the braid group form this R-matrix can be expressed as

Ř(λ, η) =
e3η

2

(
1− e−λ

)
Ř(η)− 2(cosh 3η sinh 2η)1− e−3η

2

(
1− eλ

)
Ř−1(η),

where the constant R-matrix is defined ptrviously.

At the degeneration point λ = 4η this R-matrix is proportional to the rank
3 projector P3(η) which is a q-analogue of the antisymmetrizer in C3⊗C3.
One can further obtain the rank one antisymmetrizer in C3⊗C3⊗C3 as
A3 ' Ř12(4η, η)Ř23(8η, η)Ř12(4η, η). It can be used to define a quantum
determinant q-detL(λ) of operator valued L-matrix L(λ) satisfying the
RLL-relation

Ř12(λ− µ)L1(λ)L2(µ) = L1(µ)L2(λ)Ř12(λ− µ).

In this case, the quantum determinant is given by

q-detL(λ) ' Ř12(4η, η)Ř23(8η, η)Ř12(4η, η)L1(λ)L2(λ− 4η)L3(λ− 8η).

Finally, we stress that the XXZ1 and A
(2)
2 R-matrices have different scaling limits. The A

(2)
2 R-matrix in the limit

λ → ελ, η → εη and ε → 0 yields the sl(3)-Yang R-matrix R(λ, η) = λ1 − 4ηP , while in the XXZ1 case the limit yields
R(λ, η) = λ(λ+ η)1 + 2η(λ+ η)P + 2ληK, where K is a rank 1 matrix, invariant with respect to the group O(3).

Also, in the quasi-classical limit η → 0 these two trigonometric R-matrices also yield different classical r-matrices.

4. Birman-Wenzl-Murakami algebra WN (q, ν)

The defining relations of the BMW algebra WN(q, ν), for the generators
1, σi , σ−1

i and ei, i = 1, . . . , N − 1, are

σiσi+1σi = σi+1σiσi+1, σiσj = σjσi, for |i− j| > 1,

eiσi = σiei = νei, eiσ
±1
i−1ei = ν∓1ei,

σi − σ−1
i = ω(q)(1− ei), where ω(q) = q − 1/q.

It can be shown that its dimension is (2N−1)!!. Many useful relations fol-
low from the definition above, for example ei2 = µei, with µ = (q−ν)(ν+1/q)

νω ,
and also a cubic relation (σi − q)(σi + q−1)(σi − ν) = 0.
The Yang-Baxterization procedure yields two spectral parameter de-
pendent elements

σ
(±)
i (u) =

1

ω

(
u−1σi − u σ−1

i

)
+

ν ± q±1

uν ± q±1u−1
ei.

They satisfy the YBE in the braid group form

σ
(±)
i (u)σ

(±)
i+1(uv)σ

(±)
i (v) = σ

(±)
i+1(v)σ

(±)
i (uv)σ

(±)
i+1(u).

Their unitarity relation is σ(±)
i (u)σ

(±)
i (u−1) =

(
1− ω−2(u− u−1)2

)
. These

elements are normalized so that σ(±)
i (±1) = ±1. We set ν = 1/q2 and

find that σ(−)
i (e−λ) ' Ři,i+1(λ, η) of XXZ1 and σ(+)

i (eλ/2) ' Ři,i+1(λ, η) of
Izergin-Korepin.
The irreducible representations of the BMW algebra WN(q, ν) are
more complicated than the irreducible representations of the symmetric
group SN or the Hecke algebra HN(q), although they can be parameter-
ized by the Young diagrams.
The simplest, one-dimensional irreducible representations are defined
by the symmetrizer and antisymmetrizer, respectively. The symmetrizer
is given by

SN =
1

[N ]q!
σ

(−)
1 (q−1)σ

(−)
2 (q−2) · · ·σ(−)

N−1(q−(N−1))SN−1,

with S1 = 1 and S2 = 1
[2]q
σ

(−)
1 (q−1). We use the standard nota-

tion for the q-factorial [n]q! = [n]q[n − 1]q · · · [2]q[1]q and the q-numbers
[n]q = (qn − q−n)/(q − q−1).
The elements Sn, n = 1, . . . , N are idempotents, i.e. S2

n = Sn . In addi-
tion, the symmetrizer SN is also central.
In the realization of the BMW algebra W2(q, q−2) on C3 ⊗ C3

σ1 = Ř(η) = qP5 − q−1P3 + q−2P1, and e1 = µP1 = (q + 1 + q−1)P1.

Thus S2 ∝ σ
(−)
1 (q−1) = (q + q−1)P5, and σ±1

1 P5 = q±1P5, e1P5 = 0.
Similarly, the antisymmetrizer of the WN(q, ν) is given by

AN =
1

[N ]q!
σ

(+)
1 (q)σ

(+)
2 (q2) · · ·σ(+)

N−1(qN−1)AN−1,

with A1 = 1 and A2 = 1
[2]q
σ

(+)
1 (q). The elements An, n = 1, . . . , N are

idempotents and the antisymmetrizer AN is also central. Also

A3 ' σ
(+)
1 (q)σ

(+)
2 (q2)σ

(+)
1 (q) = σ

(+)
2 (q)σ

(+)
1 (q2)σ

(+)
2 (q).

In the realization on C3 ⊗ C3

σ
(+)
1 (q) = [2]qP3, and σ±1

1 P3 = −q∓1P3, e1P3 = 0.

In the Izergin-Korepin realization (with σ(+)
i (eλ/2) ' Ři,i+1(λ, η)) the anti-

symmetrizer A3 has rank one, as it was already noticed.
A straightforward calculation yields A4 = 0. Consequently all the higher
antisymmetrizers vanish identically, An ≡ 0, for n > 4.

5. Open Spin Chain

The R-matrix R(u, q) can be used to construct an L-operator for an inte-
grable spin systemL0j(u) = R0j(u, q), in the case of XXZ1 u = exp(−λ).
Then the monodromy matrix of a spin chain with N sites is

T (u) = L0N(u)L0N−1(u) · · ·L0 1(u).

For integrable spin chains with non-periodic boundary condition one
has to use the Sklyanin [9] formalism. The monodromy matrix T (u) con-
sists of the two matrices T (u) and a reflection matrix K−(u) ∈ End(V )

T (u) = T (u)K−(u)T−1(u−1).

The generating function τ (u) of the integrals of motion is the trace of
T (u) over the auxiliary space with an extra reflection matrix K+(u)

τ (u) = tr0

(
K+

0 (u)T (u)
)
.

The reflection matrices K±(u) are solutions of the reflection equation
with a property K−(1) = 1 ∈ End(V ) and τ (1) ' 1.
The Hamiltonian of the open chain is given by H = 1

2
d
du ln τ (u)|u=1,

H =
N−1∑
i=1

Ř′i,i+1(1) +
tr0K

+
0 (1)Ř′N 0(1)

tr0K
+
0 (1)

+
1

2

(
dK−1 (1)

du
+

1

tr0K
+
0 (1)

d tr0K
+
0 (1)

du

)
.

The Hamiltonian density hi,i+1 = d
duŘi,i+1(u)|u=1 is a function of the gen-

erators of WN(q, q−2) on the space H = ⊗N1 C3. The two extra boundary terms are

contributions from the two reflection matrices K±(u) at the sites 1 and N . We can take the constant K-matrices K−(u) = 1

and K+(u) = QtQ. It is easy to check that a non-zero contribution at the site N is proportional to the identity, hence it does

not influence the structure of the spectrum.

In the space H algebras Uq(o(3)) and WN(q, q−2) are mutual centraliz-
ers. This induces the decomposition of the representation spaceH into
direct sum of irreducible representations of both algebras, as a gener-
alisation of the Schur-Weyl duality,

H =
N
⊗
1

C3 =

N∑
s=0

C2s+1 ⊗ Us,

where C2s+1 is an irrep. of Uq(o(3)) while Us is some irrep. of WN(q, q−2).
The dimension of an irreducible representation of WN(q, q−2) is equal to
the multiplicity of the corresponding irreducible representation of cen-
tralizer algebra Uq(o(3)), and vice versa

m(C2s+1) = dimUs, m(Us) = dim C2s+1.

The above decomposition permits to determine the structure of the mul-
tiplets of the Hamiltonian

H =

N−1∑
i=1

hi,i+1, hi,i+1 =
d

dλ
Ř(λ, η)|λ=0 = f (Ři) ∈ WN(q, q−2).

The R-matrices define the local Hamiltonian density for two sites of the
corresponding spin chains. For the XXZ1-model one gets

hXXZ =
d

dλ
Ř(λ, η)|λ=0 ' qŘ(η)− Ř−1(η).

In the A(2)
2 -case one gets

hA =
d

dλ
Ř(λ, η)|λ=0 ' qŘ(η) +

1

q2
Ř−1(η).

Let us consider the case of N = 3 when the algebra W3(q, q−2) is real-
ized on C3⊗C3⊗C3 and the corresponding Hamiltonians (H = h12+h23)
are:

HXXZS3 = 2(q + 1 +
1

q
)S3, HXXZA3 = 2A3

HAS3 = 2(q2 +
1

q3
)S3, HAA3 = −2(1 +

1

q
)A3.

In this case there are four irreps. of W3: two one-dimensional irreps.
generated by S3 and A3, respectively, the three-dim. irrep. d3 (corre-
sponding to the one-box Young diagram) and the two-dim. irrep. d2

(corresponding to the three-box Young diagram with two rows).
Thus for N = 3 the above Hamiltonians can have up to seven distinct
eigenvalues. Their multiplicities are obtained from the corresponden-
ce between the irreps of W3 and Uq(o(3)): U(S3) ∼ C7, U(A3) ∼ C1

U(d3) ∼ C3 U(d2) ∼ C5. The degeneracies of corresponding eigen-
values are m(ε(S3)) = 7, m(ε(A3)) = 1, m(εj(d3)) = 3, m(εk(d2))
= 5, j = 1, 2, 3; k = 1, 2. The eigenvalues of the XXZ1 Hamiltonian
are

ε(S3) = 2(q + 1 +
1

q
), ε(A3) = 2,

ε1(d3) = 1, ε2,3(d3) =

(
1

2
±
√

1

2
+ 2(q + 3 +

1

q
)

)
,

ε1(d2) = (q + 1 +
1

q
), ε2(d2) = (q + 3 +

1

q
).
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