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‘ Abstract |

W consider integrable open spin chains related to the quantum
a

ffine algebras U,(o(3)) and L{Q(Af)). We discuss the symmetry
algebras of these chains with the local C* space related to the Birman-
Wenzl-Murakami algebra. The symmetry algebra and the Birman-
WenzIl-Murakami algebra centralize each other in the representation
space H = @1 C? of the system, and this determines the structure of the
spin system spectra. Consequently, the corresponding multiplet struc-
ture of the energy spectra is obtained.

In collaboration with Petr P. Kulish and Zoltan Nagy.

‘ 1. Introduction |

N the case of the isotropic Heisenberg chain of spin 1/2 the symme-

try algebra is sl,, the Hamiltonian is an element of the group algebra
C|G x| of the symmetric group Gy. The RLL-relations define an infinite
dimensional quantum algebra — the Yangian )(sly). The actions of si,
and Gy on the state of space H = ®1'C? are mutually commuting (the
Schur-Weyl duality). Here we consider a generalization to the case of
the Birman-Wenzl-Murakami (BMW) algebra [1] and its specific repre-
sentations in C* @ C? given by the spectral parameter dependent R-
matrices. T/hgse R-matrices cggspond to different quantum affine al-
gebras U, (o(3)), Z/{q(Ag)), U,(0sp(1]2)) and U, (sl(1]2))). Although corre-
sponding spin systems were analyzed in a variety of papers, we stress
the connection of the open spin chains with the BMW algebra as a cen-
tralizer of the symmetry algebra and thus unveil the multiplet structure
of the energy spectra of the corresponding Hamiltonians.
For the XXZ-model of spin 1 the appropriate dynamical symmetry alge-

brais U,(o(3)) and its symmetry algebra is U, (o(3)) [2]. The correspond-
iIng R-matrix was found in [3], see also [4].

The R-matrix of Z/{q(Af)) in C’ ® C* was found in [5] and the correspond-
Ing periodic spin chain was solved by algebraic Bethe ansatz in [6].
These two spectral parameter dependent R-matrices are the two ver-
sions of the Yang-Baxterization procedure for a given representation of
the BMW algebra Ws(q,v = ¢72) in C3 @ C? [7, 8].

The two additional R-matrices related to the quantum affine
super-algebras can be obtained by considering the BMW algebra
Wa(—q, —q%). In this case the BMW algebra is the centralizer of the
U,(osp(1|2)) action in the tensor product of its fundamental representa-
tion.

‘ 2. R-matrix of XXZ spin-1chain |

HE 9 x 9 R-matrix R(\,n) of the XXZ-chain of spin one satisfies the
Yang-Baxter equation (YBE) in the space C? ® C? ® C? and has the
following properties:
e the U(1) symmetry [hy + ho, Ri2(\,n)] =

e the regularity condition at A = 0 R(0,7n) = sinh(n) sinh(2n)P
e the unitarity Rio(\)Rai1(—A) = p(N)1

e the PT-symmetry Ri,(\) = Ra1()\)

e the crossing symmetry R(\) = (Q @ 1)R?(—X — n)(Q ® 1),

S = O

0
where t, denotes the transpose in the second space and the matrix @ is given by Q = ( 0
—en

_%—n ) |
0
In the braid group form R(\,n) = PR()\,n), can be expressed as

e "

e (e_2A — 1) R_l(n).

. n .
RO\ 1) = % (¢ — 1) R(n) + (sinhpsinh 2p) 1 +

The constant R-matrix R (n) = limy_4o0 (4exp(F2A +n))R(\, n)) is a
solution of the YBE in the braid group form Ry Ro3R19 = RosR12R93, and
has the spectral decomposition (¢ = €*) R(n) = qP5(n)—éP3(n)+qi2P1(n).
It is related to the quantum group U/,(o(3)).

To establishing a relation with the BMW algebra, the projector P;(n) is
related to the rank one matrix £(n) = uPy(n), with . =q+ 1+ 1/q. Then

E*(n) = u&(n),
R(n)&(n) = £ R() = éam,
R(n)— R '(n) =w(q) (1 —Em)),

where w(q) = ¢ — 1/q. Thus R, R~ and & provide a realization of the
BMW algebra Wx(q,1/¢%) in the space H = @ C®.

‘ 3. Izergin-Korepin R-matrix |

HE lzergin-Korepin R-matrix R(\,n) satisfies the YBE and has the
following properties:

e the U(1) symmetry [hy + ho, R12(A\,n)] =0

e the regularity condition at A = 0 R(0,7) = —2 cosh(3n) sinh(2n)P

e the unitarity Ri2(M\)Ro1(—A) = p(M)1

e the PT-symmetry Ri,(\) = Ra1()\)

e the crossing symmetry R(\) = (Q ® 1) R (= + 61 4 1) (Q ® 1),
the matrix @ is given by above.

In the braid group form this R-matrix can be expressed as

. 31 . =30 .
R(\,n) = % (1 —e™) R(n) — 2(cosh 3nsinh 2n)1 — 67 (1—¢) R7'(n),

where the constant R-matrix is defined ptrviously.
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At the degeneration point A = 47 this R-matrix is proportional to the rank
3 projector P5(n) which is a g-analogue of the antisymmetrizer in C*®C>.
One can further obtain the rank one antisymmetrizer in C* @ C* @ C’ as
As ~ Ris(4n, 1) Ras(8n, n) R12(4n, n). It can be used to define a quantum
determinant g-detL(\) of operator valued L-matrix L()\) satisfying the
RLL-relation

Rip(A — 1) Ly(A) La(p) = Ly (1) La(A) Ria (A — ).
In this case, the quantum determinant is given by

q-detL(X) o= Ria(4n, 1) Raa(8n, m) Ria(41, 1) L1(A) La(X — 41) La(X — 8n).

Finally, we stress that the XX Z; and A(zz) R-matrices have different scaling limits. The Af) R-matrix in the limit
A — e\, n — en and e — 0 yields the si(3)-Yang R-matrix R(\,n) = A1l — 4nP, while in the X X7, case the limit yields
RN\, n) = AXA+n)1+2n(A+n)P + 2 K, where K is a rank 1 matrix, invariant with respect to the group O(3).

Also, in the quasi-classical limit » — 0 these two trigonometric R-matrices also yield different classical r-matrices.

4. Birman-Wenzl-Murakami algebra Wy (q, v)

The defining relations of the BMW algebra Wy (q, v), for the generators
l,0;,0;'ande;,i=1,...,N —1, are

0i0i+10; = 0410041, 0;0; = 0,403, for |Z - ]\ > 1,
__ _ +1 _ . ,F1
€,0;, = 0;€; = lVE;, 62'0'2-_162' = UV €,

oi—o0; ' =w(q)(l—e), wherew(q)=q—1/q.

It can be shown that its dimension is (2N —1)!l. Many useful relations fol-
low from the definition above, for example e;*> = pe;, with © = (q‘”)i’;“/”,
and also a cubic relation (o; — q)(o; + ¢ ') (0; — v) = 0.

The Yang-Baxterization procedure yields two spectral parameter de-
pendent elements

1 + +1
J(i)(u) =—(u'oi—uo; )+ |

€;.
! W uv £+ ¢Flu!

They satisfy the YBE in the braid group form

+ + + + + +
o (w)o ) (wo)o P (v) = o) ()0 (uv)o ') (),

Their unitarity relation is o\ (u)o!™ (u™!) = (1 — w2(u — u™")?). These

elements are normalized so that agi)(il) = +1. We set v = 1/¢* and
find that o\ (e}) ~ R;;1(A\,n) of XX Z; and o' (eM?) ~ Ri ;1 1(A, 1) of
|zergin-Korepin.

The irreducible representations of the BMW algebra Wy(q,v) are
more complicated than the irreducible representations of the symmetric
group Sy or the Hecke algebra Hy(q), although they can be parameter-
ized by the Young diagrams.

The simplest, one-dimensional irreducible representations are defined
by the symmetrizer and antisymmetrizer, respectively. The symmetrizer

is given by

1 Vs (&), - ), _(N—
Sy =01 @ oy (a7) oy (a TS,
V]!
with & = 1 and &; = ﬁag_)(q_l). We use the standard nota-
|

tion for the g-factorial [n],! = [n],n — 1],---[2],[1], and the g-numbers
nly=("—q ") /(g—q").

The elements S, n = 1,..., N are idempotents, i.e. S? = S, . In addi-
tion, the symmetrizer Sy is also central.

In the realization of the BMW algebra W5(q, ¢~ 2) on C* ® C?
01 = R(?]) = qbF5 — q_1P3+q_2P1, and e} = ,uP1 = (q+ 1 —1—(]_1)P1.

Thus &5 x U(_)<q_1> = (Q + q_l)P5, and O'iHP5 = qilpg), e1Ps = 0.
Similarly, the antisymmetrizer of the Wi (q, v) is given by

1 _
Ay = ——0'(@as (@) - ol (¢ AN,

with 4, =1 and A, = ﬁaiﬂ(q). The elements A,, n = 1,...,N are
idempotents and the antisymmetrizer Ay is also central. Also

As ~ o\ ()o@l (g) = oS ()0 (D)ol (g),

In the realization on C3 ® C3

O'§+)<q> = [Q]QP?), and O'itlpg = —qqzlpg, e1P; = 0.

In the Izergin-Korepin realization (with o™ (¢*/?) ~ R;;,1(A, 1)) the anti-
symmetrizer A3 has rank one, as it was already noticed.

A straightforward calculation yields .4, = 0. Consequently all the higher
antisymmetrizers vanish identically, A,, = 0, for n > 4.

‘ 5. Open Spin Chain |

The R-matrix R(u, q) can be used to construct an L-operator for an inte-
grable spin systemL;(u) = Ro;(u, q), in the case of X X Z; u = exp(—A\).
Then the monodromy matrix of a spin chain with N sites is

T(u) — LON(U)LQN_l(U> s L01<u>.

For integrable spin chains with non-periodic boundary condition one
has to use the Sklyanin [9] formalism. The monodromy matrix 7 (u) con-
sists of the two matrices 7'(«) and a reflection matrix K~ (u) € End(V)

T(u) = T(w)K (u)T Hu™t).

Recent Advances in Quantum Integrable Systems—RAQIS’10, 15-18 June 2010 LAPTH, Annecy-le-Vieux, France

Campus de Gambelas, PT-8005-139 Faro, Portugal

The generating function 7(u) of the integrals of motion is the trace of
7 (u) over the auxiliary space with an extra reflection matrix K (u)

T(u) = tro (K§ (w)7 (u)) .
The reflection matrices K*(u) are solutions of the reflection equation
with a property K= (1) =1 € End(V) and 7(1) ~ 1.

The Hamiltonian of the open chain is given by H = 1-L1n 7(u)]|,-1,

. tro Ky (1) Ry o(1) 1 [dK;(1) 1 dtroK] (1)
H— - 0 NO + 1 0 '
Z Riina(1) tro Ky (1) 2 du N tro Ky (1) du

The Hamiltonian density h; ;11 = %Ri,m(uﬂuzl Is a function of the gen-

erators of WN<Q,C_]_2> on the space 'H = ®{VCB The two extra boundary terms are

contributions from the two reflection matrices K*(u) at the sites 1 and N. We can take the constant K-matrices K~ (u) = 1
and K+ (u) = Q'Q. Itis easy to check that a non-zero contribution at the site N is proportional to the identity, hence it does
not influence the structure of the spectrum.

In the space H algebras U/, (o(3)) and Wx(q, ¢ ) are mutual centraliz-
ers. This induces the decomposition of the representation space H into
direct sum of irreducible representations of both algebras, as a gener-
alisation of the Schur-Weyl duality,

N N
_ C3 _ C2$+1 Us
H ® ; R Us,

where C**! is an irrep. of U,(0(3)) while Uy is some irrep. of Wx(q, ¢ 2).
The dimension of an irreducible representation of 1y (q, ¢*) is equal to
the multiplicity of the corresponding irreducible representation of cen-
tralizer algebra U4,(o(3)), and vice versa

m(C**) = dimU,, m(U;) = dim C*",

The above decomposition permits to determine the structure of the mul-
tiplets of the Hamiltonian

d

N—-1
H = hiivt, hiier =R\ 1|0 = f(R;) € Wn(q,q7?).
D it higsr = geRO o = J(R) € Wila, a7

The R-matrices define the local Hamiltonian density for two sites of the
corresponding spin chains. For the X X Z;-model one gets

d . v -
hxxz = aR()\a M=o = qR(n) — R™'(n).

In the A{”-case one gets

Let us consider the case of N = 3 when the algebra Ws(q, ¢ ) is real-
ized on C*®C3®C? and the corresponding Hamiltonians (H = hiy+ho3)
are:

1
Hxx78=2(qg+ 1+ 5)337 HxxzA3 =2A;

HA33 — 2<q2 + %)83, HA.A?, = —2<1 + é)Ag
In this case there are four irreps. of W3: two one-dimensional irreps.
generated by S; and Aj, respectively, the three-dim. irrep. ds (corre-
sponding to the one-box Young diagram) and the two-dim. irrep. d-
(corresponding to the three-box Young diagram with two rows).
Thus for N = 3 the above Hamiltonians can have up to seven distinct
eigenvalues. Their multiplicities are obtained from the corresponden-
ce between the irreps of W3 and U, (o(3)): U(S;) ~ C7, U(A3) ~ C!
U(ds) ~ C° U(dy) ~ C°. The degeneracies of corresponding eigen-
values are m(e(Ss)) = 7, m(e(A3)) = 1, m(e;(ds)) = 3, mlexp(da))
=5, 7 =1,2,3; k = 1,2. The eigenvalues of the X X Z; Hamiltonian
are

(S5 =2q +1+ g» o(As) =2,

ldy) = 1, eosldy) = Gi \/%+2(q+3+3>> |

q
e1(ds) = (g+ 1+ é), €o(ds) = (g + 3+ é)
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