Correlation functions in the 2D Ising model and Painlevé VI

V. Mangazeev

The Australian National University
RAQIS'10, 17 June, 2010

Collaborator: Tony Guttmann, The University of Melbourne arXiv:1002.2480, NPB (2010)

Outline

(1) The 2D Ising model
(2) Form factors
(3) Diagonal correlations

4 Short review of PVI
(5) Toda equations
(6) Toeplitz determinants

The 2D Ising model

The 2D symmetric Ising model on a square lattice in the ferromagnetic regime is defined by the interaction energy

$$
\begin{gathered}
E=-J \sum_{i, j}\left(\sigma_{i, j} \sigma_{i, j+1}+\sigma_{i, j} \sigma_{i+1, j}\right), \quad J>0, \quad \sigma_{i}= \pm 1 \\
t=s^{4}, \quad s=\left\{\begin{array}{ll}
\sinh \left(2 J / k_{B} T\right), & T>T_{c}, \\
\sinh \left(2 J / k_{B} T\right)^{-1}, & T<T_{c}
\end{array}, \quad \sinh \left(2 J / k_{B} T_{c}\right)=1\right.
\end{gathered}
$$

(Kaufman, Onsager, Montroll, Potts, Ward, McCoy, Wu, Kadanoff, Cheng, Jimbo, Miwa, Baxter, Perk, Ghosh, Shrock, Martinez, ...)

- Determinant and form factor representations for $C(M, N)$.
- Toeplitz determinants for $C(N, N)$ and $C(0, N)$
- Painlevé VI equation for $C(N, N)$

Form factor representation of correlations

The λ-extended (generalized) pair correlation functions

$$
\begin{gathered}
C^{+}(M, N ; \lambda)=s^{-1}(1-t)^{1 / 4} \sum_{n=0}^{\infty} \lambda^{2 n+1} \hat{C}^{(2 n+1)}(M, N), \quad T>T_{c}, \\
C^{-}(M, N ; \lambda)=(1-t)^{1 / 4}\left(1+\sum_{n=1}^{\infty} \lambda^{2 n} \widehat{C}^{(2 n)}(M, N)\right), \quad T<T_{c}, \\
\hat{C}^{(n)}(M, N)=\frac{1}{n!} \int_{-\pi}^{\pi} \frac{d \omega_{1}}{2 \pi} \cdots \int_{-\pi}^{\pi} \frac{d \omega_{n}}{2 \pi}\left[\prod_{i=1}^{n} \frac{x_{i}^{M}}{\sinh \gamma_{i}}\right]\left[\prod_{1 \leq i<i \leq n} h_{i j}\right]^{2} \cos \left(N \sum_{i=1}^{n} \omega_{i}\right), \\
\sinh \gamma_{i}=\left(y_{i}^{2}-1\right)^{1 / 2}, \quad x_{i}=y_{i}-\left(y_{i}^{2}-1\right)^{1 / 2}, \quad y_{i}=s+s^{-1}-\cos \omega_{i}, \\
h_{i j}=\frac{2\left(x_{i} x_{j}\right)^{1 / 2} \sin \left(\left(\omega_{i}-\omega_{j}\right) / 2\right)}{1-x_{i} x_{j}} . \\
C^{ \pm}(M, N)=C^{ \pm}(M, N ; 1)
\end{gathered}
$$

Jimbo-Miwa approach

In 1980 Jimbo and Miwa introduced the function

$$
\sigma_{N}(t)= \begin{cases}t(t-1) \frac{d}{d t} \log C^{+}(N, N)-\frac{1}{4}, & T>T_{c} \\ t(t-1) \frac{d}{d t} \log C^{-}(N, N)-\frac{t}{4}, & T<T_{c}\end{cases}
$$

and showed that it satisfies the "sigma" form of Painlevé VI (for a particular choice of parameters)

$$
\left(t(t-1) \frac{d^{2} \sigma}{d t^{2}}\right)^{2}+4 \frac{d \sigma}{d t}\left((t-1) \frac{d \sigma}{d t}-\sigma-\frac{1}{4}\right)\left(t \frac{d \sigma}{d t}-\sigma\right)=N^{2}\left((t-1) \frac{d \sigma}{d t}-\sigma\right)
$$

Jimbo and Miwa also considered an isomonodromic λ-extension of $C^{ \pm}(N, N)$ which also satisfies this equation with λ playing the role of initial condition.
In 2007 Bookraa et al. observed that the Jimbo-Miwa λ-extension is the same as the form-factor expansions for $C^{ \pm}(N, N ; \lambda)$.
A general solution of the above equation can be found for any integer N.

A short review of the Okamoto theory of the PVI equation

For each solution of the $\mathbf{P}_{V I}$ equation, one can construct a Hamiltonian function $H(t) \equiv H(t ; \mathbf{b})$ depending on the parameters

$$
\mathbf{b}=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)
$$

A related tau-function $\tau(t) \equiv \tau(t ; \mathbf{b})$ defined by $H(t ; \mathbf{b})=\frac{d}{d t} \log \tau(t ; \mathbf{b})$. The auxiliary hamiltonian

$$
h(t)=t(t-1) H(t)+e_{2}\left(b_{1}, b_{3}, b_{4}\right) t-\frac{1}{2} e_{2}\left(b_{1}, b_{2}, b_{3}, b_{4}\right)
$$

solves the $\mathbf{E}_{V I}[\mathbf{b}]$ equation
$h^{\prime}(t)\left[t(1-t) h^{\prime \prime}(t)\right]^{2}+\left[h^{\prime}(t)\left[2 h(t)-(2 t-1) h^{\prime}(t)\right]+b_{1} b_{2} b_{3} b_{4}\right]^{2}=\prod_{k=1}^{4}\left(h^{\prime}(t)+b_{k}^{2}\right)$
The group G of Backlund transformations of $\mathbf{P}_{V I}$ is isomorphic to the affine Weyl group of type F_{4} : $W_{a}\left(F_{4}\right)$.

It contains the following transformations of parameters

$$
\begin{gathered}
w_{1}: b_{1} \leftrightarrow b_{2}, \quad w_{2}: b_{2} \leftrightarrow b_{3}, \quad w_{3}: b_{3} \leftrightarrow b_{4}, \quad w_{4}: b_{3} \rightarrow-b_{3}, b_{4} \rightarrow-b_{4} \\
x^{1}: \kappa_{0} \leftrightarrow \kappa_{1}, \quad x^{2}: \kappa_{0} \leftrightarrow \kappa_{\infty}, \quad x^{3}: \kappa_{0} \leftrightarrow \theta \\
\kappa_{0}=b_{1}+b_{2}, \quad \kappa_{1}=b_{1}-b_{2}, \quad \kappa_{\infty}=b_{3}-b_{4}, \quad \theta=b_{3}+b_{4}+1
\end{gathered}
$$

and the parallel transformation

$$
I_{3}: \mathbf{b} \equiv\left(b_{1}, b_{2}, b_{3}, b_{4}\right) \rightarrow \mathbf{b}^{+} \equiv\left(b_{1}, b_{2}, b_{3}+1, b_{4}\right)
$$

For any $s \in W_{a}\left(F_{4}\right)$

$$
s: \mathbf{b} \mapsto \mathbf{b}_{\mathbf{s}}
$$

one can construct another $h\left(t ; \mathbf{b}_{\mathbf{s}}\right)$ satisfying $\mathbf{E}_{V I}\left[\mathbf{b}_{\mathbf{s}}\right]$ and $h\left(t ; \mathbf{b}_{\mathbf{s}}\right)$ is a rational function of t and

$$
\left\{h(t ; \mathbf{b}), \frac{d}{d t} h(t ; \mathbf{b}), \frac{d^{2}}{d t^{2}} h(t ; \mathbf{b})\right\}
$$

Consider a sequence of parameters

$$
\mathbf{b}_{N} \equiv\left(b_{1}+N / 2, b_{2}-N / 2, b_{3}+N / 2, b_{4}+N / 2\right)
$$

and associated sequences of Hamiltonians and tau-functions

$$
h_{N}(t)=h\left(t, \mathbf{b}_{N}\right), \quad H_{N}(t)=H\left(t, \mathbf{b}_{N}\right), \quad \tau_{N}(t)=\tau\left(t, \mathbf{b}_{N}\right)
$$

Following the Okamoto derivation of Toda relations one can show that

$$
t \frac{d^{2}}{d t^{2}} \log \tau_{N}(t)+\frac{d}{d t} \log \tau_{N}(t)=B_{N} \frac{\tau_{N+1}(t) \tau_{N-1}(t)}{\tau^{2}(t)}
$$

Choosing

$$
b_{1}=-1 / 2, \quad b_{2}=-1 / 2, \quad b_{3}=0, \quad b_{4}=0
$$

and comparing the equations for $h_{N}(t)$ and $\sigma_{N}(t)$ we obtain

$$
\tau_{N}(t)= \begin{cases}C_{N}^{+}(t)(1-t)^{-N^{2}} t^{\frac{N}{2}}, & T>T_{c} \\ C_{N}^{-}(t)(1-t)^{-N^{2}} t^{\frac{N}{2}-\frac{1}{4}}, & T<T_{c} .\end{cases}
$$

Toda equations for diagonal correlation functions

The resulting Toda equation for $C^{ \pm}(t)$

$$
t \frac{d^{2}}{d t^{2}} \log C_{N}^{ \pm}(t)+\frac{d}{d t} \log C_{N}^{ \pm}(t)+\frac{N^{2}}{(1-t)^{2}}=\frac{\left(N^{2}-\frac{1}{4}\right)}{(1-t)^{2}} \frac{C_{N+1}^{ \pm}(t) C_{N-1}^{ \pm}(t)}{\left(C_{N}^{ \pm}(t)\right)^{2}}
$$

For $\lambda=1$ case initial conditions are

$$
C_{0}^{ \pm}(t)=1, \quad C_{1}^{-}(t)=E(t), \quad C_{1}^{+}(t)=t^{-1 / 2}[(t-1) K(t)+E(t)]
$$

For generic λ and the case $N=0$, the choice $\mathbf{b}=(-1 / 2,-1 / 2,0,0)$ corresponds to the Picard case of PVI where the general solution is known in terms of the Weierstrass \mathcal{P}-function.

Toda equations for diagonal correlation functions

The resulting Toda equation for $C^{ \pm}(t)$

$$
t \frac{d^{2}}{d t^{2}} \log C_{N}^{ \pm}(t)+\frac{d}{d t} \log C_{N}^{ \pm}(t)+\frac{N^{2}}{(1-t)^{2}}=\frac{\left(N^{2}-\frac{1}{4}\right)}{(1-t)^{2}} \frac{C_{N+1}^{ \pm}(t) C_{N-1}^{ \pm}(t)}{\left(C_{N}^{ \pm}(t)\right)^{2}}
$$

For $\lambda=1$ case initial conditions are

$$
C_{0}^{ \pm}(t)=1, \quad C_{1}^{-}(t)=E(t), \quad C_{1}^{+}(t)=t^{-1 / 2}[(t-1) K(t)+E(t)]
$$

For generic λ and the case $N=0$, the choice $\mathbf{b}=(-1 / 2,-1 / 2,0,0)$ corresponds to the Picard case of PVI where the general solution is known in terms of the Weierstrass \mathcal{P}-function.
The corresponding tau-function (depending on two initial conditions x and y) has been recently calculated (Brezhnev (2009) and VM (2010)). It gives

$$
C_{0}^{ \pm}(t)=c_{0}(x, y) \frac{(1-t)^{1 / 4}}{t^{1 / 4}} q^{y^{2} / \pi^{2}} \frac{\theta_{1}(x+\tau y \mid \tau)}{\theta_{4}(0 \mid \tau)}, \quad t=k^{2}(\tau)
$$

We need to find relations connecting initial conditions:

$$
\text { for } T>T_{c}: \quad c_{0}(x, y)=1, \lambda=\sin (x), y=0,
$$

$$
\text { for } T<T_{c}: \quad c_{0}(x, y)=-i \exp (i x), \lambda=\sin (x), y=\pi / 2,
$$

$$
C_{0}^{+}(t)=\frac{(1-t)^{1 / 4}}{t^{1 / 4}} \frac{\theta_{1}(\arcsin (\lambda) \mid \tau)}{\theta_{4}(0 \mid \tau)}, \quad C_{0}^{-}(t)=\frac{\theta_{4}(\arcsin (\lambda) \mid \tau)}{\theta_{3}(0 \mid \tau)}
$$

The result for $C_{0}^{-}(t)$ was first conjectured by Booukraa et al. in (2007) based on long series numerical expansions.

For generic λ we have a symmetry $N \leftrightarrow-N$ which allows to calculate $C_{1}^{ \pm}(t)$:

$$
\begin{gathered}
C_{1}^{+}(t)=\frac{1}{\cos (x)} \frac{\theta_{4}(x \mid \tau)}{\theta_{3}(0 \mid \tau)} \frac{X}{t^{1 / 2}}, \quad C_{1}^{-}(t)=\frac{1}{\cos (x)} \frac{\theta_{4}(x \mid \tau)}{\theta_{3}(0 \mid \tau)}(\operatorname{cn}(z, t) \operatorname{dn}(z, t)+\operatorname{sn}(z, t) X) \\
x=\arcsin (\lambda), \quad z=x K=\frac{2 x \mathrm{~K}(t)}{\pi}, \quad X=\frac{1}{K}\left[\log \theta_{4}(x \mid \tau)\right]_{x}^{\prime}
\end{gathered}
$$

Toeplitz determinant representation

Toeplitz determinant representation of $C_{N}^{ \pm}(t)$ for $\lambda=1$.

$$
C_{N}^{+}(t)=\operatorname{det}\left|a_{i-j}(t)\right|_{i, j=1, \ldots, N}, \quad C_{N}^{-}(t)=(-1)^{N} \operatorname{det}\left|a_{i-j-1}(t)\right|_{i, j=1, \ldots, N},
$$

where $a_{n}(t)$ are given explicitly in terms of the hypergeometric function and polynomials in $K(t), E(t)$ and t :

$$
a_{n}(t)=K(t) p_{n}(t)+E(t) q_{n}(t)
$$

Let M be the $(N+1) \times(N+1)$ matrix $M=\left(M_{i j}\right), D=\operatorname{Det}(M)$, $D=D\left[i_{1}, i_{2}, \ldots ; j_{1}, j_{2}, \ldots\right]$ is the minor determinant with $i_{k}^{\prime} s$ rows and $j_{k}^{\prime} s$ columns removed. The Plucker relation

$$
D D[N, N+1 ; N, N+1]=D[N+1 ; N+1] D[N ; N]-D[N ; N+1] D[N+1 ; N]
$$

Identify

$$
D=C_{N+1}^{+}(t), D[N+1, N+1]=C_{N}^{+}(t), D[N, N+1 ; N, N+1]=C_{N-1}^{+}(t)
$$

$D D[N, N+1 ; N, N+1]=D[N+1 ; N+1] D[N ; N]-D[N ; N+1] D[N+1 ; N]$

Then for $D[N+1 ; N+1]=C_{N}^{+}(t)$ we have

$$
\begin{gathered}
D[N ; N]=\mathcal{D}_{N}^{F}(t) C_{N}^{+}(t), \\
D[N ; N+1]=\mathcal{D}_{N}^{A}(t) C_{N}^{+}(t), \\
D[N+1 ; N]=\mathcal{D}_{N}^{B}(t) C_{N}^{+}(t),
\end{gathered}
$$

where

$$
\begin{gathered}
\mathcal{D}_{N}^{A}(t)=\frac{1}{2 N+1}\left[N t^{-1 / 2}+2 t^{1 / 2}(t-1) \partial_{t}\right] \\
\mathcal{D}_{N}^{B}(t)=\frac{1}{2 N-1}\left[-N t^{-1 / 2}+2 t^{1 / 2}(t-1) \partial_{t}\right] \\
\mathcal{D}_{N}^{F}(t)=\frac{1}{N^{2}-1 / 4}\left[\left(1-(4 t)^{-1}\right) N^{2}+(t-1)^{2}\left(t \partial_{t}^{2}+\partial_{t}\right)\right]
\end{gathered}
$$

Substituting back to the Plucker relation we immediately obtain Toda equation for diagonal correlations.

