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The 2D Ising model

The 2D symmetric Ising model on a square lattice in the ferromagnetic
regime is defined by the interaction energy

E = −J
∑
i,j

(σi,jσi,j+1 + σi,jσi+1,j), J > 0, σi = ±1

t = s4, s =

{
sinh(2J/kBT ) , T > Tc ,

sinh(2J/kBT )−1
, T < Tc .

, sinh(2J/kBTc) = 1

C (M,N) = 〈σ0,0 σM,N〉 − pair correlation functions

(Kaufman, Onsager, Montroll, Potts, Ward, McCoy, Wu, Kadanoff,
Cheng, Jimbo, Miwa, Baxter, Perk, Ghosh, Shrock, Martinez, ... )

Determinant and form factor representations for C (M,N).

Toeplitz determinants for C (N,N) and C (0,N)

Painlevé VI equation for C (N,N)
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Form factor representation of correlations

The λ-extended (generalized) pair correlation functions

C+(M,N;λ) = s−1(1− t)1/4
∞∑

n=0

λ2n+1Ĉ (2n+1)(M,N), T > Tc ,

C−(M,N;λ) = (1− t)1/4(1 +
∞∑

n=1

λ2nĈ (2n)(M,N)), T < Tc ,

Ĉ (n)(M, N) =
1

n!

π∫
−π

dω1

2π
. . .

π∫
−π

dωn

2π

[
n∏

i=1

xM
i

sinh γi

] [ ∏
1≤i<j≤n

hij

]2

cos
(
N

n∑
i=1

ωi

)
,

sinh γi = (y2
i − 1)1/2, xi = yi − (y2

i − 1)1/2, yi = s + s−1 − cos ωi ,

hij =
2(xixj)

1/2 sin((ωi − ωj)/2)

1− xixj
.

C±(M,N) = C±(M,N; 1)
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Jimbo-Miwa approach

In 1980 Jimbo and Miwa introduced the function

σN(t) =


t(t − 1)

d

dt
log C+(N,N)− 1

4
, T > Tc ,

t(t − 1)
d

dt
log C−(N,N)− t

4
, T < Tc .

and showed that it satis-
fies the “sigma” form of Painlevé VI (for a particular choice of parameters)(

t(t − 1)
d2σ

dt2

)2

+ 4
dσ

dt

(
(t − 1)

dσ

dt
− σ − 1

4

) (
t
dσ

dt
− σ

)
= N2

(
(t − 1)

dσ

dt
− σ

)2

Jimbo and Miwa also considered an isomonodromic λ-extension of
C±(N,N) which also satisfies this equation with λ playing the role of
initial condition.
In 2007 Bookraa et al. observed that the Jimbo-Miwa λ-extension is the
same as the form-factor expansions for C±(N,N;λ).
A general solution of the above equation can be found for any integer N.
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A short review of the Okamoto theory of the PVI equation

For each solution of the PVI equation, one can construct a Hamiltonian
function H(t) ≡ H(t;b) depending on the parameters

b = (b1, b2, b3, b4)

A related tau-function τ(t) ≡ τ(t;b) defined by H(t;b) = d
dt log τ(t;b).

The auxiliary hamiltonian

h(t) = t(t − 1)H(t) + e2(b1, b3, b4) t − 1

2
e2(b1, b2, b3, b4)

solves the EVI [b] equation

h′(t)
[
t(1−t)h′′(t)

]2

+
[
h′(t)[2h(t)−(2t−1)h′(t)]+b1b2b3b4

]2

=
4∏

k=1

(
h′(t)+b2

k

)
The group G of Backlund transformations of PVI is isomorphic to the
affine Weyl group of type F4: Wa(F4).
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It contains the following transformations of parameters

w1 : b1 ↔ b2, w2 : b2 ↔ b3, w3 : b3 ↔ b4, w4 : b3 → −b3, b4 → −b4

x1 : κ0 ↔ κ1, x2 : κ0 ↔ κ∞, x3 : κ0 ↔ θ

κ0 = b1 + b2, κ1 = b1 − b2, κ∞ = b3 − b4, θ = b3 + b4 + 1

and the parallel transformation

l3 : b ≡ (b1, b2, b3, b4) → b+ ≡ (b1, b2, b3 + 1, b4).

For any s ∈ Wa(F4)
s : b 7→ bs

one can construct another h(t;bs) satisfying EVI [bs] and h(t;bs) is a
rational function of t and{

h(t;b),
d

dt
h(t;b),

d2

dt2
h(t;b)

}
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Consider a sequence of parameters

bN ≡ (b1 + N/2, b2 − N/2, b3 + N/2, b4 + N/2)

and associated sequences of Hamiltonians and tau-functions

hN(t) = h(t,bN), HN(t) = H(t,bN), τN(t) = τ(t,bN)

Following the Okamoto derivation of Toda relations one can show that

t
d2

dt2
log τN(t) +

d

dt
log τN(t) = BN

τN+1(t) τN−1(t)

τ 2(t)
.

Choosing
b1 = −1/2, b2 = −1/2, b3 = 0, b4 = 0

and comparing the equations for hN(t) and σN(t) we obtain

τN(t) =

{
C+

N (t)(1− t)−N2

t
N
2 , T > Tc

C−N (t)(1− t)−N2

t
N
2 −

1
4 , T < Tc .
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Toda equations for diagonal correlation functions

The resulting Toda equation for C±(t)

t d2

dt2 log C±N (t) + d
dt log C±N (t) + N2

(1−t)2 =
(N2− 1

4 )
(1−t)2

C±N+1(t) C±N−1(t)

(C±N (t))2

For λ = 1 case initial conditions are

C±0 (t) = 1, C−1 (t) = E (t), C+
1 (t) = t−1/2 [(t − 1)K (t) + E (t)]

For generic λ and the case N = 0, the choice b = (−1/2,−1/2, 0, 0)
corresponds to the Picard case of PVI where the general solution is
known in terms of the Weierstrass P-function.

The corresponding tau-function (depending on two initial conditions x
and y) has been recently calculated (Brezhnev (2009) and VM (2010)).
It gives

C±0 (t) = c0(x , y)
(1− t)1/4

t1/4
qy2/π2 θ1(x + τy |τ)

θ4(0|τ)
, t = k2(τ)
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Toda equations for diagonal correlation functions

The resulting Toda equation for C±(t)

t d2

dt2 log C±N (t) + d
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We need to find relations connecting initial conditions:

forT > Tc : c0(x , y) = 1, λ = sin(x), y = 0,

forT < Tc : c0(x , y) = −i exp(ix), λ = sin(x), y = π/2,

C+
0 (t) =

(1− t)1/4

t1/4

θ1(arcsin(λ)|τ)

θ4(0|τ)
, C−0 (t) =

θ4(arcsin(λ)|τ)

θ3(0|τ)

The result for C−0 (t) was first conjectured by Booukraa et al. in (2007)
based on long series numerical expansions.

For generic λ we have a symmetry N ↔ −N which allows to calculate
C±1 (t):

C+
1 (t) =

1

cos(x)

θ4(x |τ)

θ3(0|τ)

X

t1/2
, C−

1 (t) =
1

cos(x)

θ4(x |τ)

θ3(0|τ)
(cn(z , t)dn(z , t) + sn(z , t) X )

x = arcsin(λ), z = xK =
2xK(t)

π
, X =

1

K
[log θ4(x |τ)]′x
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Toeplitz determinant representation

Toeplitz determinant representation of C±N (t) for λ = 1.

C+
N (t) = det |ai−j(t)|i,j=1,...,N , C−N (t) = (−1)N det |ai−j−1(t)|i,j=1,...,N ,

where an(t) are given explicitly in terms of the hypergeometric function
and polynomials in K (t),E (t) and t:

an(t) = K (t)pn(t) + E (t)qn(t)

Let M be the (N + 1)× (N + 1) matrix M = (Mij), D = Det(M),
D = D[i1, i2, . . . ; j1, j2, . . .] is the minor determinant with i ′ks rows and j ′ks
columns removed. The Plucker relation

D D[N, N + 1;N, N + 1] = D[N + 1;N + 1] D[N;N] − D[N;N + 1] D[N + 1;N]

Identify

D = C+
N+1(t), D[N +1,N +1] = C+

N (t), D[N,N +1;N,N +1] = C+
N−1(t)



The 2D Ising model Form factors Diagonal correlations Short review of PVI Toda equations Toeplitz determinants

D D[N, N + 1;N, N + 1] = D[N + 1;N + 1] D[N;N] − D[N;N + 1] D[N + 1;N]

Then for D[N + 1;N + 1] = C+
N (t) we have

D[N;N] = DF
N(t)C+

N (t),

D[N;N + 1] = DA
N(t)C+

N (t),

D[N + 1;N] = DB
N(t)C+

N (t),

where

DA
N(t) =

1

2N + 1

[
N t−1/2 + 2t1/2(t − 1)∂t

]
DB

N(t) =
1

2N − 1

[
−N t−1/2 + 2t1/2(t − 1)∂t

]
DF

N(t) =
1

N2 − 1/4

[
(1− (4t)−1)N2 + (t − 1)2(t∂2

t + ∂t)
]

Substituting back to the Plucker relation we immediately obtain Toda
equation for diagonal correlations.
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