Nonultralocal quantum algebra and 1D anyonic quantum integrable models

Anjan Kundu Theory Group & CAMCS, Saha Institute of Nuclear Physics Calcutta, INDIA anjan.kundusaha.ac.in

June 16, 2010

RAQIS10, June 2010, Annecy

Plan of Talk:

- Exactly solvable 1D boson & anyon models
- Systematic construction through braided YBE

• Quantum Integrable 1D anyon lattice and anyon field models (NLS, derivative NLS)

- Novel anyon quantum group
- Concluding Remarks

Background

- In 3D- only Boson + Fermion
- In 2D- Boson + Fermion + Anyon
- Anyons are receiving intence attention after

- Experimental confirmation (Through Quantum Hall Effect, PRB'05)

- Potential applications of nonabelian Anyons (Kitaev, AnnPhys'03,'06) to quantum computation (Due to their *topological stability* against *quantum fluctuation*)

- Though anyons manifested in 2D

Surprisingly, they retain basic properties, when projected to 1D:

2-particle Anyon wave function in 1D (L= length of chain):

i) **Exchange** :

$$\Phi(x_1, x_2) = e^{-i\theta} \Phi(x_2, x_1)$$

(with $\theta = 0$, Boson & $\theta = \pi$, Fermion) ii) **Sensitive BC** : $(1 \text{ "passes" } 2) \neq 2 \text{ "passes" } 1$)

$$\Phi(x_1 + L, x_2) = e^{-2i\theta} \Phi(x_1, x_2 + L)$$

Advantage: Anyon models in 1D can be exactly solvable Interesting history : Apart from Anyon-type exchange statistics in Calogero model, there are exactly solvable 1D anyon models. Exactly solvable Bose gases

1) δ -function Bose gas: (Lieb-Liniger, PR'65)

$$H_N^{(1)} = -\sum_k^N \partial_{x_k}^2 + \sum_{\langle k,l \rangle} c\delta(x_k - x_l)$$

2) Derivative- δ -function Bose gas: (Snirman et al PR'94)

$$H_N^{(2)} = -\sum_k^N \partial_{x_k}^2 + \sum_{\langle k,l \rangle} i\kappa \delta(x_k - x_l) \left((\partial_{x_k} + \partial_{x_l}) \right)$$

3) Can there be solvable bosonic models with higher singular potentials like Double δ -function ??

$$\gamma_1 \sum_{\langle j,k,l \rangle} \delta(x_j - x_k) \delta(x_l - x_k) + \gamma_2 \sum_{\langle k,l \rangle} (\delta(x_k - x_l))^2.$$

Such attempts were unsuccessful untill the introduction of

Exactly solvable δ -function Anyon gas

(A Kundu, PRL'99) Equivalent to Double δ - Bose gas with

$$\gamma_1 = \gamma_2 = \kappa^2$$

Subsequently also proposed:

Exactly solvable derivative- δ **-function Anyon gas** (A Kundu + M Batchelor *et al* JPA'08)

Presently These 1D -Anyon models became much popular:

Different research Groups:

Korepin (USA), Batchelor (Australia), Girardeau (France), Wang (China), Calabrese (Italy), Santachiara (France)) are actively enganged.

Note: (Drawback): Anyons behave like bosons/fermions at the coinciding points!

(How to find remedy? We will see !)

Quantum Integrable Field models

Well known : Nonlinear Schödinger equation (NLS):

$$H^{(1f)} = \int dx (\psi_x^{\dagger} \psi_x + c(\psi^{\dagger} \psi)^2)$$

in bosonic field : $[\psi(x), \psi^{\dagger}(y)] = \delta(x - y)$ is Quantum Integrable : N-particle sector $\longrightarrow \delta$ -Bose gas. Similarly, Derivative NLS is another Quantum Integrable Field model : N-particle sector \longrightarrow Derivative δ -Bose gas. Therefore Unsolved problem !!

i) What are integrable Anyon QFT models , s.t. N-particle sector $\rightarrow \delta$ & derivative δ - Anyon gases ?

ii) How to construct in a systematic way such novel Anyon Lattice & Field models

through Yang-Baxter Equation?

iii) How to remedy the existing *drawback*

Find Anyon statistics at all points? (including coinciding points x = y!) Note: Anyon CR \longrightarrow Nonultralocality ! Hence, goes beyond standard QIS and YBE ! Our Result:

We resolve above unsolved problems using Braided Yang-Baxter Equation(BYBE) (A Kundu + V Hlavaty, IJMPA'96):

$$R(u-v)Z^{-1}L_{1j}(u)ZL_{2j}(v) = Z^{-1}L_{2j}(v)ZL_{1j}(u)R(u-v),$$

at sites $j = 1, 2, \dots, N$, with the braiding relation (BR) :

$$L_{2k}(v)Z^{-1}L_{1j}(u) = Z^{-1}L_{1j}(u)ZL_{2k}(v)Z^{-1}$$

for k > j: Nonultralocality ! (noncommutativity at space separated points)= giving Anyon CR ! Note:

• L_j -Lax operator,

• standard R- matrix

$$R(\lambda) = \begin{pmatrix} a(\lambda) & & \\ b(\lambda) & c & \\ c & b(\lambda) & \\ & & a(\lambda) \end{pmatrix},$$

I) Rational

$$a(\lambda) = \lambda + \alpha, \ b(\lambda) = \lambda, \ c = \alpha$$

II) Trigonometric

$$a(\lambda) = \sin(\lambda + \alpha), \ b(\lambda) = \sin\lambda, \ c = \sin\alpha$$

They would generate two-different classes of models
Z-braiding matrix satisfies additional relations:

$$R_{21}(u)Z_{13}Z_{23} = Z_{23}Z_{13}R_{21}(u),$$

$$Z_{12}Z_{13}Z_{23} = Z_{23}Z_{13}Z_{12}$$

etc.

One of the solutions:

$$Z = \sum_{a,b} e^{i\theta(\hat{a}\cdot\hat{b})} e_{a,a} \otimes e_{b,b}$$

with Anyon Grading (bosonic/anyonic) $\hat{a} = 0, 1$ and and Anyon parameter θ . We use simplest 4×4 -matrix solution using gradings $\hat{1} = 0, \ \hat{2} = 1$:

$$Z = diag(1, 1, 1, e^{i\theta})$$

for $\theta = 0 \rightarrow Z = I$: BYBE \rightarrow YBE : $R(u-v)L_{1j}(u)L_{2j}(v) = L_{2j}(v)L_{1j}(u)R(u-v),$ and BR \rightarrow bosonic commutativity $[L_{2k}(v), L_{1j}(u)] = 0$ (ultralocality), at sites $k \neq j$ **Integrable model construction**

Define transfer matrix (global object):

$$\tau(u) = trace_a(L_{a1}(u) \dots L_{aN}(u))$$

generating conserved operators

$$\log \tau(u) = \sum_{n} C_n u^n$$

BYBE guarantees

$$[\tau(u), \tau(v)] = 0 \longrightarrow [C_n, C_m] = 0$$

Hence, (Quantum Integrability !) Hamiltonian of the model = $H = C_n$, n=1, 2, 3,...

A. Class of **quantum integrable Anyon models** with

• known rational R(u)-matrix:

BYBE and BR fix through Anyonic Lax operator $L_j(u)$

$$L^b_{a(l)}(\lambda) = \lambda \delta_{ab} \ p^{0(l)}_b + \alpha p^{(l)}_{ba}$$

and different realizations of operators $p_{ba}^{(l)},\ p_b^{0(l)},a,b=1,2$

1) Anyonic CR

2) Intregrable model Hamiltonian

I. Lattice hard-core anyon model (Batchelor et al '08) We construct through above scheme nearest-neighbor interacting Anyon model:

$$C_1 = H^{(1a)} = \sum_{k=1}^N 2n_k n_{k+1} + a_k a_{k+1}^{\dagger} + a_k^{\dagger} a_{k+1}, \ n_k \equiv a_k^{\dagger} a_k$$

with Anyonic CR at space-separated points k > l:

$$a_k a_l^{\dagger} = e^{i\theta} a_l^{\dagger} a_k, \quad a_k a_l = e^{-i\theta} a_l a_k$$

But fermionic CR at coinciding points: (not Anyonic!= existing drawback)

$$[a_k, a_k^\dagger]_+ = 1,$$

with additional hard-core (Fermionic) constraint $a^2 = 0$, responsible for regularity condition of Lax operator L(0) = P and hence NN-interacting Hamiltonian!

II. Novel Anyon lattice model

At another realization we construct a new quantum integrable lattice Anyon model with:

i) Next-nearest-neighbor + higher order nonlinear interactions

$$C_3 = \mathbf{H}^{(2a)} = \sum_k (\psi_{k+1}^{\dagger} \psi_{k-1} - (n_k + n_{k+1}) \psi_{k+1}^{\dagger} \psi_k + \frac{1}{3\Delta^2} n_k^3,$$

with $n_k = p_k + \Delta^2 \psi_k^{\dagger} \psi_k$,

Advantage: We get finally the needed Anyon CR at all points

i) At coinciding points:

$$\psi_k \psi_k^{\dagger} - e^{-i\theta} \psi_k^{\dagger} \psi_k = p_k \frac{1}{\Delta}$$

ii) at separated points k > j.

$$\psi_k \psi_j^{\dagger} = e^{i\theta} \psi_j^{\dagger} \psi_k,$$

etc . (Thus we resolve an existing problem with Anyon models)

III. Quantum Integrable Anyon NLS

At continuum (field) limit of the above lattice model: (Lattice const. $\Delta \to 0$) $k \to x, \ \psi_k \to A(x)$ we derive Anyon quantum field NLS model

$$\hat{H}^{(3a)} = \int dx (A_x^{\dagger} A_x + c (A^{\dagger} A)^2)$$

with field operator A(x) satisfying Anyon CR at all points

(follow from the BYBE and BR !):

I) At x = y:

$$A(x)A^{\dagger}(y) - e^{i\theta}A^{\dagger}(y)A(x) = \delta(x - y)$$

II) At x > y:

$$A(x)A^{\dagger}(y) = e^{i\theta}A^{\dagger}(y)A(x),$$
$$A(x)A(y) = e^{-i\theta}A(y)A(x),$$

interpolating: i) Boson
 $(\theta=0),$ ii) Fermion $(\theta=\pi)$) N-particle sector

$$|N\rangle = \int d^N x \sum_{\{x_l\}} \Phi(x_1, x_2, \dots x_N)$$

$$A^{\dagger}(x_1)A^{\dagger}(x_2)\cdots A^{\dagger}(x_n))|0>$$

of the NLS Anyon quantum field model $\longrightarrow \delta$ - Anyon Gas!

$$H_N = -\sum_k \partial_k^2 + c \sum_{k \neq j} \delta(x_k - x_l)$$

• Establishing thus the missing link between the well known anyon gas (δ -function) and a Anyon quantum

field model (NLS)!

Now we construct

B. another class of **quantum integrable Anyon mod**els using

known trigonometric $R_t(u)$ -matrix

but with same Z-matrix

IV. q-Anyon model

From BYBE (following similar construction) we get Novel Anyonic q-oscillator: (with two deformation parameters: $q = e^{i\alpha}$ and anyon parameter: $s = e^{i\theta}$) i) At coinciding points k

$$\phi_k \phi_k^{\dagger} - e^{i\theta} \phi_k^{\dagger} \phi_k = e^{i\theta N_k} \cos 2\alpha N_k$$

ii) at separated points k > j:

$$\phi_k \phi_j^{\dagger} = e^{i\theta} \phi_j^{\dagger} \phi_k$$

Not giving details of this model, switch over to its QFT limit

At field limit $\Delta \to 0$: $\phi_k \to D(x)$ we obtain V. Quantum Integrable **derivative-** NLS Anyon field model

$$\hat{H}^{(4a)} = \int dx (D_x^{\dagger} D_x + 2i\kappa (D^{\dagger})^2 D D_x)$$

with Anyon field CR: I) At x = y:

 $D(x)D^{\dagger}(y) - e^{i\theta}D^{\dagger}(y)D(x) = \kappa\delta(x-y)$

II) At x > y:

$$D(x)D^{\dagger}(y) = e^{i\theta}D^{\dagger}(y)D(x),$$

etc.

N-particle sector |N > of this Anyon DNLS field → known δ'- Anyon gas !

$$H_N^d = -\sum_k \partial_k^2 + i\kappa \sum_{k \neq j} \delta(x_k - x_l)(\partial_{x_k} + \partial_{x_l})$$

Establishing thus the final missing link between δ'-Anyon gas and Anyon DNLS model (a QFT model)
Note: All Anyon models constructed here

(Anyon lattice and q-oscillator model, NLS and DNLS
Anyon field models) are

i) **Quantum Integrable** and

ii) **Exactly solvable** by algebraic Bethe Ansatz.

VI. Anyon Quantum Group:

From BYBE and BR with same Z and Trig. R_t -matrix we discover Novel Anyon Quantum Group $A_{\theta}s_q u(2)$ (with two deformation parameters: q, $s = e^{i\theta}$):

$$S^+S^- - sS^+S^+ = [2S^3]_q s^{-S^3},$$

$$q^{S^3}S^{\pm} = q^{\pm 1}S^{\pm}q^{S^3}, \ s^{S^3}S^{\pm} = s^{\pm 1}S^{\pm}s^{S^3}$$

denoting $[x]_q \equiv \frac{q^x - q^{-x}}{q - q^{-1}} = \frac{\sin \alpha x}{\sin \alpha}$. **Note**: Hopf algebra structure :

(relared to Braided Hopf algebra of S.Majid)i.) Unusual braided multiplication:

$$(I \otimes S^{\pm})(S^{\pm} \otimes I) = s^{-1}(S^{\pm} \otimes S^{\pm}),$$
$$(I \otimes S^{\mp})(S^{\pm} \otimes I) = s(S^{\pm} \otimes S^{\mp})$$
ii.) Two-parameter deformed coproduct:
$$\Delta(S^{+}) = q^{-S^{3}} \otimes S^{+} + S^{+} \otimes q^{S^{3}} s^{-S^{3}},$$

 $\Delta(S^-) = q^{-S^3}s^{-S^3} \otimes S^- + S^- \otimes q^{S^3}, \ \Delta(S^3) = S^3 \otimes I + I \otimes S^3$

Remark : check algebra by direct insertion ! At $s = 1 \longrightarrow$ standard $su_q(2)$ quantum algebra

$$[S^-, S^+]_- = [2S^3]_q, \quad [S^3, S^\pm] = \pm S^3,$$

with usual commutative multiplication

$$(I \otimes S^{\pm})(S^{\pm} \otimes I) = (S^{\pm} \otimes S^{\pm}),,$$

atc

At $q \to 1$ and arbitrary sVI. Novel **purely Anyonic-deformed** $A_{\theta}su(2)$ **algebra**

$$S^{+}S^{-} - sS^{+}S^{+} = 2S^{3}s^{-S^{3}}, s^{S^{3}}S^{\pm} = s^{\pm 1}S^{\pm}s^{S^{3}}$$

with braided multiplication

$$(I \otimes S^{\pm})(S^{\pm} \otimes I) = s^{-1}(S^{\pm} \otimes S^{\pm}),$$

etc. and a *non-cocommutative coproduct*!:

$$\Delta(S^+) = I \otimes S^+ + S^+ \otimes s^{-S^3}, \ \Delta(S^-) = s^{-S^3} \otimes S^- + S^- \otimes I,$$

etc.

What we have achieved

i) Systematic construction of 1d Anyon models through Braided YBE

1a) All models generated are quantum integrable and

solvable by algebraic Bethe Ansatz

ii) We have constructed Lattice anyon models:

Known hard-core Anyon and New Lattice Anyon next-NN model + q-oscillator model

iii) Novel Anyon field models: NLS and DNLS, their N-particle sectors gaving known δ and δ' Anyon gases iv) We obtain Novel Anyon Quantum Group with unusual Hopf algebra structure

v) Future problems:

- Discover Non-Abelian Anyon models by choosing more general Z-matrix!

- Construct Anyonic sine-Gordon model realizing Anyon quantum group!

Thank You!