Nonultralocal quantum algebra and 1D anyonic quantum integrable models

Anjan Kundu
Theory Group \& CAMCS, Saha Institute of Nuclear Physics
Calcutta, INDIA anjan.kundusaha.ac.in

June 16, 2010

RAQIS10, June 2010, Annecy

Plan of Talk:

- Exactly solvable 1D boson \& anyon models
- Systematic construction through braided YBE
- Quantum Integrable 1D anyon lattice and anyon field models (NLS, derivative NLS)
- Novel anyon quantum group
- Concluding Remarks

Background

- In 3D- only Boson + Fermion
- In 2D- Boson + Fermion + Anyon
- Anyons are receiving intence attention after
- Experimental confirmation (Through Quantum Hall Effect, PRB'05)
- Potential applications of nonabelian Anyons (Kitaev, AnnPhys'03,'06) to quantum computation (Due to their topological stability against quantum fluctuation)
- Though anyons manifested in 2D

Surprisingly, they retain basic properties, when projected to 1D:
2-particle Anyon wave function in 1D ($\mathrm{L}=$ length of chain):
i) Exchange :

$$
\Phi\left(x_{1}, x_{2}\right)=e^{-i \theta} \Phi\left(x_{2}, x_{1}\right)
$$

(with $\theta=0$, Boson $\& \theta=\pi$, Fermion)
ii) Sensitive BC: (1 "passes" 2$) \neq 2$ "passes" 1)

$$
\Phi\left(x_{1}+L, x_{2}\right)=e^{-2 i \theta} \Phi\left(x_{1}, x_{2}+L\right)
$$

Advantage: Anyon models in 1D can be exactly solvable Interesting history : Apart from Anyon-type exchange statstics in Calogero model, there are exactly solvable 1D anyon models. Exactly solvable Bose gases

1) δ-function Bose gas: (Lieb-Liniger, PR’65)

$$
H_{N}^{(1)}=-\sum_{k}^{N} \partial_{x_{k}}^{2}+\sum_{<k, l>} c \delta\left(x_{k}-x_{l}\right)
$$

2) Derivative- δ-function Bose gas: (Snirman et al PR'94)

$$
H_{N}^{(2)}=-\sum_{k}^{N} \partial_{x_{k}}^{2}+\sum_{<k, l>} i \kappa \delta\left(x_{k}-x_{l}\right)\left(\left(\partial_{x_{k}}+\partial_{x_{l}}\right)\right)
$$

3) Can there be solvable bosonic models with higher singular potentials like Double δ-function ??
$\gamma_{1} \sum_{<j, k, l>} \delta\left(x_{j}-x_{k}\right) \delta\left(x_{l}-x_{k}\right)+\gamma_{2} \sum_{<k, l>}\left(\delta\left(x_{k}-x_{l}\right)\right)^{2}$.
Such attempts were unsuccessful untill the introduction of
Exactly solvable δ-function Anyon gas
(A Kundu, PRL'99)
Equivalent to Double δ - Bose gas with

$$
\gamma_{1}=\gamma_{2}=\kappa^{2}
$$

Subsequently also proposed:
Exactly solvable derivative- δ-function Anyon gas
(A Kundu + M Batchelor et al JPA'08)
Presently These 1D-Anyon models became much popular:
Different research Groups:
Korepin (USA), Batchelor (Australia), Girardeau (France), Wang (China), Calabrese (Italy), Santachiara (France))
are actively enganged.
Note: (Drawback): Anyons behave like bosons/fermions at the coinciding points!
(How to find remedy? We will see !)
Quantum Integrable Field models

0-4

Well known : Nonlinear Schödinger equation (NLS):

$$
H^{(1 f)}=\int d x\left(\psi_{x}^{\dagger} \psi_{x}+c\left(\psi^{\dagger} \psi\right)^{2}\right)
$$

in bosonic field : $\left[\psi(x), \psi^{\dagger}(y)\right]=\delta(x-y)$
is Quantum Integrable:
N-particle sector $\longrightarrow \delta$-Bose gas.
Similarly, Derivative $N L S$ is another Quantum Integrable Field model :
N-particle sector \longrightarrow Derivative δ-Bose gas.
Therefore Unsolved problem !!
i) What are integrable Anyon QFT models,
s.t. N-particle sector $\rightarrow \delta \&$ derivative δ - Anyon gases ?
ii) How to construct in a systematic way such novel Anyon Lattice \& Field models through Yang-Baxter Equation?
iii) How to remedy the existing drawback

$$
0-5
$$

Find Anyon statistics at all points? (including coinciding points $x=y!$)
Note: Anyon CR \longrightarrow Nonultralocality !
Hence, goes beyond standard QIS and YBE!
Our Result:
We resolve above unsolved problems using
Braided Yang-Baxter Equation(BYBE)
(A Kundu + V Hlavaty , IJMPA'96):
$R(u-v) Z^{-1} L_{1 j}(u) Z L_{2 j}(v)=Z^{-1} L_{2 j}(v) Z L_{1 j}(u) R(u-v)$,
at sites $j=1,2, \ldots N$, with the braiding relation (BR) :

$$
L_{2 k}(v) Z^{-1} L_{1 j}(u)=Z^{-1} L_{1 j}(u) Z L_{2 k}(v) Z^{-1}
$$

for $k>j$: Nonultralocality ! (noncommutativity at space separated points) = giving Anyon CR !
Note:

- L_{j}-Lax operator,
- standard R - matrix

$$
R(\lambda)=\left(\begin{array}{ccc}
a(\lambda) & & \\
b(\lambda) & c & \\
c & b(\lambda) & \\
& & \\
& a(\lambda)
\end{array}\right)
$$

I) Rational

$$
a(\lambda)=\lambda+\alpha, b(\lambda)=\lambda, c=\alpha
$$

II) Trigonometric

$$
a(\lambda)=\sin (\lambda+\alpha), b(\lambda)=\sin \lambda, c=\sin \alpha
$$

They would generate two-different classes of models

- Z-braiding matrix satisfies additional relations:

$$
\begin{gathered}
R_{21}(u) Z_{13} Z_{23}=Z_{23} Z_{13} R_{21}(u) \\
0-7
\end{gathered}
$$

$$
Z_{12} Z_{13} Z_{23}=Z_{23} Z_{13} Z_{12}
$$

etc.
One of the solutions:

$$
Z=\sum_{a, b} e^{i \theta(\hat{a} \cdot \hat{b})} e_{a, a} \otimes e_{b, b}
$$

with Anyon Grading (bosonic/anyonic) $\hat{a}=0,1$ and and Anyon parameter θ.
We use simplest 4×4-matrix solution using gradings $\hat{1}=0, \hat{2}=1$:

$$
Z=\operatorname{diag}\left(1,1,1, e^{i \theta}\right)
$$

for $\theta=0 \rightarrow Z=I: \mathrm{BYBE} \rightarrow \mathrm{YBE}:$
$R(u-v) L_{1 j}(u) L_{2 j}(v)=L_{2 j}(v) L_{1 j}(u) R(u-v)$,
and $\mathrm{BR} \rightarrow$ bosonic commutativity
$\left[L_{2 k}(v), L_{1 j}(u)\right]=0$ (ultralocality), at sites $k \neq j$
Integrable model construction

Define transfer matrix (global object) :

$$
\tau(u)=\operatorname{trace}_{a}\left(L_{a 1}(u) \ldots L_{a N}(u)\right)
$$

generating conserved operators

$$
\log \tau(u)=\sum_{n} C_{n} u^{n}
$$

BYBE guarantees

$$
[\tau(u), \tau(v)]=0 \longrightarrow\left[C_{n}, C_{m}\right]=0
$$

Hence, (Quantum Integrability!) Hamiltonian of the model $=H=C_{n}, \mathrm{n}=1,2,3, \ldots$
A. Class of quantum integrable Anyon models with

- known rational $R(u)$-matrix:

BYBE and BR fix through Anyonic Lax operator $L_{j}(u)$

$$
L_{a(l)}^{b}(\lambda)=\lambda \delta_{a b} p_{b}^{0(l)}+\alpha p_{b a}^{(l)}
$$

and different realizations of operators $p_{b a}^{(l)}, p_{b}^{0(l)}, a, b=$ 1, 2

1) Anyonic CR
2) Intregrable model Hamiltonian
I. Lattice hard-core anyon model (Batchelor et al '08) We construct through above scheme nearest-neighbor interacting Anyon model:

$$
C_{1}=H^{(1 a)}=\sum_{k=1}^{N} 2 n_{k} n_{k+1}++a_{k} a_{k+1}^{\dagger}+a_{k}^{\dagger} a_{k+1}, \quad n_{k} \equiv a_{k}^{\dagger} a_{k}
$$

with Anyonic CR at space-separated points $k>l$:

$$
a_{k} a_{l}^{\dagger}=e^{i \theta} a_{l}^{\dagger} a_{k}, \quad a_{k} a_{l}=e^{-i \theta} a_{l} a_{k}
$$

But fermionic CR at coinciding points: (not Anyonic!= existing drawback)

$$
\left[a_{k}, a_{k}^{\dagger}\right]_{+}=1
$$

0-10
with additional hard-core (Fermionic) constraint $a^{2}=$ 0 , , responsible for regularity condition of Lax operator $L(0)=P$ and hence NN-interacting Hamiltonian!
II. Novel Anyon lattice model

At another realization we costruct a new quantum integrable lattice Anyon model with:
i) Next-nearest-neighbor + higher order nonlinear interactions
$C_{3}=\mathrm{H}^{(2 a)}=\sum_{k}\left(\psi_{k+1}^{\dagger} \psi_{k-1}-\left(n_{k}+n_{k+1}\right) \psi_{k+1}^{\dagger} \psi_{k}+\frac{1}{3 \Delta^{2}} n_{k}^{3}\right.$,
with $n_{k}=p_{k}+\Delta^{2} \psi_{k}^{\dagger} \psi_{k}$,
Advantage: We get finally the needed Anyon $C R$ at all points
i) At coinciding points:

$$
\psi_{k} \psi_{k}^{\dagger}-e^{-i \theta} \psi_{k}^{\dagger} \psi_{k}=p_{k} \frac{1}{\Delta}
$$

0-11
ii) at seperated points $k>j$.

$$
\psi_{k} \psi_{j}^{\dagger}=e^{i \theta} \psi_{j}^{\dagger} \psi_{k}
$$

etc. (Thus we resolve an existing problem with Anyon models)
III. Quantum Integrable Anyon NLS

At continuum (field) limit of the above lattice model:
(Lattice const. $\Delta \rightarrow 0) \quad k \rightarrow x, \psi_{k} \rightarrow A(x)$
we derive Anyon quantum field $N L S$ model

$$
\hat{H}^{(3 a)}=\int d x\left(A_{x}^{\dagger} A_{x}+c\left(A^{\dagger} A\right)^{2}\right)
$$

with field operator $A(x)$ satisfying Anyon $C R$ at all points
(follow from the BYBE and BR !):
I) At $x=y$:

$$
A(x) A^{\dagger}(y)-e^{i \theta} A^{\dagger}(y) A(x)=\delta(x-y)
$$

0-12
II) At $x>y$:

$$
\begin{aligned}
& A(x) A^{\dagger}(y)=e^{i \theta} A^{\dagger}(y) A(x) \\
& A(x) A(y)=e^{-i \theta} A(y) A(x)
\end{aligned}
$$

interpolating: i) Boson $(\theta=0)$, ii) Fermion $(\theta=\pi)$) N-particle sector

$$
\begin{gathered}
\mid N>=\int d^{N} x \sum_{\left\{x_{l}\right\}} \Phi\left(x_{1}, x_{2}, \ldots x_{N}\right) \\
\left.A^{\dagger}\left(x_{1}\right) A^{\dagger}\left(x_{2}\right) \cdots A^{\dagger}\left(x_{n}\right)\right) \mid 0>
\end{gathered}
$$

of the NLS Anyon quantum field model $\longrightarrow \delta$ - Anyon Gas!

$$
H_{N}=-\sum_{k} \partial_{k}^{2}+c \sum_{k \neq j} \delta\left(x_{k}-x_{l}\right)
$$

- Establishing thus the missing link between the well known anyon gas (δ-function) and a Anyon quantum

$$
0-13
$$

field model (NLS)!
Now we construct
B. another class of quantum integrable Anyon models using
known trigonometric $R_{t}(u)$-matrix
but with same Z-matrix
IV. q-Anyon model

From BYBE (following similar construction) we get
Novel Anyonic q-oscillator: (with two deformation parameters: $q=e^{i \alpha}$ and anyon parameter: $s=e^{i \theta}$)
i) At coinciding points k

$$
\phi_{k} \phi_{k}^{\dagger}-e^{i \theta} \phi_{k}^{\dagger} \phi_{k}=e^{i \theta N_{k}} \cos 2 \alpha N_{k}
$$

ii) at separated points $k>j$:

$$
\phi_{k} \phi_{j}^{\dagger}=e^{i \theta} \phi_{j}^{\dagger} \phi_{k}
$$

Not giving details of this model, switch over to its QFT limit

At field limit $\Delta \rightarrow 0: \phi_{k} \rightarrow D(x)$ we obtain V. Quantum Integrable derivative- NLS Anyon field model

$$
\hat{H}^{(4 a)}=\int d x\left(D_{x}^{\dagger} D_{x}+2 i \kappa\left(D^{\dagger}\right)^{2} D D_{x}\right)
$$

with Anyon field $C R$:
I) At $x=y$:

$$
D(x) D^{\dagger}(y)-e^{i \theta} D^{\dagger}(y) D(x)=\kappa \delta(x-y)
$$

II) At $x>y$:

$$
D(x) D^{\dagger}(y)=e^{i \theta} D^{\dagger}(y) D(x)
$$

etc.
N-particle sector $\mid N>$
of this Anyon DNLS field \longrightarrow known δ^{\prime} - Anyon gas!

$$
H_{N}^{d}=-\sum_{k} \partial_{k}^{2}+i \kappa \sum_{k \neq j} \delta\left(x_{k}-x_{l}\right)\left(\partial_{x_{k}}+\partial_{x_{l}}\right)
$$

$$
0-15
$$

- Establishing thus the final missing link between δ^{\prime} Anyon gas and Anyon DNLS model (a QFT model) Note: All Anyon models constructed here (Anyon lattice and q-oscillator model, NLS and DNLS Anyon field models) are
i) Quantum Integrable and
ii) Exactly solvable by algebraic Bethe Ansatz.
VI. Anyon Quantum Group:

From BYBE and BR with same Z and Trig. R_{t}-matrix we discover Novel Anyon Quantum Group $A_{\theta} s_{q} u(2)$ (with two deformation parameters: $q, s=e^{i \theta}$):

$$
\begin{gathered}
S^{+} S^{-}-s S^{+} S^{+}=\left[2 S^{3}\right]_{q} s^{-S^{3}}, \\
q^{S^{3}} S^{ \pm}=q^{ \pm 1} S^{ \pm} q^{S^{3}}, \quad s^{S^{3}} S^{ \pm}=s^{ \pm 1} S^{ \pm} s^{S^{3}}
\end{gathered}
$$

denoting $[x]_{q} \equiv \frac{q^{x}-q^{-x}}{q-q^{-1}}=\frac{\sin \alpha x}{\sin \alpha}$.
Note: Hopf algebra structure :

$$
0-16
$$

(relared to Braided Hopf algebra of S.Majid)
i.) Unusual braided multiplication:

$$
\begin{gathered}
\left(I \otimes S^{ \pm}\right)\left(S^{ \pm} \otimes I\right)=s^{-1}\left(S^{ \pm} \otimes S^{ \pm}\right) \\
\left(I \otimes S^{\mp}\right)\left(S^{ \pm} \otimes I\right)=s\left(S^{ \pm} \otimes S^{\mp}\right)
\end{gathered}
$$

ii.) Two-parameter deformed coproduct:

$$
\begin{gathered}
\Delta\left(S^{+}\right)=q^{-S^{3}} \otimes S^{+}+S^{+} \otimes q^{S^{3}} s^{-S^{3}}, \\
\Delta\left(S^{-}\right)=q^{-S^{3}} s^{-S^{3}} \otimes S^{-}+S^{-} \otimes q^{S^{3}}, \Delta\left(S^{3}\right)=S^{3} \otimes I+I \otimes S^{3}
\end{gathered}
$$

Remark : check algebra by direct insertion ! At $s=1 \longrightarrow$ standard $s u_{q}(2)$ quantum algebra

$$
\left[S^{-}, S^{+}\right]_{-}=\left[2 S^{3}\right]_{q}, \quad\left[S^{3}, S^{ \pm}\right]= \pm S^{3},
$$

with usual commutative multiplication

$$
\left(I \otimes S^{ \pm}\right)\left(S^{ \pm} \otimes I\right)=\left(S^{ \pm} \otimes S^{ \pm}\right),
$$

0-17
atc
At $q \rightarrow 1$ and arbitrary s
VI. Novel purely Anyonic-deformed $A_{\theta} s u(2)$ algebra

$$
S^{+} S^{-}-s S^{+} S^{+}=2 S^{3} s^{-S^{3}}, s^{S^{3}} S^{ \pm}=s^{ \pm 1} S^{ \pm} s^{S^{3}}
$$

with braided multiplication

$$
\left(I \otimes S^{ \pm}\right)\left(S^{ \pm} \otimes I\right)=s^{-1}\left(S^{ \pm} \otimes S^{ \pm}\right)
$$

etc. and a non-cocommutative coproduct!:
$\Delta\left(S^{+}\right)=I \otimes S^{+}+S^{+} \otimes s^{-S^{3}}, \Delta\left(S^{-}\right)=s^{-S^{3}} \otimes S^{-}+S^{-} \otimes I$, etc.

What we have achieved
i) Systematic construction of 1d Anyon models through Braided YBE
1a) All models generated are quantum integrable and

0-18
solvable by algebraic Bethe Ansatz
ii) We have constructed Lattice anyon models:

Known hard-core Anyon and New Lattice Anyon nextNN model + q-oscillator model
iii) Novel Anyon field models: NLS and DNLS, their N-particle sectors gaving known δ and δ^{\prime} Anyon gases iv) We obtain Novel Anyon Quantum Group with unusual Hopf algebra structure
v) Future problems:

- Discover Non-Abelian Anyon models by choosing more general Z-matrix!
- Construct Anyonic sine-Gordon model realizing Anyon quantum group!

Thank You!

