Negative Even Grade mKdV Hierarchy and its Soliton Solutions

J. F. Gomes, G. S. França, G.R. de Melo and A. H. Zimerman Instituto de Física Teórica IFT-Unesp
São Paulo - Brasil

Aim

- Discuss the construction of time evolution equations associated to negative even graded Lie algebraic structure.
- Modify dressing method to construct solutions.
- Construct soliton solutions by deforming vertex operators.

The mKdV Hierarchy

- Start with $s l(2)$ Lie Algebra with generators

$$
\left[h, E_{ \pm \alpha}\right]= \pm 2 E_{ \pm \alpha}, \quad\left[E_{\alpha}, E_{-\alpha}\right]=h
$$

- Affine Lie algebra $T_{a} \rightarrow T_{a}^{(m)} \equiv \lambda^{m} T_{a}, \quad m \in Z$, i.e.,

$$
h \rightarrow h^{(m)}=\lambda^{m} h, \quad E_{ \pm \alpha} \rightarrow E_{ \pm}^{(m)}=\lambda^{m} E_{ \pm}
$$

- Grading operator $Q=2 \lambda \frac{d}{d \lambda}+\frac{1}{2} h$
- Decomposition of Affine Lie Algebra into graded subspaces $\hat{\mathcal{G}}=$ $\oplus_{i} \mathcal{G}_{i}$ such that $\left[Q, \mathcal{G}_{i}\right]=i \mathcal{G}_{i}$,

$$
\begin{aligned}
& \mathcal{G}_{2 m}=\left\{h^{(m)}=\lambda^{m} h\right\}, \\
& \mathcal{G}_{2 m+1}=\left\{\lambda^{m}\left(E_{\alpha}+\lambda E_{-\alpha}\right), \lambda^{m}\left(E_{\alpha}-\lambda E_{-\alpha}\right)\right\} \\
& m=0, \pm 1, \pm 2, \ldots \text { where }\left[\mathcal{G}_{i}, \mathcal{G}_{j}\right] \subset \mathcal{G}_{i+j} .
\end{aligned}
$$

- Choose element semi-simple $E=E^{(1)}=E_{\alpha}+\lambda E_{-\alpha}$, such that $\mathcal{K}=$ Kernel $=\{x, /[x, E]=0\}$, and $\mathcal{G}=\mathcal{K}+\mathcal{M}$, where $\mathcal{K}=$ $\mathcal{K}_{2 n+1}=\left\{\lambda^{n}\left(E_{\alpha}+\lambda E_{-\alpha}\right)\right\}$ has grade $2 n+1$ and \mathcal{M} is the complement. We assume that E is semi-simple in the sense that this second decomposition is such that

$$
[\mathcal{K}, \mathcal{K}] \subset \mathcal{K}, \quad[\mathcal{K}, \mathcal{M}] \subset \mathcal{M}, \quad[\mathcal{M}, \mathcal{M}] \subset \mathcal{K} .
$$

- Define Lax operator $\partial_{x}+E^{(1)}+A_{0}$, where $A_{0}=v(x) h \in \mathcal{M} \in \mathcal{G}_{0}$ (Image)
- Zero Curvature Equation for Positive Hierarchy

$$
\left[\partial_{x}+E^{(1)}+A_{0}, \partial_{t_{N}}+D^{(N)}+D^{(N-1)}+\cdots+D^{(0)}\right]=0
$$

where $D^{(j)} \in \mathcal{G}_{j}$ which can be decomposed and solved grade by grade. In particular, highest grade eqn. i.e., $\left[E, D^{(N)}\right]=0$ implies $D^{(N)} \in \mathcal{K}_{2 n+1}$ and therefore $N=2 n+1$.

- Examples

$$
N=3 \quad 4 v_{t_{3}}=v_{3 x}-6 v^{2} v_{x}, \quad m K d V
$$

$$
N=5 \quad 16 v_{t_{5}}=v_{5 x}-10 v^{2} v_{3 x}-40 v v_{x} v_{2 x}-10 v_{x}^{3}+30 v^{4} v_{x}
$$

$$
\begin{aligned}
N=7 \quad 64 v_{t_{7}} & =v_{7 x}-182 v_{x} v_{2 x}^{2}-126 v_{x}^{2} v_{3 x}-140 v v_{2 x} v_{3 x} \\
& -84 v v_{x} v_{4 x}-14 v^{2} v_{5 x}+420 v^{2} v_{3 x}+560 v^{3} v_{x} v_{2 x} \\
& +70 v^{4} v_{3 x}-140 v^{6} v_{x}
\end{aligned}
$$

Negative mKdV Hierarchy

- Zero Curvature representation for the negative hierarchy

$$
\left[\partial_{x}+E^{(1)}+A_{0}, \partial_{t_{-n}}+D^{(-n)}+D^{(-n+1)}+\cdots+D^{(-1)}\right]=0 .
$$

- Lowest grade projection,

$$
\partial_{x} D^{(-n)}+\left[A_{0}, D^{(-n)}\right]=0
$$

yields a nonlocal equation for $D^{(-n)}$. No condition upon n.

- The second lowest projection of grade $-n+1$ leads to

$$
\partial_{x} D^{(-n+1)}+\left[A_{0}, D^{(-n+1)}\right]+\left[E^{(1)}, D^{(-n)}\right]=0
$$

determines $D^{(-n+1)}$.

- The same mechanism works recursively until we reach the zero grade equation

$$
\partial_{t_{-n}} A_{0}+\left[E^{(1)}, D^{(-1)}\right]=0
$$

which gives the time evolution for the field in A_{0} according to time t_{-n}.

- Simplest Example $t_{-n}=t_{-1}$.

$$
\begin{aligned}
\partial_{x} D^{(-1)}+\left[A_{0}, D^{(-1)}\right] & =0, \\
\partial_{t_{-1}} A_{0}-\left[E^{(1)}, D^{(-1)}\right] & =0 .
\end{aligned}
$$

Solution is

$$
D^{(-1)}=B^{-1} E^{(-1)} B, \quad A_{0}=B^{-1} \partial_{x} B, \quad B=\exp \left(\mathcal{G}_{0}\right)
$$

The time evolution is then given by the Leznov-Saveliev equation,

$$
\partial_{t_{-1}}\left(B^{-1} \partial_{x} B\right)=\left[E^{(1)}, B^{-1} E^{(-1)} B\right]
$$

which for $\hat{s l}(2)$ with principal gradation $Q=2 \lambda \frac{d}{d \lambda}+\frac{1}{2} h$, yields the sinh-Gordon equation (relativistic)

$$
\partial_{t-1} \partial_{x} \phi=e^{2 \phi}-e^{-2 \phi}, \quad B=e^{\phi h} .
$$

where $t_{-1}=z, x=\bar{z}, A_{0}=v h=\partial_{x} \phi h$.

- No restriction for even Negative Hierarchy
- Next simplest example $t=t_{-2}$
Z.Qiao and W. Strampp Physica A 313, (2002), 365 ;

JFG, G Starvaggi Franca, G R de Melo and A H Zimerman, J. of Phys. A42,(2009), 445204

$$
\begin{aligned}
\partial_{x} D^{(-2)}+\left[A_{0}, D^{(-2)}\right] & =0, \\
\partial_{x} D^{(-1)}+\left[A_{0}, D^{(-1)}\right]+\left[E^{(1)}, D^{(-2)}\right] & =0, \\
\partial_{t-2} A_{0}-\left[E^{(1)}, D^{(-1)}\right] & =0 .
\end{aligned}
$$

Propose solution of the form

$$
\begin{aligned}
& D^{(-2)}=c_{-2} \lambda^{-1} h, \\
& D^{(-1)}=a_{-1}\left(\lambda^{-1} E_{\alpha}+E_{-\alpha}\right)+b_{-1}\left(\lambda^{-1} E_{\alpha}-E_{-\alpha}\right) .
\end{aligned}
$$

Get $c_{-2}=$ const and

$$
\begin{aligned}
& a_{-1}+b_{-1}=2 c_{-2} \exp \left(-2 d^{-1} v\right) d^{-1}\left(\exp \left(2 d^{-1} v\right)\right) \\
& a_{-1}-b_{-1}=-2 c_{-2} \exp \left(2 d^{-1} v\right) d^{-1}\left(\exp \left(-2 d^{-1} v\right)\right)
\end{aligned}
$$

Equation of motion is

$$
\partial_{t_{-2}} v+2 c_{-2} e^{-2 d^{-1} v} d^{-1}\left(e^{2 d^{-1} v}\right)+2 c_{-2} e^{2 d^{-1} v} d^{-1}\left(e^{-2 d^{-1} v}\right)=0
$$

where $d^{-1} f=\int^{x} f\left(x^{\prime}\right) d x^{\prime}$.

- Vacuum for $t=t_{-2}$ equation

1) $v=0$

$$
\begin{aligned}
& 0+2 c_{-2} e^{-2 \alpha} \int e^{2 \alpha}+2 c_{-2} e^{2 \alpha} \int e^{-2 \alpha} \neq 0 \\
c_{-2} \neq 0, & \alpha=\text { const }=d^{-1} 0
\end{aligned}
$$

2) $v=v_{0}$

$$
0+2 c_{-2} e^{-2 v_{0} x} \int e^{2 v_{0} x}+2 c_{-2} e^{2 v_{0} x} \int e^{-2 v_{0} x}=0
$$

Notice that, for $c_{-2} \neq 0, v=0$ is not solution of the evolution equation and therefore $A_{0}=0$ does not satisfy the zero curvature representation for $t=t_{-2}$.

Dressing Solutions for Negative Hierarchy

- Propose the simplest non trivial vacuum configuration

$$
\begin{aligned}
A_{x, v a c} & =\left(E_{\alpha}^{(0)}+E_{-\alpha}^{(1)}\right)+v_{0} h^{(0)}-\frac{1}{v_{0}} t_{-2 m} \delta_{m-1,0} \hat{c}, \\
A_{t_{-2 m}, v a c} & =\frac{1}{v_{0}}\left(E_{\alpha}^{(-m)}+E_{-\alpha}^{(1-m)}\right)+h^{(-m)}
\end{aligned}
$$

with $v_{0}=$ const. $\neq 0$.
It is straightforward to verify the zero curvature equation

$$
\left[\partial_{x}+A_{x, v a c}, \partial_{t_{-2 m}}+A_{t-2 m, v a c}\right]=0 .
$$

This nontrivial vacuum leads to the following deformation, i.e., $A_{x, v a c}=T_{0}^{-1} \partial_{x} T_{0}$ and $A_{t_{k}, v a c}=T_{0}^{-1} \partial_{t_{k}} T_{0}$,

$$
\begin{array}{r}
T_{0}=\exp \left\{x\left(E_{\alpha}^{(0)}+E_{-\alpha}^{(1)}+v_{0} h^{(0)}\right)\right\} . \\
\exp \left\{\frac{t_{-2 m}}{v_{0}}\left(E_{\alpha}^{(-m)}+E_{-\alpha}^{(1-m)}+v_{0} h^{(-1)}\right)\right\} .
\end{array}
$$

Observe that consistency of the zero curvature representation with nontrivial vacuum configuration requires terms with mixed gradation in constructing T_{0}

The solution is then given by

$$
\begin{aligned}
e^{-\nu} & =<\lambda_{0}\left|T_{0}^{-1} g T_{0}\right| \lambda_{0}>\equiv \tau_{0}, \\
e^{-\phi+x v_{0}-\nu} & =<\lambda_{1}\left|T_{0}^{-1} g T_{0}\right| \lambda_{1}>\equiv \tau_{1}
\end{aligned}
$$

and hence,

$$
v=v_{0}-\partial_{x} \ln \left(\frac{\tau_{0}}{\tau_{1}}\right), \quad v=\partial_{x} \phi
$$

In order to construct explicit soliton solutions consider the deformed vertex operators

$$
\begin{aligned}
F\left(\gamma, v_{0}\right)=\sum_{n=-\infty}^{\infty}\left(\gamma^{2}-v_{0}^{2}\right)^{-n}\left[h^{(n)}\right. & +\frac{v_{0}-\gamma}{2 \gamma} \delta_{n, 0} \hat{c}+E_{\alpha}^{(n)}\left(\gamma+v_{0}\right)^{-1} \\
& \left.-E_{-\alpha}^{(n+1)}\left(\gamma-v_{0}\right)^{-1}\right] .
\end{aligned}
$$

A direct calculation shows that

$$
\left[b_{-2 m}, F\left(\gamma, v_{0}\right)\right]=-2 \gamma\left(\gamma^{2}-v_{0}^{2}\right)^{-m} F\left(\gamma, v_{0}\right)
$$

If we now take,

$$
g=\exp \left\{F\left(\gamma, v_{0}\right)\right\}
$$

We find the soliton solution of the form

$$
\tau_{0}=1+C_{0} \rho\left(\gamma, v_{0}\right), \quad \tau_{1}=1+C_{1} \rho\left(\gamma, v_{0}\right)
$$

where,

$$
\rho\left(\gamma, v_{0}\right)=\exp \left\{2 \gamma x+\frac{2 \gamma t_{-2 m}}{v_{0}\left(\gamma^{2}-v_{0}^{2}\right)^{m}}\right\} .
$$

Models allowing constant vacuum solution

- Negative even

$$
\left[\partial_{x}+E+v_{0} h^{(0)}, \partial_{t_{-2 m}}+D_{v a c}^{(-2 m)}+D_{v a c}^{(-2 m+1)}+\cdots+D_{v a c}^{(-2)}+D_{v a c}^{(-1)}\right]=
$$

solution is

$$
\begin{aligned}
D_{v a c}^{(-2 m)}=\lambda^{-m} h^{(0)} & D_{v a c}^{(-2 m+1)}=\frac{\lambda^{-m} E}{v_{0}} \\
\vdots & \vdots \\
D_{v a c}^{(-2)}=\lambda^{-1} h^{(0)} & D_{v a c}^{(-1)}=\frac{\lambda^{-1} E}{v_{0}}
\end{aligned}
$$

Notice the r.h.s. of zero curvature equation requires $2 m$ terms which combine together to form

$$
D_{v a c}^{(-2 i)}+D_{v a c}^{(-2 i+1)}=\lambda^{-i}\left(h^{(0)}+\frac{E}{v_{0}}\right)
$$

such that

$$
\left[\partial_{x}+E+v_{0} h^{(0)}, \partial_{t_{-2 m}}+\lambda^{-m}\left(h^{(0)}+\frac{E}{v_{0}}\right)+\cdots+\lambda^{-1}\left(h^{(0)}+\frac{E}{v_{0}}\right)\right]=0
$$

- Positive odd (mKdV, etc)

$$
\left[\partial_{x}+E+v_{0} h^{(0)}, \partial_{t_{2 m+1}}+D_{\text {vac }}^{(2 m+1)}+D_{\text {vac }}^{(2 m)}+\cdots+D_{\text {vac }}^{(1)}+D_{\text {vac }}^{(0)}\right]=0
$$

solution is

$$
\begin{array}{rll}
D_{\text {vac }}^{(2 m+1)}=\frac{\lambda^{m} E}{v_{0}} \lambda^{m} h^{(0)} & D_{\text {vac }}^{(2 m)}=\lambda^{m} h^{(0)}, \\
\vdots & \vdots \\
D_{\text {vac }}^{(1)}=\frac{\lambda E}{v_{0}} & D_{\text {vac }}^{(0)}=h^{(0)},
\end{array}
$$

The r.h.s. of zero curvature equation requires $2 m$ terms which combine together to form

$$
D_{v a c}^{(2 i+1)}+D_{v a c}^{(2 i)}=\lambda^{i}\left(h^{(0)}+\frac{E}{v_{0}}\right)
$$

such that

$$
\left[\partial_{x}+E+v_{0} h^{(0)}, \partial_{t_{2 m+1}}+\lambda^{m}\left(h^{(0)}+\frac{E}{v_{0}}\right)+\cdots+\lambda^{0}\left(h^{(0)}+\frac{E}{v_{0}}\right)\right]=0
$$

- Negative Odd

$$
\begin{aligned}
{\left[\partial_{x}+E+v_{0} h^{(0)}\right.} & , \partial_{t-2 m-1}+D_{\text {vac }}^{(-2 m-1)} \\
& \left.+D_{\text {vac }}^{(-2 m)}+D_{\text {vac }}^{(-2 m+1)}+\cdots+D_{\text {vac }}^{(-2)}+D_{\text {vac }}^{(-1)}\right]=0
\end{aligned}
$$

Notice the r.h.s. of zero curvature equation has $2 m+1$ terms that they cannot combine to form combinations proportional to $E+v_{0} h^{(0)}$ and henceforth the negative odd hierarchy does not allow constant vacuum solutions. E.g. sine-Gordon

Conclusions and Further Developments

- Introduced Negative Even Sub-Hierarchy of integrable equations.
- Proposed systematic construction of solutions in terms of deformed vertex operators.
- Generalize to other integrable hierarchies allowing constant vacuum solutions.
- Adapt Dressing method to construct periodic solutions (Jacobi Theta functions).
where

$$
\tau_{a}=\sum_{k=-\infty}^{+\infty} e^{2 \pi i \eta k^{2}} \rho^{k}, \quad \eta=\text { deform. parameter }
$$

c.f. soliton where

$$
\tau_{0}=1+\rho, \quad \tau_{1}=1-\rho
$$

