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Introduction

The role of nonrelativistic symmetries

in string theory was always important.

In fact, being the theory of everything

string theory encompasses together rel-

ativistic quantum field theory, classical

gravity, and certainly, non-relativistic

quantum mechanics, in such a way that

it is not even necessary to separate

these components.

Thus, it is not a surprise that the Schrö-

dinger group - the group that is the



maximal group of symmetry of the Schrö-

dinger equation - is playing more and

more a prominent role.

Originally, the Schrödinger group, ac-

tually the Schrödinger algebra, was in-

troduced by Niederer and Hagen, as

nonrelativistic limit of the vector-field

realization of the conformal algebra. In

the process, the space components of

special conformal transformations de-

couple from the system. Thus, e.g., in

the case of four-dimensional Minkowski

space-time from the 15 generators of



the conformal algebra we obtain the 12

generators of the Schrödinger algebra.

Recently, Son proposed another method

of identifying the Schrödinger algebra

in d+1 space-time. Namely, Son started

from AdS space in d+3 dimensional

space-time with metric that is invari-

ant under the corresponding conformal

algebra so(d+1,2) and then deformed

the AdS metric to reduce the symme-

try to the Schrödinger algebra.

In view of the relation of the conformal

and Schrödinger algebra there arises the



natural question. Is there a nonrela-

tivistic analogue of the AdS/CFT cor-

respondence, in which the conformal

symmetry is replaced by Schrödinger

symmetry. Indeed, this is to be ex-

pected since the Schrödinger equation

should play a role both in the bulk and

on the boundary.

Thus, we study the nonrelativistic ana-

logue of the AdS/CFT correspondence

in the framework of representation the-

ory. Before explaining what we do let



us remind that the AdS/CFT corre-

spondence has 2 ingredients [Malda-

cena,GKP,Witten]: 1. the holography

principle, which is very old, and means

the reconstruction of some objects in

the bulk (that may be classical or quan-

tum) from some objects on the bound-

ary; 2. the reconstruction of quantum

objects, like 2-point functions on the

boundary, from appropriate actions on

the bulk. Our main focus is put on

the first ingredient and we consider the

simplest case of the (3+1)-dimensional

bulk. It is shown that the holography



principle is established using represen-

tation theory only, that is, we do not

specify any action.

For the implementation of the first in-

gredient in the Schrödinger algebra con-

text we use a method that is used in

the mathematical literature for the con-

struction of discrete series representa-

tions of real semisimple Lie groups, and

which method was applied in the physics

literature first in [DMPPT] in exactly

an AdS/CFT setting, though that term

was not used then.



The method utilizes the fact that in

the bulk the Casimir operators are not

fixed numerically. Thus, when a vector-

field realization of the algebra in con-

sideration is substituted in the Casimir

it turns into a differential operator. In

contrast, the boundary Casimir opera-

tors are fixed by the quantum numbers

of the fields under consideration. Then

the bulk/boundary correspondence forces

an eigenvalue equation involving the

Casimir differential operator. That eigen-

value equation is used to find the two-

point Green function in the bulk which



is then used to construct the boundary-

to-bulk integral operator. This opera-

tor maps a boundary field to a bulk

field similarly to what was done in the

conformal context by Witten for the

scalar and other simple cases (and in

general in [D]). This is our first main

result.

Our second main result is that we show

that this operator is an intertwining op-

erator, namely, it intertwines the two

representations of the Schrödinger al-

gebra acting in the bulk and on the



boundary. This also helps us to estab-

lish that each bulk field has actually

two bulk-to-boundary limits. The two

boundary fields have conjugated con-

formal weights ∆, 3−∆, and they are

related by a boundary two-point func-

tion.

We consider also the second ingredient

of the AdS/CFT correspondence in the

Schrödinger context and show how our

formalism involving the Casimir differ-

ential operator relates to the case of

scalar field theory discussed in [Son,BMcG].



Preliminaries

The Schrödinger algebra s(d) in (d+1)-

dimensional space-time is generated by:

time translation Pt

space translation Pk

Galilei boosts Gk, k = 1, · · · , d

rotations Jk` = −J`k (which generate

the subalgebra so(d)), k, ` = 1, · · · , d

dilatation D

conformal transformation K



The non-trivial commutation relations

are [BR]

[Pt, D] = 2Pt, [Pt, Gk] = Pk,

[Pt, K] = D, [Pk, D] = Pk,

[Pk, K] = Gk, [D, Gk] = Gk,

[D, K] = 2K,

[Pi, Jk`] = δi`Pk − δikP`,

[Gi, Jk`] = δi`Gk − δikG`,

[Jij, Jk`] = δikJj` + δj`Jik−
−δi`Jjk − δjkJi`,

Central extension of the Schrödinger

algebra: ŝ(d), obtained by adding the

central element M to s(d) which enters

the additional commutation relations:

[Pk, G`] = δk`M.



Subalgebras:

The generators Jij, Pi form the ((d+

1)d/2)–dimensional Euclidean subalge-

bra E(d).

The generators Jij, Pi, D form the ((d+

1)d/2+1)–dimensional Euclidean Weyl

subalgebra W(d).

The subalgebras Ẽ(d) and W̃(d) gen-

erated by Jij, Gi and by Jij, Gi, D,

resp., are isomorphic to E(d), W(d),

resp.



The generators Jij, Pi, Gi, Pt form the

((d + 1)(d + 2)/2)–dimensional Galilei

subalgebra G(d).
The generators Jij, Pi, Gi, K form an-

other ((d + 1)(d + 2)/2)–dimensional

subalgebra G̃(d) which is isomorphic

to the Galilei subalgebra.

The isomorphic pairs mentioned above

are conjugated to each other.

For the structure of ŝ(d) it is also

important to note that the generators

D, K, Pt form an sl(2, IR) subalgebra.



Obviously ŝ(d) is not semisimple and

has the following Levi–Malcev decom-

position (d 6= 2):

ŝ(d) = N (d) BM(d)

N (d) = t(d)⊕ g(d)

M(d) = sl(2, IR)⊕ so(d) (1)

with M(d) acting on N (d), where the

maximal solvable ideal N (d) is abelian,

while the semisimple subalgebra (the

Levi factor) is M(d).

[For d = 2 the maximal solvable ideal

t(d)⊕ g(d)⊕ so(2) is not abelian, while

the Levi factor sl(2, IR) is simple.]



For our purposes we now restrict to the

1+1 dimensional case, d = 1. In this

case the centrally extended Schrödin-

ger algebra has six generators:

time translation: H

space translation: P

Galilei boost: G

dilatation: D

conformal transf.: K

mass: M

with the following non-vanishing com-

mutation relations:

[H, D] = 2H, [D, K] = 2K, [H, K] = D,

[P, G] = M, [P, K] = G, [H, G] = P,

[P, D] = P, [D, G] = G.



For our approach we need the Casimir

operator. It turns out that the lowest

order nontrivial Casimir operator is the

4-th order one [Perroud]:

C̃4 = (2MD − {P, G})2 −
2{2MK −G2,2MH − P2}

In fact, there are many cancellations,

and the central generator M is a com-

mon linear multiple.



Choice of bulk and boundary

We would like to select as bulk space

the four-dimensional space (x, x±, z) in-

troduced by Son:∗

ds2 = −2(dx+)2

z4
+ (2)

+
−2dx+dx−+ (dx)2 + dz2

z2

We require that the Schrödinger alge-

bra is an isometry of the above metric.

Here the variable z is the main vari-

able distinguishing the bulk, namely,
∗In the general setting of [Son] the space is (d + 3)-
dimensional.



the boundary is obtained when z = 0.

We also need to replace the central el-

ement M by the derivative of the vari-

able x− which is chosen so that ∂
∂x−

continues to be central. Thus, a vector-

field realization of the Schrödinger al-

gebra is given by:

H =
∂

∂x+
, P =

∂

∂x
, M =

∂

∂x−
,

G = x+
∂

∂x
+ x

∂

∂x−
, (3)

D = x
∂

∂x
+ z

∂

∂z
+ 2x+

∂

∂x+
,

K = x+


x

∂

∂x
+ z

∂

∂z
+ x+

∂

∂x+


 +

+
1

2
(x2 + z2)

∂

∂x−



and it generates an isometry of (3).

This vector-field realization of the Schrö-

dinger algebra acts on the bulk fields

φ(x±, x, z).

In this realization the Casimir becomes:

C̃4 = M2C4,

C4 = Ẑ2 − 4Ẑ − 4z2Ŝ

= 4z2∂2
z − 8z∂z + 5− 4z2Ŝ ,(4)

Ŝ ≡ 2∂−∂+ − ∂2
x , (5)

Ẑ ≡ 2z∂z − 1

Note that (5) is the pro-Schrödinger

operator.



Next we consider a realization of the

Schrödinger algebra on the boundary.

Actually, we use a well known such vector-

field realization [BR] in which we only

modify the expression for M :

H =
∂

∂x+
, P =

∂

∂x
, M =

∂

∂x−
,

G = x+
∂

∂x
+ xM, (6)

D = x
∂

∂x
+ ∆ + 2x+

∂

∂x+
,

K = x+


x

∂

∂x
+ ∆ + x+

∂

∂x+


 +

1

2
x2M

where ∆ is the conformal weight. This

vector-field realization of the Schroedinger



algebra acts on the boundary field φ(x±, x)

with fixed conformal weight ∆.

In this realization the Casimir becomes:

C̃0
4 = M2C0

4 ,

C0
4 = (2∆− 1)(2∆− 5) (7)

As expected C0
4 is a constant which has

the same value if we replace ∆ by 3−
∆:

C0
4(∆) = C0

4(3−∆) (8)

This already means that the two bound-

ary fields with conformal weights ∆ and

3 −∆ are related, or in mathematical



language, that the corresponding rep-

resentations are (partially) equivalent.

This will be very important also below.



Boundary-to-bulk correspondence

As we explained in the Introduction we

first concentrate on one aspect of AdS/CFT

[GKP,Witten], namely, the holography

principle, or boundary-to-bulk correspon-

dence, which means to have an oper-

ator which maps a boundary field ϕ to

a bulk field φ, cf. [Witten], also [D].

Mathematically, this means the follow-

ing. We treat both the boundary fields

and the bulk fields as representation

spaces of the Schrödinger algebra. The

action of the Schrödinger algebra in



the boundary, resp. bulk, representa-

tion spaces is given by formulae (6),

resp. by formulae (3). The boundary-

to-bulk operator maps the boundary rep-

resentation space to the bulk represen-

tation space. This will be done within

the framework of representation theory

without specifying any action.

The fields on the boundary are fixed by

the value of the conformal weight ∆,

correspondingly, as we saw, the Casimir

has the eigenvalue determined by ∆:

C0
4ϕ(x±, x) = λϕ(x±, x) , (9)

λ = (2∆− 1)(2∆− 5)



Thus, the first requirement for the cor-

responding field on the bulk φ(x±, x, z)

is to satisfy the same eigenvalue equa-

tion, namely, we require:

C4φ(x±, x, z) = λφ(x±, x, z) , (10)

λ = (2∆− 1)(2∆− 5)

where C4 is the differential operator

given in (4). Thus, in the bulk the

eigenvalue condition is a differential equa-

tion.

The other condition is the behaviour

of the bulk field when we approach the



boundary:

φ(x±, x, z) → zαϕ(x±, x) , (11)

α = ∆,3−∆

To find the boundary-to-bulk operator

we follow the method of [DMPPT],

namely, we find the two-point Green

function in the bulk solving the differ-

ential equation:

(C4−λ)G(χ, z ; χ′, z′) = z′4 δ3(χ−χ′) δ(z−z′)
(12)

where χ = (x+, x−, x).



It is important to use an invariant vari-

able which in our case is:

u =

= 4zz′
(x−x′)2−2(x+−x′+)(x−−x′−)+(z+z′)2

The normalization is chosen so that for

coinciding points we have u = 1.

In terms of u the Casimir becomes:

C4 = 4u2(1− u)
d2

du2
− 8u

d

du
+ 5 (13)

The eigenvalue equation can be reduced

to the hypergeometric equation by the



substitution:

G(χ, z;χ′, z′) = G(u)

= uαĜ(u)

and the two solutions are:

Ĝ(u) = F (α, α− 1; 2(α− 1);u)

where F = 2F1 is the standard hyper-

geometric function, α = ∆,3−∆.

As expected at u = 1 both solutions

are singular: by [BaEr], they can be

recast into:

G(u) =
u∆

1− u
F (∆−2,∆−1; 2(∆−1);u),



G(u) =
u3−∆

1− u
F (1−∆,2−∆;2(2−∆);u).

Following the general method the boundary-

to-bulk operator is obtained from the

two-point bulk Green function by bring-

ing one of the points to the boundary,

however, one has to take into account

all info from the field on the boundary.



More precisely, in mathematical terms

we express the function in the bulk with

boundary behaviour (11) through the

function on the boundary by the for-

mula:

φ(χ, z) =
∫

d3χ′ Sα(χ− χ′, z)ϕ(χ′),
(14)

where d3χ′ = dx′+dx′−dx′ and Sα(χ −
χ′, z) is defined by

Sα(χ− χ′, z) = limz′→0 z′−α G(u) =

=
[

4z
(x−x′)2−2(x+−x′+)(x−−x′−)+z2

]α



Intertwining properties

Let us denote by Lα the bulk-to-boundary

operator :

(Lα φ)(χ)
.
= lim

z→0
z−αφ(χ, z), (15)

where α = ∆,3−∆ consistently with

(11). The intertwining property is:

Lα ◦ X̂ = X̃α ◦ Lα, X ∈ ŝ(1), (16)

where X̃α denotes the action of the

generator X on the boundary (6) (with

∆ replaced by α from (11)), X̂ denotes

the action of the generator X in the

bulk (3).



Let us denote by L̃α the boundary-to-

bulk operator in (14):

φ(χ, z) = (L̃αϕ)(χ, z)
.
=

.
=

∫
d3χ′ Sα(χ− χ′, z)ϕ(χ′)

The intertwining property now is:

L̃α ◦ X̃3−α = X̂ ◦ L̃α, X ∈ ŝ(1).

(17)



Next we check consistency of the bulk-

to-boundary and boundary-to-bulk op-

erators, namely, their consecutive ap-

plication in both orders should be the

identity map:

L3−α ◦ L̃α = 1boundary, (18)

L̃α ◦ L3−α = 1bulk. (19)

Checking (18) means:

(L3−α ◦ L̃α ϕ)(χ) =

= limz→0 zα−3 (L̃α ϕ) (χ, z)

= limz→0 zα−3 ∫
d3χ′ Sα(χ− χ′, z)ϕ(χ′)

= limz→0 zα−3 ∫
d3χ′

(
4z
A

)α
ϕ(χ′) ,



A = (x−x′)2−2(x+−x′+)(x−−x′−)+z2

For the above calculation we interchange

the limit and the integration, and use

the following formula:

limz→0 zα−3
(
4z
A

)α
= (20)

= 22απ3/2 Γ(α−3
2)

Γ(α) δ3(χ− χ′) ,

α− 3/2 /∈ ZZ−



Using (20) we obtain:

(L3−α◦L̃α ϕ)(χ) = 22απ3/2 Γ(α− 3
2)

Γ(α)
ϕ(χ)

(21)

Thus, in order to obtain (18) exactly,

we have to normalize, e.g., L̃α.

We note the excluded values α−3/2 /∈
ZZ− for which the two intertwining op-

erators are not inverse to each other.

This means that at least one of the

representations is reducible. This re-

ducibility was established [DDM] for the



associated Verma modules with low-

est weight determined by the confor-

mal weight ∆.†

Checking (19) is now straightforward,

but also fails for the excluded values.

†For more information on the representation theory and
related hierarchies of invariant differential operators
and equations, cf. [ADDMS].



Note that checking (18) we used (15)

for α → 3−α, i.e., we used one possible

limit of the bulk field (14). But it is

important to note that this bulk field

has also the boundary as given in (15).

Namely, we can consider the field:

ϕ0(χ)
.
= (Lα φ)(χ) = lim

z→0
z−αφ(χ, z),

(22)

where φ(χ, z) is given by (14). We ob-

tain immediately:

ϕ0(χ) =
∫

d3χ′Gα(χ− χ′)ϕ(χ′), (23)

where

Gα(χ) =


 4

x2 − 2x+x−



α

. (24)



If we denote by Gα the operator in (23)

then we have the intertwining property:

X̃α ◦Gα = Gα ◦ X̃3−α . (25)

Thus, the two boundary fields corre-

sponding to the two limits of the bulk

field are equivalent (partially equivalent

for α ∈ ZZ+3/2). The intertwining ker-

nel has the properties of the conformal

two-point function.

Thus, for generic ∆ the bulk fields ob-

tained for the two values of α are not

only equivalent - they coincide, since



both have the two fields ϕ0 and ϕ as

boundaries.

Remark: For the relativistic AdS/CFT

correspondence the above analysis re-

lating the two fields in (23) was given

in [D]. An alternative treatment relat-

ing these two fields via the Legendre

transform was given later in [KleWit].

As in the relativistic case there is a

range of dimensions when both fields

∆,3−∆ are physical:

∆0− ≡ 1/2 < ∆ < 5/2 ≡ ∆0
+ . (26)



At these bounds the Casimir eigenvalue

λ = (2∆− 1)(2∆− 5) becomes zero.



Nonrelativistic reduction

In order to connect our approach with

that of previous works [Son,BMcG,FuMo],

we consider the action for a scalar field

in the background (3):

I(φ) = −
∫

d3χdz
√−g (∂µφ∗∂µφ+m2

0|φ|2).
(27)

By integrating by parts, and taking into

account a non-trivial contribution from

the boundary, one can see that I(φ)

has the following expression:

I(φ) =
∫
d3χdz

√−g φ∗(¤−m2
0)φ−

− limz→0
∫
d3χ 1

z3φ∗ z∂zφ (28)



The second term is evaluated using (14).

For z → 0, one has

z∂zφ ∼
α(4z)α ∫

d3χ′ ϕ(χ′)
[(x−x′)2−2(x+−x′+)(x−−x′−)]α

+O(zα+2)

It follows that

limz→0
∫
d3χ 1

z3φ∗ z∂zφ

= limz→0 α
∫
d3χd3χ′zα−3φ∗(χ, z)

(
4
A

)α
ϕ(χ′)

= 4αα
∫
d3χd3χ′ ϕ(χ)∗ϕ(χ′)

[(x−x′)2−2(x+−x′+)(x−−x′−)]α

The equation of motion being read off

from the first term in (28) can be ex-



pressed in terms of the differential op-

erator (4):

(¤−m2
0)φ =

(
C4 − 5

4
+ 2∂2− −m2

0

)
φ = 0

(29)

Now we set an Ansatz for the fields

on the boundary: ϕ(χ) = eMx−ϕ(x+, x)

and compactify the x− coordinate: x−+

a ∼ x−. This leads to a separation of

variables for the fields in the bulk in the

following way:

φ(χ, z) = eMx− ∫
dx′+dx′ ∫ a

0 dξ ×

(
4z

(x−x′)2−2(x+−x′+)ξ+z2

)α
e−Mξϕ(x′+, x′)



Thus we are allowed to make the iden-

tification ∂− = M both in the bulk and

on the boundary [Son,BMcG]. We re-

mark that under this identification the

operator (5) becomes the Schrödinger

operator. Integration over ξ turns out

to be incomplete gamma function:

φ(χ, z) = eMx−φ(x+, x, z), (30)

φ(x+, x, z) = (−2z)αMα−1γ(1− α, Ma)

×
∫ dx′+dx′

(x+ − x′+)α
exp


−(x− x′)2 + z2

2(x+ − x′+)
M




× ϕ(x′+, x′).



This formula was obtained first in [FuMo].

The equation of motion (29) now reads
(
λ− 5

4
−m2

)
φ(x+, x, z) = 0, (31)

where m2 = m2
0 − 2M2.

Requiring φ(x+, x, z) to be a solution to

the equation of motion makes the con-

nection between the conformal weight

and mass:

∆± =
1

2
(3±

√
9 + 4m2). (32)

This result is identical to the relativistic

AdS/CFT correspondence [GKP,Witten].



The action (28) evaluated for this clas-

sical solutions has the following form

(α = ∆±):

I(φ) = −(−2)αMα−1αγ(1− α, Ma)

×
∫ dxdx+dx′dx′+

(x+ − x′+)α
exp


− (x− x′)2

2(x+ − x′+)
M




×ϕ(x+, x)∗ϕ(x′+, x′). (33)

The two-point function of the opera-

tor dual to φ computed from (33) co-

incides with the result of [Son, BMcG,

Henkel, StoHen].

We remark that the Ansatz for the bound-

ary fields ϕ(χ) = exp(Mx−−ωx++ikx)



used in [Son,BMcG] is not necessary to

derive (33).

One can also recover the solutions in

[Son,BMcG] rather simply in our group

theoretical context. We use again the

eigenvalue problem of the differential

operator (4):

C4 φ(x+, x, z) = λ φ(x+, x, z). (34)

but make separation of variables

φ(x+, x, z) = ψ(x+, x)f(z). Then (34)

is written as follows:

1
f(z)

(
∂2

z − 2
z∂z + 5−λ

4z2

)
f(z) =

1
ψ(x+,x)Ŝψ(x+, x) = p2 (const)



Schrödinger part is easily solved:

ψ(x+, x) = exp(−ωx+ + ikx)

which gives

p2 = −2Mω + k2. (35)

The equation for f(z) now becomes

∂2
z f(z)− 2

z ∂zf(z) + (36)

+
(
2Mω − k2 − m2

z2

)
f(z) = 0

This is the equation given in [Son,BMcG]

for d = 1. Thus, solutions to equa-

tion (36) are given by modified Bessel

functions: f±(z) = z3/2K±ν(pz) where

ν is related to the effective mass m



[Son,BMcG]. In our group theoretic ap-

proach one can see its relation to the

eigenvalue of C4 : ν =
√

λ + 4/2.

We finish by giving the expression of

(33) for the alternate boundary field

ϕ0. To this end, we again use the Ansatz

ϕ(χ) = eMx−ϕ(x+, x) for (23). Then

performing the integration over x′− it

is immediate to see that:

ϕ0(x, x+) ∼ eMx− ∫ dx′dx′+
(x+−x′+)α × (37)

× exp
(
− (x−x′)2

2(x+−x′+)
M

)
ϕ(x′+, x′)



One can invert this relation since G3−α◦
Gα = 1boundary. Substitution of (37)

and its inverse to (33) gives the fol-

lowing expression:

I(φ) ∼ ∫ dxdx+dx′dx′+
(x+−x′+)3−α × (38)

exp
(
− (x−x′)2

2(x+−x′+)
M

)
ϕ0(x+, x)∗ϕ0(x

′
+, x′)



Outlook

We plan to extend our considerations

for the higher-dimensional cases [Aiz-

Dob]. Higher dimensional Schrödinger

group has the rotation group as a sub-

group. Thus our formalism can be nat-

urally extended to the cases with ar-

bitrary spin. In the relativistic case

higher spins were leading to degenera-

cies, maybe the same phenomenon will

appear in the non-relativistic setting.


