# Correlation functions of the integrable spin-s $X X Z$ spin chains and some related topics ${ }^{2}$ 

## Tetsuo Deguchi

Ochanomizu University, Tokyo, Japan
June 15, 2010
[1,2] T.D. and Chihiro Matsui, NPB 814[FS](2009)405;831[FS](2010)359
[3] T. D. and Kohei Motegi, in preparation.
Partially in collaboration with Jun Sato
[4] Akinori Nishino and T. D., J. Stat. Phys. 133 (2008) 587
(For SCP model and the $s l_{2}$ loop algebra symmetry)
${ }^{2}$ RAQIS10, LAPTH, Annecy, France. The talk is given on June 15, 2010.

## Introduction

## Contents

- 0: Integrable spin- $s$ XXZ spin chains through fusion method
- Part I:
- (1): Quantum Inverse Scattering Problem for the spin-s XXZ spin chain (Several tricks such as Hermitian elementary matrices)
- (2): Multiple-integral representation of arbitrary correlation functions of the spin- $s \mathbf{X X Z}$ spin chain
- Part II:

Quantum Inverse Scattering Problem (QISP) for the super-integrable chiral Potts model (SCP model)

## Key idea:

We construct the spin- $s$ representation $V^{(2 s)}$ of $U_{q}\left(s l_{2}\right)$ in the $2 s$ th tensor product of spin-1/2 representations $V^{(1)}$ :

$$
\begin{aligned}
V^{(2 s)} & \subset V_{1}^{(1)} \otimes \cdots \otimes V_{2 s}^{(1)} \\
|2 s, n\rangle & =\left(\Delta^{(2 s-1)}\left(X^{-}\right)\right)^{n}|0\rangle_{1} \otimes \cdots \otimes|0\rangle_{2 s}
\end{aligned}
$$

We define dual vectors by anti-involution $*$ of $U_{q}\left(s l_{2}\right)$ :

$$
\langle 2 s, n|=(|2 s, n\rangle)^{*}
$$

If $q$ is complex, they are different from Hermitian conjugate vectors:

$$
\widetilde{\langle 2 s, n|}=(|2 s, n\rangle)^{\dagger}
$$

We thus introduce as Hermitian operators $\widetilde{E}^{m, n(2 s)}=|2 s, m\rangle \widetilde{\langle 2 s, n|}$

## PART 0: Review: Exact methods for deriving the multiple-integral representation of XXZ CFs

- The $q$-vertex operator approach (infinite system, no external field, zdero temperature)
M. Jimbo, K. Miki, T. Miwa and A. Nakayashiki, Phys. Lett. A 168 (1992) 256-263.
- An algebraic approach solving the $q \mathrm{KZ}$ equation M. Jimbo and T. Miwa, J. Phys. A: Math. Gen. 29 (1996) 2923-2958.
- Algebraic Bethe-ansatz approach (finite system, external fields) N. Kitanine, J.M. Maillet and V. Terras, Nucl. Phys. B 567 [FS] (2000) 554-582.


## Introduction: Monodromy matrix and the transfer matrix

We define the $R$-matrix and the monodromy matrix $T_{0,12 \cdots L}\left(\lambda ;\left\{w_{j}\right\}\right)$ by

$$
R_{12}\left(\lambda_{1}, \lambda_{2}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & b(u) & c(u) & 0 \\
0 & c(u) & b(u) & 0 \\
0 & 0 & 0 & 1
\end{array}\right)_{[1,2]}
$$

$T_{0,12 \cdots L}\left(\lambda ;\left\{w_{j}\right\}\right)=R_{0 L}\left(\lambda, w_{L}\right) R_{0 L-1}\left(\lambda, w_{L-1}\right) \cdots R_{02}\left(\lambda, w_{2}\right) R_{01}\left(\lambda, w_{1}\right)$
The operator-valued matrix element of the monodromy matrix give the creation and annihilation operators

$$
T_{0,12 \cdots L}\left(u ;\left\{w_{j}\right\}\right)=\left(\begin{array}{cc}
A(u) & B(u) \\
C(u) & D(u)
\end{array}\right)_{[0]}
$$

The transfer matrix, $t(u)$, is given by the trace of the monodromy matrix with respect to the 0th space:

$$
\begin{align*}
t\left(u ; w_{1}, \ldots, w_{L}\right) & =\operatorname{tr}_{0}\left(T_{0,12 \cdots L}\left(u ;\left\{w_{j}\right\}\right)\right) \\
& =A\left(u ;\left\{w_{j}\right\}\right)+D\left(u ;\left\{w_{j}\right\}\right) \tag{1}
\end{align*}
$$

## The Yang-Baxter equations: Essence of the integrability



Figure: The Yang-Baxter equations:
$R_{2,3}(v) R_{1,3}(u+v) R_{1,2}(u)=R_{1,2}(u) R_{1,3}(u+v) R_{2,3}(v)$

Spectral parameter $u$ is expressed by the angle between lines 1 and 2, where the interstion corresponds to $R_{1,2}(u)$.

Review: algebraic BA derivation of the multiple-integral representation of the spin- $1 / 2 \mathrm{XXZ}$ correlation functions

- Quantum Inverse Scattering Problem (QISP) Local spin- $1 / 2$ operators expressed by $A, B, C, D($ spin-1/2)
- Scalar product of the BA:

If $\left\{\mu_{j}\right\}$ or $\left\{\lambda_{j}\right\}$ are Bethe roots, we have

$$
\begin{aligned}
& \langle 0| C\left(\mu_{1}\right) \cdots C\left(\mu_{M}\right) B\left(\lambda_{1}\right) \cdots B\left(\lambda_{M}\right)|0\rangle=\operatorname{det} \Psi^{\prime} \text { (Slavnov's formula) } \\
& \frac{\langle 0| C\left(\mu_{1}\right) \cdots C\left(\mu_{M}\right) B\left(\lambda_{1}\right) \cdots B\left(\lambda_{M}\right)|0\rangle}{\langle 0| C\left(\lambda_{1}\right) \cdots C\left(\lambda_{M}\right) B\left(\lambda_{1}\right) \cdots B\left(\lambda_{M}\right)|0\rangle}=\operatorname{det}\left(\Psi^{\prime} / \Phi^{\prime}\right) \\
& \Phi^{\prime}: \text { the Gaudin matrix }
\end{aligned}
$$

- Integral equations for the matrix elements of $\Psi^{\prime} / \Phi^{\prime}$ To evaluate the matrix elements of $\left(\Psi^{\prime} / \Phi^{\prime}\right)$ by solving the integral equations (cf. Izergin)


## PART I: Higher-spin XXZ spin chains

Hamiltonians of the spin-1/2 and spin- $s$ XXZ spin chains
The spin-1/2 XXZ chain the Hamiltonian under the P. B. C.

$$
\begin{equation*}
\mathcal{H}_{\mathrm{XXZ}}=\frac{1}{2} \sum_{j=1}^{L}\left(\sigma_{j}^{X} \sigma_{j+1}^{X}+\sigma_{j}^{Y} \sigma_{j+1}^{Y}+\Delta \sigma_{j}^{Z} \sigma_{j+1}^{Z}\right) \tag{2}
\end{equation*}
$$

Here $\sigma_{j}^{a}(a=X, Y, Z)$ are Pauli matrices on the $j$ th site. We define $q$ by

$$
\Delta=\left(q+q^{-1}\right) / 2 \quad(q=\exp \eta)
$$

For $-1<\Delta \leq 1, \mathcal{H}_{\mathrm{XXZ}}$ is gapless. $\left(\Delta=\cos \zeta\right.$ by $q=e^{i \zeta}, 0 \leq \zeta<\pi$.) For $\Delta>1$ or $\Delta<-1$, it is gapful. $\left(\Delta= \pm \cosh \zeta\right.$ by $q=e^{-\zeta}, 0<\zeta$.) Integrable spin-s XXZ Hamiltonian $\mathcal{H}_{\mathrm{XXZ}}^{(2 s)}$ is given by the logarithmic derivative of the spin-s XXZ transfer matrix. (We express it by qCGC.)

$$
\begin{equation*}
\mathrm{s}=1 \mathrm{XXX} \text { case } \quad \mathcal{H}_{\mathrm{XXX}}^{(2)}=J \sum_{j=1}^{N_{s}}\left(\vec{S}_{j} \cdot \vec{S}_{j+1}-\left(\vec{S}_{j} \cdot \vec{S}_{j+1}\right)^{2}\right) \tag{3}
\end{equation*}
$$

Hereafter we shall often set $\ell=2 s$.

Relevant algebraic Bethe-ansatz studies on the spin- $s$ XXX CFs
[1] N. Kitanine,
Correlation functions of the higher spin $X X X$ chains, J. Phys. A: Math. Gen. 34 (2001) 8151-8169.
[2] O.A. Castro-Alvaredo and J.M. Maillet, Form factors of integrable Heisenberg (higher) spin chains, J. Phys. A: Math. Theor. 40 (2007) 7451-7471.

## Relevant studies on the higher-spin $X X Z$ and $X Y Z$ chains

[1] M. Idzumi, Calculation of Correlation Functions of the Spin-1 XXZ Model by Vertex Operators, Thesis, University of Tokyo, Feb. 1993.
[2] A.H. Bougourzi and R.A. Weston, $N$-point correlation functions of the spin 1 XXZ model, Nucl. Phys. B 417 (1994) 439-462.
[3] H. Konno,
Free-field representation of the quantum affine algebra $U_{q}\left(\widehat{\mathrm{sl}_{2}}\right)$ and form factors in the higher-spin XXZ model, Nucl. Phys. B 432 [FS] (1994) 457-486.
[4] T. Kojima, H. Konno and R. Weston,
The vertex-face correspondence and correlation functions of the eight-vertex model I: The general formalism,
Nucl. Phys. B 720 [FS] (2005) 348-398.

## Fusion construction

First trick: Applying the $R$-matrix $R^{+}$in the homogeneous grading to the fusion construction
Through a similarity transformation we transform $R$ to $R^{+}$

$$
\begin{gather*}
R_{12}^{+}(u)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & b(u) & c^{-}(u) & 0 \\
0 & c^{+}(u) & b(u) & 0 \\
0 & 0 & 0 & 1
\end{array}\right)_{[1,2]} .  \tag{4}\\
c^{ \pm}(u)=e^{ \pm} \sinh \eta / \sinh (u+\eta) \quad b(u)=\sinh u / \sinh (u+\eta)
\end{gather*}
$$

The $R^{+}$gives the intertwiner of the affine quantum group $U_{q}\left(\widehat{s l_{2}}\right)$ in the homogeneous grading:

$$
R_{12}^{+}(u)(\Delta(a))_{12}=(\tau \circ \Delta(a))_{12} R_{12}^{+}(u) \quad a \in U_{q}\left(s l_{2}\right)
$$

where $\tau$ denotes the permutation operator: $\tau(a \otimes b)=b \otimes a$ for $a, b \in U_{q}\left(s l_{2}\right)$, and $(\Delta(a))_{12}=\pi_{1} \otimes \pi_{2}(\Delta(a))$.

## Projection operators and the fusion constrution

We define permutation operator $\Pi_{12}$ by

$$
\begin{equation*}
\Pi_{12} v_{1} \otimes v_{2}=v_{2} \otimes v_{1}, \tag{5}
\end{equation*}
$$

and then define $\check{R}$ by

$$
\begin{equation*}
\check{R}_{12}^{+}(u)=\Pi_{12} R_{12}^{+} \tag{6}
\end{equation*}
$$

We define spin-1 projection operator by

$$
\begin{equation*}
P_{12}^{(2)}=\check{R}_{12}^{+}(u=\eta) \tag{7}
\end{equation*}
$$

We define spin $-\ell / 2$ projection operator recursively as follows.

$$
\begin{equation*}
P_{12 \cdots \ell}^{(\ell)}=P_{12 \cdots \ell-1}^{(\ell-1)} \check{R}_{\ell-1, \ell}^{+}((\ell-1) \eta) P_{12 \cdots \ell-1}^{(\ell-1)}, \tag{8}
\end{equation*}
$$



Figure: Projector $P^{(2)}$ is given by the special value of $R$-matrix $\check{R}(\eta)$, and hence it commutes with other $R$-matrices. (Cf. Kulish, Sklyanin, and Reshetikhin (1981)).

We define monodromy matrix $T_{0}^{(1,2 s)}\left(\lambda_{0} ; \xi_{1}, \ldots, \xi_{N_{s}}\right)$ acting on the tensor product $V^{(1)}\left(\lambda_{0}\right) \otimes\left(V^{(2 s)}\left(\xi_{1}\right) \otimes \cdots \otimes V^{(2 s)}\left(\xi_{N_{s}}\right)\right)$ as follows.

$$
\begin{equation*}
T_{0}^{(1,2 s)}\left(\lambda_{0} ; \xi_{1}, \ldots, \xi_{N_{s}}\right)=P_{12 \ldots L}^{(2 s)} \cdot R_{0,12 \ldots L}^{+}\left(\lambda_{0} ; w_{1}^{(2 s)}, \ldots, w_{L}^{(2 s)}\right) \cdot P_{12 \ldots L}^{(2 s)} . \tag{9}
\end{equation*}
$$

Here inhomogenous parameters $w_{j}$ are given by complete $2 s$-strings

$$
w_{2 s(p-1)+k}^{(2 s)}=\xi_{p}-(k-1) \eta \quad\left(p=1,2, \ldots, N_{s} ; k=1, \ldots, 2 s .\right)
$$

More precisely, we shall put them as almost complete $2 s$-strings

$$
w_{2 s(p-1)+k}^{(2 s ; \epsilon)}=\xi_{p}-(k-1) \eta+\epsilon r_{k} \quad\left(p=1,2, \ldots, N_{s} ; k=1, \ldots, 2 s .\right)
$$

We express the matrix elements of the monodromy matrix as follows.

$$
\begin{gather*}
T_{0,12 \cdots N_{s}}^{(1,2 s)}\left(\lambda ;\left\{\xi_{k}\right\}_{N_{s}}\right)=\left(\begin{array}{cc}
A^{(2 s)}\left(\lambda ;\left\{\xi_{k}\right\}_{N_{s}}\right) & B^{(2 s)}\left(\lambda ;\left\{\xi_{k}\right\}_{N_{s}}\right) \\
C^{(2 s)}\left(\lambda ;\left\{\xi_{k}\right\}_{N_{s}}\right) & D^{(2 s)}\left(\lambda ;\left\{\xi_{k}\right\}_{N_{s}}\right)
\end{array}\right) .  \tag{10}\\
A^{(2 s)}\left(\lambda ;\left\{\xi_{k}\right\}_{N_{s}}\right)=P_{12 \cdots L}^{(2 s)} \cdot A^{(1)}\left(\lambda ;\left\{w_{j}^{(2 s)}\right\}_{L}\right) \cdot P_{12 \cdots L}^{(2 s)}
\end{gather*}
$$



Figure: Matrix element of the monodromy matrix $\left(T_{\alpha, \beta}^{(\ell, 2 s)}\right)_{b_{1}, \ldots, b_{N_{s}}}^{a_{1}, \ldots, a_{N_{s}}}$.
Here quantum spaces $V_{j}^{(2 s)}\left(\xi_{j}\right)$ are $(2 s+1)$-dimensional (vertical lines), Variables $a_{j}$ and $b_{j}$ take values $0,1, \ldots, 2 s$
while the auxiliary space $V_{0}^{(\ell)}\left(\lambda_{0}\right)$ is $(\ell+1)$-dimensional (horizontal line). variables $c_{j}$ take values $0,1, \ldots, \ell$.

$$
L=2 s N_{s}
$$

Spin-1/2 chain of $L$-sites with inhomogeneous parameters $w_{1}, \ldots, w_{L}$, while the spin- $s$ chain of $N_{s}$ sites with $\xi_{1}, \ldots, \xi_{N_{s}}$.

We now define $T_{0}^{(\ell, 2 s)}\left(\lambda_{0} ; \xi_{1}, \ldots, \xi_{N_{s}}\right)$ acting on the tensor product $V_{0}^{(\ell)}\left(\lambda_{0}\right) \otimes\left(V^{(2 s)}\left(\xi_{1}\right) \otimes \cdots \otimes V^{(2 s)}\left(\xi_{N_{s}}\right)\right)$ as follows.

$$
\begin{gathered}
T_{0,12 \cdots N_{s}}^{(\ell, 2 s)}=P_{a_{1} a_{2} \cdots a_{\ell}}^{(\ell)} T_{a_{1}, 12 \cdots N_{s}}^{(1,2 s)}\left(\lambda_{a_{1}}\right) T_{a_{2}, 12 \cdots N_{s}}^{(1,2 s)}\left(\lambda_{a_{1}}-\eta\right) \cdots \\
T_{a_{\ell}, 12 \cdots N_{s}}^{(1,2 s)}\left(\lambda_{a_{1}}-(\ell-1) \eta\right) P_{a_{1} a_{2} \cdots a_{\ell}}^{(\ell)} .
\end{gathered}
$$

## AB Derivation of the multiple-integral representation for the

 integrable spin- $s \mathbf{X X Z}$ correlation functions- Quantum Inverse Scattering Problem (QISP) Spin-s local operators expressed in terms of $A, B, C, D(\operatorname{spin}-1 / 2)$
- Scalar product:

If $\left\{\lambda_{j}\right\}$ are Bethe roots, we have the determinant expression:

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0}\langle 0| C^{(2 s)}\left(\mu_{1}\right) \cdots C^{(2 s)}\left(\mu_{M}\right) B^{(2 s)}\left(\lambda_{1}\right) \cdots B^{(2 s)}\left(\lambda_{M}\right)|0\rangle \\
& =\operatorname{det} \Psi^{\prime(2 s)} \\
& \frac{\langle 0| C^{(2 s)}\left(\mu_{1}\right) \cdots C^{(2 s)}\left(\mu_{M}\right) B^{(2 s)}\left(\lambda_{1}\right) \cdots B^{(2 s)}\left(\lambda_{M}\right)|0\rangle}{\langle 0| C^{(2 s)}\left(\lambda_{1}\right) \cdots C^{(2 s)}\left(\lambda_{M}\right) B^{(2 s)}\left(\lambda_{1}\right) \cdots B^{(2 s)}\left(\lambda_{M}\right)|0\rangle} \\
& =\operatorname{det}\left(\Psi^{\prime}(2 s) / \Phi^{\prime(2 s)}\right)
\end{aligned}
$$

- Integral equations for the spin- $s$

To evaluate the matrix elements of $\left(\Psi^{\prime(2 s)} / \Phi^{\prime(2 s)}\right)$ by solving the integral equations

## Scheme of exact derivation of spin- $s \mathbf{X X Z}$ correlation functions

- (1) Algebraic part:

Quantum Inverse Scattering Problem (QISP) Formula, Slavnov's scalor product formula, Algebraic Bethe ansatz,

Fusion method, projectors, Hermitian elementary matrices

- (2) Physical part:

Fundamental conjecture: In the region $0 \leq \zeta<\pi / 2 s$, the spin- $s$ XXZ ground state is given by a Bethe-ansatz eigenvector of $2 s$-strings with small deviations
(Cf. A. Klümper, M. Batchelor and P.A. Pearce, J. Phys. A: Math. Gen. 24 (1991) 3111-3133. )

The low-lying excitation spectrum of the spin- $s$ XXZ chain should be characterized by the level $k \mathrm{SU}(2) \mathrm{WZWN}$ model with $k=2 s$.

Spin-s Gaudin's matrix, spin-s integral equations

## Spin- $\ell / 2$ rep. of quantum group $U_{q}\left(s l_{2}\right)$

The quantum algebra $U_{q}\left(s l_{2}\right)$ is an associative algebra over $\mathbf{C}$ generated by $X^{ \pm}, K^{ \pm}$with the following relations:

$$
\begin{align*}
K K^{-1} & =K K^{-1}=1, \quad K X^{ \pm} K^{-1}=q^{ \pm 2} X^{ \pm} \\
{\left[X^{+}, X^{-}\right] } & =\frac{K-K^{-1}}{q-q^{-1}} \tag{11}
\end{align*}
$$

The algebra $U_{q}\left(s l_{2}\right)$ is also a Hopf algebra over $\mathbf{C}$ with comultiplication

$$
\begin{align*}
\Delta\left(X^{+}\right) & =X^{+} \otimes 1+K \otimes X^{+}, \quad \Delta\left(X^{-}\right)=X^{-} \otimes K^{-1}+1 \otimes X^{-} \\
\Delta(K) & =K \otimes K \tag{12}
\end{align*}
$$

and antipode: $S(K)=K^{-1}, S\left(X^{+}\right)=-K^{-1} X^{+}, S\left(X^{-}\right)=-X^{-} K$, and coproduct: $\epsilon\left(X^{ \pm}\right)=0$ and $\epsilon(K)=1$.
$[n]_{q}=\left(q^{n}-q^{-n}\right) /\left(q-q^{-1}\right):$ the $q$-integer of an integer $n$.
$[n]_{q}$ !: the $q$-factorial for an integer $n$.

$$
\begin{equation*}
[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q} . \tag{13}
\end{equation*}
$$

For integers $m \geq n \geq 0$, the $q$-binomial coefficient is defined by

$$
\left[\begin{array}{c}
m  \tag{14}\\
n
\end{array}\right]_{q}=\frac{[m]_{q}!}{[m-n]_{q}![n]_{q}!}
$$

We define $\| \ell, 0\rangle$ for $n=0,1, \ldots, \ell$ by

$$
\begin{equation*}
\| \ell, 0\rangle=|0\rangle_{1} \otimes|0\rangle_{2} \otimes \cdots \otimes|0\rangle_{\ell} \tag{15}
\end{equation*}
$$

Here $|\alpha\rangle_{j}$ for $\alpha=0,1$ denote the basis vectors of the spin- $1 / 2$ rep. We define $\| \ell, n\rangle$ for $n \geq 1$ and evaluate them as follows.

$$
\begin{align*}
\| \ell, n\rangle & \left.=\left(\Delta^{(\ell-1)}\left(X^{-}\right)\right)^{n} \| \ell, 0\right\rangle \frac{1}{[n]_{q}!} \\
& =\sum_{1 \leq i_{1}<\cdots<i_{n} \leq \ell} \sigma_{i_{1}}^{-} \cdots \sigma_{i_{n}}^{-}|0\rangle q^{i_{1}+i_{2}+\cdots+i_{n}-n \ell+n(n-1) / 2} . \tag{16}
\end{align*}
$$

We have conjugate vectors $\langle\ell, n \|$ explicitly as folllows.
$\left\langle\ell, n \|=\left[\begin{array}{c}\ell \\ n\end{array}\right]_{q}^{-1} q^{n(\ell-n)} \sum_{1 \leq i_{1}<\cdots<i_{n} \leq \ell}\langle 0| \sigma_{i_{1}}^{+} \cdots \sigma_{i_{n}}^{+} q^{i_{1}+\cdots+i_{n}-n \ell+n(n-1) / 2}\right.$.
Here the normalization conditions: $\langle\ell, n\| \| \ell, n\rangle=1$.
Conjugate vectors are given by $*$ anti-involution $\langle\ell, n \|=(\| \ell, n\rangle)^{*}$ where

$$
\left(X^{-}\right)^{*}=q^{-1} X^{+} K^{-1},\left(X^{+}\right)^{*}=q^{-1} X^{-} K, K^{*}=K
$$

. with $(\Delta(a))^{*}=\Delta\left(a^{*}\right), \quad(a b)^{*}=b^{*} a^{*}, \quad(a)^{* *}=a$, for $a \in U_{q}(s l(2))$.
In the massive regime where $q=\exp \eta$ with real $\eta$, the conjugate vectors $\langle\ell, n \|$ are Hermitian conjugate to vectors $\| \ell, n\rangle$.

However, in the massless regime $|q|=1$ and $q \neq \pm 1$, they are not.

For an integer $\ell \geq 0$ we define $\langle\ell, n \|$ for $n=0,1, \ldots, n$, by

$$
\begin{equation*}
\widetilde{\langle\ell, n| \mid}=\binom{\ell}{n}^{-1} \sum_{1 \leq i_{1}<\cdots<i_{n} \leq \ell}\langle 0| \sigma_{i_{1}}^{+} \cdots \sigma_{i_{n}}^{+} q^{-\left(i_{1}+\cdots+i_{n}\right)+n \ell-n(n-1) / 2} \tag{18}
\end{equation*}
$$

They are conjugate to $\| \ell, n\rangle: \widetilde{\langle\ell, m \|} \| \ell, n\rangle=\delta_{m, n}$. Here we have denoted the binomial coefficients as follows.

$$
\begin{equation*}
\binom{\ell}{n}=\frac{\ell!}{(\ell-n)!n!} \tag{19}
\end{equation*}
$$

Setting $\langle\ell, n \| \widetilde{\| \ell, n\rangle}=1$, vectors $\widetilde{\| \ell, n\rangle}$ are given by

$$
\begin{align*}
& \widetilde{\| \ell, n\rangle}=\sum_{1 \leq i_{1}<\cdots<i_{n} \leq \ell} \sigma_{i_{1}}^{-} \cdots \sigma_{i_{n}}^{-}|0\rangle q^{-\left(i_{1}+\cdots+i_{n}\right)+n \ell-n(n-1) / 2} \\
& \times\left[\begin{array}{c}
\ell \\
n
\end{array}\right]_{q} q^{-n(\ell-n)}\binom{\ell}{n}^{-1} . \tag{20}
\end{align*}
$$

## Hermitian elementary matrices

In the massless regime we define new elementary matrices $\widetilde{E}^{m, n(2 s+)}$ by

$$
\begin{equation*}
\widetilde{E}^{m, n(2 s+)}=\widetilde{\| 2 s, m\rangle}\langle 2 s, n \| \quad \text { for } m, n=0,1, \ldots, 2 s \tag{21}
\end{equation*}
$$

We define projection operators by

$$
\begin{equation*}
\left.P_{12 \cdots \ell}^{(\ell)}=\sum_{n=0}^{\ell} \| \ell, n\right\rangle\langle\ell, n \| . \tag{22}
\end{equation*}
$$

Let us now introduce another set of projection operators $\widetilde{P}_{1 \cdots \ell}^{(\ell)}$ as follows.

$$
\begin{equation*}
\widetilde{P}_{1 \cdots \ell}^{(\ell)}=\sum_{n=0}^{\ell} \widetilde{\| \ell, n\rangle\langle\ell, n \| . . . . ~ . ~} \tag{23}
\end{equation*}
$$

Projector $\widetilde{P}_{1 \cdots \ell}^{(\ell)}$ is idempotent: $\left(\widetilde{P}_{1 \cdots \ell}^{(\ell)}\right)^{2}=\widetilde{P}_{1 \cdots \ell}^{(\ell)}$. In the massless regime where $|q|=1$, it is Hermitian: $\left(\widetilde{P}_{1 \cdots \ell}^{(\ell)}\right)^{\dagger}=\widetilde{P}_{1 \cdots \ell}^{(\ell)}$. From the definition, we show the following properties:

$$
\begin{align*}
P_{12 \cdots \ell}^{(\ell)} \widetilde{P}_{1 \cdots \ell}^{(\ell)} & =P_{12 \cdots \ell}^{(\ell)}  \tag{24}\\
\widetilde{P}_{1 \cdots \ell}^{(\ell)} P_{12 \cdots \ell}^{(\ell)} & =\widetilde{P}_{1 \cdots \ell}^{(\ell)} \tag{25}
\end{align*}
$$

In the tensor product of quantum spaces, $V_{1}^{(2 s)} \otimes \cdots \otimes V_{N_{s}}^{(2 s)}$, we define $\widetilde{P}_{12 \cdots L}^{(2 s)}$ by

$$
\begin{equation*}
\widetilde{P}_{12 \cdots L}^{(2 s)}=\prod_{i=1}^{N_{s}} \widetilde{P}_{2 s(i-1)+1}^{(2 s)} \tag{26}
\end{equation*}
$$

Here we recall $L=2 s N_{s}$.

## Spin- $s$ XXZ Hamiltonian expressed by the $q$-Clebsch-Gordan

 coefficiants$$
\mathcal{H}_{\mathrm{XXZ}}^{(2 s)}=\left.\frac{d}{d \lambda} \log \widetilde{t}_{12 \cdots N_{s}}^{(2 s, 2 s+)}(\lambda)\right|_{\lambda=0, \xi_{j}=0}=\left.\sum_{i=1}^{N_{s}} \frac{d}{d u} \widetilde{\widetilde{R}}_{i, i+1}^{(2 s, 2 s)}(u)\right|_{u=0}
$$

where $\widetilde{t(u)}=\widetilde{P_{12 \cdots L}^{(2 s)}} t(u)$. Here, the elements of the $R$-matrix for $V\left(l_{1}\right) \otimes V\left(l_{2}\right)$ are given by (cf. [T.D. and K. Motegi])

$$
\check{R}\left|l_{1}, a_{1}\right\rangle \otimes\left|l_{2}, a_{2}\right\rangle=\sum_{b_{1}, b_{2}} \check{R}_{a_{1}, a_{2}}^{b_{1}, b_{2}}\left|l_{1}, b_{1}\right\rangle \otimes\left|l_{2}, b_{2}\right\rangle,
$$

$$
\begin{aligned}
\check{R}_{a_{1}, a_{2}}^{b_{1}, b_{2}}= & \delta_{a_{1}+a_{2}, b_{1}+b_{2}} N\left(l_{1}, a_{1}\right) N\left(l_{2}, a_{2}\right) \sum_{j=0}^{\min \left(l_{1}, l_{2}\right)} N\left(l_{1}+l_{2}-2 j, a_{1}+a_{2}\right)^{-1} \\
& \times \rho_{l_{1}+l_{2}-2 j}\left[\begin{array}{ccc}
l_{2} & l_{1} & l_{1}+l_{2}-2 j \\
b_{1} & b_{2} & a_{1}+a_{2}
\end{array}\right]\left[\begin{array}{ccc}
l_{1} & l_{2} & l_{1}+l_{2}-2 j \\
a_{1} & a_{2} & a_{1}+a_{2}
\end{array}\right]
\end{aligned}
$$

## New spin-s QISP formula (the most important result)

For $m \geq n$ we have

$$
\begin{align*}
& \widetilde{E}_{i}^{m, n(\ell+)}=\binom{\ell}{n}\left[\begin{array}{c}
\ell \\
m
\end{array}\right]_{q}\left[\begin{array}{c}
\ell \\
n
\end{array}\right]_{q}^{-1} \widetilde{P}_{1 \cdots L}^{(\ell)} \prod_{\alpha=1}^{(i-1) \ell}(A+D)\left(w_{\alpha}\right) \\
& \times \prod_{k=1}^{n} D\left(w_{(i-1) \ell+k}\right) \prod_{k=n+1}^{m} B\left(w_{(i-1) 2 s+k}\right) \prod_{k=m+1}^{\ell} A\left(w_{(i-1) \ell+k}\right) \\
& \times \prod_{\alpha=i \ell+1}^{\ell N_{s}}(A+D)\left(w_{\alpha}\right) \widetilde{P}_{1 \cdots L}^{(\ell)} . \tag{27}
\end{align*}
$$

For $m \leq n$ we have a similar formula.

We express a factor of $(2 s+1) \times(2 s+1)$ elementary matrices in terms of a 2 sth product of $2 \times 2$ elementary matrices with entries $\left\{\epsilon_{j}, \epsilon_{j}^{\prime}\right\}$ as follows.

$$
\begin{equation*}
\widetilde{E}^{i_{b}, j_{b}(2 s+)}=C\left(\left\{i_{k}, j_{k}\right\}\right) \widetilde{P}_{12 \ldots L}^{(2 s)} \cdot \prod_{k=1}^{2 s} e_{k}^{\epsilon_{k}^{\prime}, \epsilon_{k}} \cdot \widetilde{P}_{12 \ldots L}^{(2 s)} \tag{28}
\end{equation*}
$$

Here, $C\left(\left\{i_{k}, j_{k}\right\}\right)$ is given by

$$
C\left(\left\{i_{b}, j_{b}\right\}\right)=\binom{2 s}{j_{b}}\left[\begin{array}{c}
2 s  \tag{29}\\
i_{b}
\end{array}\right]_{q}\left[\begin{array}{c}
2 s \\
j_{b}
\end{array}\right]_{q}^{-1}
$$

Here $\epsilon_{\beta}$ and $\epsilon_{\beta}^{\prime}(\beta=1, \ldots, 2 s)$ are given by
$\epsilon_{2 s(b-1)+\beta}=\left\{\begin{array}{ll}1 & \left(1 \leq \beta \leq j_{b}\right) \\ 0 & \left(j_{b}<\beta \leq 2 s\right)\end{array} \quad ; \quad \epsilon_{2 s(b-1)+\beta}^{\prime}=\left\{\begin{array}{cc}1 & \left(1 \leq \beta \leq i_{b}\right) \\ 0 & \left(i_{b}<\beta \leq 2 s\right) .\end{array}\right.\right.$
(30)

## Physical part: ground-state string solutions and their deviations

## The fundamental conjecture of the spin- $s$ ground state

The spin- $s$ ground state $\left|\psi_{g}^{(2 s)}\right\rangle$ is given by $N_{s} / 2$ sets of $2 s$-strings for the region: $0 \leq \zeta<\pi / 2 s$
$\lambda_{a}^{(\alpha)}=\mu_{a}-(\alpha-1 / 2) \eta+\epsilon_{a}^{(\alpha)}, \quad$ for $a=1,2, \ldots, N_{s} / 2$ and $\alpha=1,2, \ldots, 2 s$.
Deviaions are given by $\epsilon_{a}^{(\alpha)}=\sqrt{-1} \delta_{a}^{(\alpha)}$ where $\delta_{a}^{(\alpha)}$ are real and decreasing w.r.t. $\alpha$, and $\left|\delta_{a}^{(\alpha)}\right|>\left|\delta_{a}^{(\alpha+1)}\right|$ for $\alpha<s,\left|\delta_{a}^{(\alpha)}\right|<\left|\delta_{a}^{(\alpha+1)}\right|$ for $\alpha>s$.

It is shown analytically through the finite-size corrections of the spin-1 XXZ chain (A. Klümper, M. Batchelor and P.A. Pearce, J. Phys. A: 24 (1991)).

The density of string centers, $\rho_{\text {tot }}(\mu)$, is given by

$$
\begin{equation*}
\rho_{\mathrm{tot}}(\mu)=\frac{1}{N} \sum_{p=1}^{N_{s}} \frac{1}{2 \zeta \cosh \left(\pi\left(\mu-\xi_{p}\right) / \zeta\right)} \tag{31}
\end{equation*}
$$

For the homogeneous chain where $\xi_{p}=0$ for $p=1,2, \ldots, N_{s}$, we denote the density of string centers by $\rho(\lambda)$.

$$
\begin{equation*}
\rho(\lambda)=\frac{1}{2 \zeta \cosh (\pi \lambda / \zeta)} . \tag{32}
\end{equation*}
$$

## Multiple integral representations of the correlation function for an arbitrary product of Hermitian elementary matrices

We define a spin- $s$ correlation function by

$$
\begin{equation*}
F^{(2 s+)}\left(\left\{\epsilon_{j}, \epsilon_{j}^{\prime}\right\}\right)=\left\langle\psi_{g}^{(2 s+)}\right| \prod_{i=1}^{m} \widetilde{E}_{i}^{m_{i}, n_{i}(2 s+)}\left|\psi_{g}^{(2 s+)}\right\rangle /\left\langle\psi_{g}^{(2 s+)} \mid \psi_{g}^{(2 s+)}\right\rangle \tag{33}
\end{equation*}
$$

Applying the formulas, we reduce it to the following:

$$
\begin{equation*}
F^{(2 s+)}\left(\left\{\epsilon_{j}, \epsilon_{j}^{\prime}\right\}\right)=\left\langle\psi_{g}^{(2 s+)}\right| \prod_{j=1}^{2 s m} e_{j}^{\epsilon_{j}^{\prime}, \epsilon_{j}}\left|\psi_{g}^{(2 s+)}\right\rangle /\left\langle\psi_{g}^{(2 s+)} \mid \psi_{g}^{(2 s+)}\right\rangle \tag{34}
\end{equation*}
$$

Here $\epsilon_{j}, \epsilon_{j}^{\prime}=0,1$. We send inhomogeneous parameters $w_{j}$ to a set of complete strings.

$$
\begin{equation*}
w_{2 s(b-1)+\beta}=w_{2 s(b-1)+\beta}^{(2 s ; \epsilon)} \rightarrow w_{2 s(b-1)+\beta}^{(2 s)}=\xi_{b}-(\beta-1) \eta . \tag{35}
\end{equation*}
$$

Let us define $\boldsymbol{\alpha}^{-}$and $\boldsymbol{\alpha}^{+}$by

$$
\begin{equation*}
\boldsymbol{\alpha}^{-}=\left\{j ; \epsilon_{j}=0\right\}, \quad \boldsymbol{\alpha}^{+}=\left\{j ; \epsilon_{j}^{\prime}=1\right\} \tag{36}
\end{equation*}
$$

For sets $\boldsymbol{\alpha}^{-}$and $\boldsymbol{\alpha}^{+}$we define $\tilde{\lambda}_{j}$ for $j \in \boldsymbol{\alpha}^{-}$and $\tilde{\lambda}_{j}^{\prime}$ for $j \in \boldsymbol{\alpha}^{+}$, respectively, by the following relation:

$$
\begin{equation*}
\left(\tilde{\lambda}_{j_{\max }^{\prime}}^{\prime}, \ldots, \tilde{\lambda}_{j_{\min }^{\prime}}^{\prime}, \tilde{\lambda}_{j_{\min }}, \ldots, \tilde{\lambda}_{j_{\max }}\right)=\left(\lambda_{1}, \ldots, \lambda_{2 s \operatorname{m}}\right) \tag{37}
\end{equation*}
$$

We have

$$
\begin{align*}
& F^{(2 s+)}\left(\left\{\epsilon_{j}, \epsilon_{j}^{\prime}\right\}\right)= \\
= & \left(\int_{-\infty+i \epsilon}^{\infty+i \epsilon}+\cdots+\int_{-\infty-i(2 s-1) \zeta+i \epsilon}^{\infty-i(2 s-1) \zeta+i \epsilon}\right) d \lambda_{1} \\
& \cdots\left(\int_{-\infty+i \epsilon}^{\infty+i \epsilon}+\cdots+\int_{-\infty-i(2 s-1) \zeta+i \epsilon}^{\infty-i(2 s-1) \zeta+i \epsilon}\right) d \lambda_{s^{\prime}} \\
& \left(\int_{-\infty-i \epsilon}^{\infty-i \epsilon}+\cdots+\int_{-\infty-i(2 s-1) \zeta-i \epsilon}^{\infty-i(2 s-1) \zeta-i \epsilon}\right) d \lambda_{s^{\prime}+1}^{\infty} \\
& \cdots\left(\int_{-\infty-i \epsilon}^{\infty-i \epsilon}+\cdots+\int_{-\infty-i(2 s-1) \zeta-i \epsilon}^{\infty-i(2 s-1) \zeta-i \epsilon}\right) d \lambda_{m} \\
& \times Q\left(\left\{\epsilon_{j}, \epsilon_{j}^{\prime}\right\} ; \lambda_{1}, \ldots, \lambda_{2 s m}\right) \operatorname{det} S\left(\lambda_{1}, \ldots, \lambda_{2 s m}\right) \tag{38}
\end{align*}
$$

Here factor $Q$ is given by

$$
\begin{align*}
& Q\left(\left\{\epsilon_{j}, \epsilon_{j}^{\prime}\right\}\right) \\
= & (-1)^{\alpha+} \frac{\prod_{j \in \boldsymbol{\alpha}^{-}}\left(\prod_{k=1}^{j-1} \varphi\left(\tilde{\lambda}_{j}-w_{k}^{(2 s)}+\eta\right) \prod_{k=j+1}^{2 s m} \varphi\left(\tilde{\lambda}_{j}-w_{k}^{(2 s)}\right)\right)}{\prod_{1 \leq k<\ell \leq 2 s m} \varphi\left(\lambda_{\ell}-\lambda_{k}+\eta+\epsilon_{\ell, k}\right)} \\
& \times \frac{\prod_{j \in \boldsymbol{\alpha}^{+}}\left(\prod_{k=1}^{j-1} \varphi\left(\tilde{\lambda}_{j}^{\prime}-w_{k}^{(2 s)}-\eta\right) \prod_{k=j+1}^{2 s m} \varphi\left(\tilde{\lambda}_{j}^{\prime}-w_{k}^{(2 s)}\right)\right)}{\prod_{1 \leq k<\ell \leq 2 s m} \varphi\left(w_{k}^{(2 s)}-w_{\ell}^{(2 s)}\right)} \tag{39}
\end{align*}
$$

The matrix elements of $S$ are given by

$$
\begin{equation*}
S_{j, k}=\rho\left(\lambda_{j}-w_{k}^{(2 s)}+\eta / 2\right) \delta\left(\alpha\left(\lambda_{j}\right), \beta(k)\right), \quad \text { for } \quad j, k=1,2, \ldots, 2 s m \tag{40}
\end{equation*}
$$

Here $\delta(\alpha, \beta)$ denotes the Kronecker delta and $\alpha\left(\lambda_{j}\right)$ are given by $a$ if $\lambda_{j}=\mu_{j}-(a-1 / 2) \eta(1 \leq a \leq 2 s)$, where $\mu_{j}$ correspond to centers of complete $2 s$-strings.
In the denominator, we have set $\epsilon_{k, l}$ associated with $\lambda_{k}$ and $\lambda_{l}$ as follows.

$$
\epsilon_{k, l}=\left\{\begin{array}{ccc}
i \epsilon & \text { for } & \operatorname{Im}\left(\lambda_{k}-\lambda_{l}\right)>0  \tag{41}\\
-i \epsilon & \text { for } & \mathcal{I} m\left(\lambda_{k}-\lambda_{l}\right)<0 .
\end{array}\right.
$$

## Examples of multiple integrals

For $s=1$ and $m=1\left(w_{1}^{(2)}=\xi_{1}, w_{2}^{(2)}=\xi_{1}-\eta\right)$, we have

$$
\begin{align*}
\left\langle\widetilde{E}_{1}^{11(2+)}\right\rangle & =\left\langle\psi_{g}^{(2+)}\right| \widetilde{E}_{1}^{11(2+)}\left|\psi_{g}^{(2+)}\right\rangle /\left\langle\psi_{g}^{(2+)} \mid \psi_{g}^{(2+)}\right\rangle \\
= & 2\left\langle\psi_{g}^{(2+)}\right| A\left(w_{1}^{(2)}\right) D\left(w_{2}^{(2)}\right)\left|\psi_{g}^{(2+)}\right\rangle /\left\langle\psi_{g}^{(2+)} \mid \psi_{g}^{(2+)}\right\rangle \\
=\quad & 2\left(\int_{-\infty+i \epsilon}^{\infty+i \epsilon}+\int_{-\infty-i \zeta+i \epsilon}^{\infty-i \zeta+i \epsilon}\right) d \lambda_{1}\left(\int_{-\infty-i \epsilon}^{\infty-i \epsilon}+\int_{-\infty-i \zeta-i \epsilon}^{\infty-i \zeta-i \epsilon}\right) d \lambda_{2} \\
& \times Q\left(\lambda_{1}, \lambda_{2}\right) \operatorname{det} S\left(\lambda_{1}, \lambda_{2}\right) \tag{42}
\end{align*}
$$

where $Q\left(\lambda_{1}, \lambda_{2}\right)$ is given by

$$
\begin{equation*}
Q\left(\lambda_{1}, \lambda_{2}\right)=(-1) \frac{\varphi\left(\lambda_{2}-w_{2}^{(2)}\right) \varphi\left(\lambda_{1}-w_{1}^{(2)}-\eta\right)}{\varphi\left(\lambda_{2}-\lambda_{1}+\eta+\epsilon_{2,1}\right) \varphi(\eta)} \tag{43}
\end{equation*}
$$

and matrix $S\left(\lambda_{1}, \lambda_{2}\right)$ is given by

$$
\left(\begin{array}{cc}
\rho\left(\lambda_{1}-w_{1}^{(2)}+\eta / 2\right) \delta\left(\alpha\left(\lambda_{1}\right), 1\right) & \rho\left(\lambda_{1}-w_{2}^{(2)}+\eta / 2\right) \delta\left(\alpha\left(\lambda_{1}\right), 2\right) \\
\rho\left(\lambda_{2}-w_{1}^{(2)}+\eta / 2\right) \delta\left(\alpha\left(\lambda_{2}\right), 1\right) & \rho\left(\lambda_{2}-w_{2}^{(2)}+\eta / 2\right) \delta\left(\alpha\left(\lambda_{2}\right), 2\right)
\end{array}\right)
$$

Here we have applied the following formula

$$
\widetilde{E}_{1}^{1,1(2+)}=2 \widetilde{P}_{1 \cdots L}^{(2)} D^{(1+)}\left(w_{1}\right) A^{(1+)}\left(w_{2}\right) \prod_{\alpha=3}^{2 N_{s}}\left(A^{(1+)}+D^{(1+)}\right)\left(w_{\alpha}\right) \widetilde{P}_{1 \cdots L}^{(2)}
$$

The correlation function is expressed in terms of a single product of the multiple-integral representation.
By evaluating the double integral, the integral over $\lambda_{1}$ is decomposed as follows.

$$
\begin{aligned}
& \left(\int_{-\infty+i \epsilon}^{\infty+i \epsilon}+\int_{-\infty-i \zeta+i \epsilon}^{\infty-i \zeta+i \epsilon}\right) d \lambda_{1} Q\left(\lambda_{1}, \lambda_{2}\right) \operatorname{det} S\left(\lambda_{1}, \lambda_{2}\right) \\
= & \left(\int_{-\infty-i \zeta / 2}^{\infty-i \zeta / 2}+\int_{-\infty-i 3 \zeta / 2}^{\infty-i 3 \zeta / 2}\right) d \lambda_{1} Q\left(\lambda_{1}, \lambda_{2}\right) \operatorname{det} S\left(\lambda_{1}, \lambda_{2}\right) \\
& +\oint_{\Gamma_{1}} d \lambda_{1} Q\left(\lambda_{1}, \lambda_{2}\right) \operatorname{det} S\left(\lambda_{1}, \lambda_{2}\right)+\oint_{\Gamma_{2}} d \lambda_{1} Q\left(\lambda_{1}, \lambda_{2}\right) \operatorname{det} S\left(\lambda_{1}, \lambda_{2}\right)
\end{aligned}
$$

Thus, the integral is calculated as

$$
\begin{align*}
& \left\langle\widetilde{\psi}_{g}^{(2+)}\right| \widetilde{E}_{1}^{11(2+)}\left|\widetilde{\psi}_{g}^{(2+)}\right\rangle /\left(2\left\langle\widetilde{\psi}_{g}^{(2+)} \mid \widetilde{\psi}_{g}^{(2+)}\right\rangle\right) \\
= & -2 \pi i \int_{-\infty}^{\infty} \frac{\sinh (x-\eta / 2) \sinh (x-3 \eta / 2)}{\sinh \eta} \rho^{2}(x) d x \\
& +2 \cosh \eta \int_{-\infty}^{\infty} \frac{\sinh (x-\eta / 2)}{\sinh (x+\eta / 2)} \rho(x) d x \\
& -\int_{-\infty}^{\infty} \rho(x) d x+(-1) 2 \cosh \eta \int_{-\infty}^{\infty} \frac{\sinh (x-\eta / 2)}{\sinh (x+\eta / 2)} \rho(x) d x \\
= & \frac{\cos \zeta(\sin \zeta-\zeta \cos \zeta)}{2 \zeta \sin ^{2} \zeta} . \tag{45}
\end{align*}
$$

We thus obtain

$$
\begin{equation*}
\left\langle\widetilde{E}_{1}^{1,1}\right\rangle=\frac{\cos \zeta(\sin \zeta-\zeta \cos \zeta)}{\zeta \sin ^{2} \zeta} \tag{46}
\end{equation*}
$$

Evaluating the integral we obtain the spin-1 EFP with $m=1$ as follows.

$$
\begin{equation*}
\tau^{(2)}(1)=\left\langle\widetilde{E}_{1}^{2,2}\right\rangle=\frac{\zeta-\sin \zeta \cos \zeta}{2 \zeta \sin ^{2} \zeta} \tag{47}
\end{equation*}
$$

In the XXX limit, we have

$$
\begin{equation*}
\lim _{\zeta \rightarrow 0} \frac{\zeta-\sin \zeta \cos \zeta}{2 \zeta \sin ^{2} \zeta}=\frac{1}{3} \tag{48}
\end{equation*}
$$

The limiting value $1 / 3$ coincides with the spin- 1 XXX result [Kitanine (2001)]. As pointed out in Kitanine (2001), $\left\langle E_{1}^{22}\right\rangle=\left\langle E_{1}^{11}\right\rangle=\left\langle E_{1}^{00}\right\rangle=1 / 3$ for the XXX case since it has the rotational symmetry.

Furthermore, due to the uniaxial symmetry we have $\left\langle\widetilde{E}_{1}^{0,0}\right\rangle=\left\langle\widetilde{E}_{1}^{2,2}\right\rangle$, and hence, directly evaluating the integrals, we confirm

$$
\begin{equation*}
\left\langle\widetilde{E}_{1}^{0,0}\right\rangle+\left\langle\widetilde{E}_{1}^{1,1}\right\rangle+\left\langle\widetilde{E}_{1}^{2,2}\right\rangle=1 \tag{49}
\end{equation*}
$$

Symmetric expression of the multiple integrals of $F^{(2 s+)}\left(\left\{\epsilon_{j}, \epsilon_{j}^{\prime}\right\}\right)$

$$
\begin{aligned}
& \frac{1}{\prod_{1 \leq \alpha<\beta \leq 2 s} \sinh ^{m}(\beta-\alpha) \eta} \prod_{1 \leq k<l \leq m} \frac{\sinh ^{2 s}\left(\pi\left(\xi_{k}-\xi_{l}\right) / \zeta\right)}{\prod_{j=1}^{2 s} \prod_{r=1}^{2 s} \sinh \left(\xi_{k}-\xi_{l}+(r-j) \eta\right)} \\
& \sum_{\sigma \in \mathcal{S}_{2 s m} /\left(\mathcal{S}_{m}\right)^{2 s}} \prod_{j=1}^{\alpha_{+}}\left(\int_{-\infty+i \epsilon}^{\infty+i \epsilon}+\cdots+\int_{-\infty-i(2 s-1) \zeta+i \epsilon}^{\infty-i(2 s-1) \zeta+i \epsilon}\right) d \mu_{\sigma j} \\
& \prod_{j=\alpha_{+}+1}^{2 s m}\left(\int_{-\infty-i \epsilon}^{\infty-i \epsilon}+\cdots+\int_{-\infty-i(2 s-1) \zeta-i \epsilon}^{\infty-i(2 s-1) \zeta-i \epsilon}\right) d \mu_{\sigma j} \\
& \times(\operatorname{sgn} \sigma)\left(\prod_{j=1}^{2 s m} \frac{\prod_{b=1}^{m} \prod_{\beta=1}^{2 s-1} \sinh \left(\lambda_{j}-\xi_{b}+\beta \eta\right)}{\prod_{b=1}^{m} \cosh \left(\pi\left(\mu_{j}-\xi_{b}\right) / \zeta\right)}\right) \\
& \times \frac{i^{2 s m^{2}}}{(2 i \zeta)^{2 s m}} \prod_{\gamma=1}^{2 s} \prod_{1 \leq b<a \leq m} \sinh \left(\pi \left(\mu_{2 s(a-1)+\gamma}-\mu_{2 s(b-1)+\gamma) / \zeta)}\right.\right. \\
& \left.Q\left(\left\{\epsilon_{j}, \epsilon_{j}^{\prime}\right\} ; \lambda_{\sigma 1}, \ldots, \lambda_{\sigma(2 s m)}\right)\right) .
\end{aligned}
$$

It is straightforward to take the homogeneous limit: $\xi_{k} \rightarrow 0$.

Part II: sl(2) loop algebra symmetry and the super-integrable chiral Potts model

$$
\mathcal{H}_{X X Z}=\frac{1}{2} \sum_{j=1}^{L}\left(\sigma_{j}^{X} \sigma_{j+1}^{X}+\sigma_{j}^{Y} \sigma_{j+1}^{Y}+\Delta \sigma_{j}^{Z} \sigma_{j+1}^{Z}\right) .
$$

When $q$ is a root of unity: $q^{2 N}=1$ where $\Delta=\left(q+q^{-1}\right) / 2$, the $\mathcal{H}_{X X Z}$ (and $\left.\tau_{6 \mathrm{~V}}(z)\right)$ commutes with the $s l_{2}$ loop algebra, $U\left(L\left(s l_{2}\right)\right)$ in sector A: $S^{Z} \equiv 0(\bmod N)\left(\right.$ and in sector B: $\left.S^{Z} \equiv N / 2(\bmod N)\right)$ :

$$
S^{ \pm(N)}=\left(S^{ \pm}\right)^{N} /[N]!, \quad T^{ \pm(N)}=\left(T^{ \pm}\right)^{N} /[N]!
$$

Here $S^{ \pm}$and $T^{ \pm}$are generators of $U_{q}\left(\hat{s l_{2}}\right)$

$$
\begin{aligned}
& S^{ \pm}=\sum_{j=1}^{L} q^{\sigma^{z} / 2} \otimes \cdots \otimes q^{\sigma^{z} / 2} \otimes \sigma_{j}^{ \pm} \otimes q^{-\sigma^{z} / 2} \otimes \cdots \otimes q^{-\sigma^{z} / 2} \\
& T^{ \pm}=\sum_{j=1}^{L} q^{-\sigma^{z} / 2} \otimes \cdots \otimes q^{-\sigma^{z} / 2} \otimes \sigma_{j}^{ \pm} \otimes q^{\sigma^{z} / 2} \otimes \cdots \otimes q^{\sigma^{z} / 2}
\end{aligned}
$$

$S^{ \pm(N)}$ and $T^{ \pm(N)}$ generate the $s l_{2}$ loop algebra $U\left(L\left(s l_{2}\right)\right)$
Generators $h_{k}$ and $x_{k}^{ \pm}(k \in \mathbf{Z})$ satisfy the defining relations of the $s l_{2}$ loop algebra $(j, k \in \mathbf{Z})$

$$
\begin{gathered}
{\left[h_{j}, x_{k}^{ \pm}\right]= \pm 2 x_{j+k}^{ \pm}, \quad\left[x_{j}^{+}, x_{k}^{-}\right]=h_{j+k}} \\
{\left[h_{j}, h_{k}\right]=0, \quad\left[x_{j}^{ \pm}, x_{k}^{ \pm}\right]=0}
\end{gathered}
$$

We have

$$
\begin{align*}
x_{0}^{+} & =S^{+(N)}, \quad x_{0}^{-}=S^{-(N)}  \tag{50}\\
x_{-1}^{+} & =T^{+(N)}, \quad x_{1}^{-}=T^{-(N)}  \tag{51}\\
h_{0} & =\frac{2}{N} S^{Z} . \tag{52}
\end{align*}
$$

## Main Reference of PART II.

[D1] T. D., Regular XXZ Bethe states at roots of unity as highest weight vectors of the $s l_{2}$ loop algebra, J. Phys. A: Math. Theor. Vol. 40 (2007) 7473-7508
[D2] T.D., J. Stat. Mech. (2007) P05007
[ND2008] A. Nishino and T. D., An algebraic derivation of the eigenspaces associated with an Ising-like spectrum of the superintegrable chiral Potts model, J. Stat. Phys. 133 (2008) pp. 587-615
[DFM] T. D., K. Fabricius and B. M. McCoy,
The $s l_{2}$ loop algebra symmetry of the six-vertex model at roots of unity,
J. Stat. Phys. 102 (2001) 701-736.

Many interesting papers relevant to this talk
[AY] H. Au-Yang and J. Perk, J. Phys. A 41 (2008) 275201; J. Phys. A 42 (2009) 375208; J. Phys. A 43 (2010) 025203; arXiv:0907.0362
[B] R. Baxter, arXiv:0906.3551; arXiv:0912.4549; arXiv:1001.0281
[vG] N. lorgov, V. Shadura, Yu. Tykhyy, S. Pakuliak, and G. von Gehlen, arXiv:0912.5027
[FM2010] K. Fabricius and B.M. McCoy, arXiv:1001.0614

## Definition of D-highest weight vectors (Drinfeld-highest weight)

We call a representation of $U\left(L\left(s l_{2}\right)\right)$ D-highest weight if it is generated by a vector $\Omega$ satisfying
(i) $\Omega$ is annihilated by generators $x_{k}^{+}$:

$$
x_{k}^{+} \Omega=0 \quad(k \in \mathbf{Z})
$$

(ii) $\Omega$ is a simultaneous eigenvector of generators, $h_{k}$ 's:

$$
h_{k} \Omega=d_{k} \Omega, \quad \text { for } \quad k \in \boldsymbol{Z} .
$$

Here $d_{k}$ denotes the eigenvalues of $h_{k}$ 's.

We call $\Omega$ a highest weight vector.

## Definition (D-highest weight polynomial)

Let $\lambda_{k}$ be eigenvalues as follows:

$$
\left(x_{0}^{+}\right)^{k}\left(x_{1}^{-}\right)^{k} /(k!)^{2} \quad \Omega=\lambda_{k} \Omega \quad(k=1,2, \ldots, r)
$$

For the sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$, we define polynomial $\mathcal{P}^{\lambda}(u)$ by

$$
\begin{equation*}
\mathcal{P}^{\lambda}(u)=\sum_{k=0}^{r} \lambda_{k}(-u)^{k}, \tag{53}
\end{equation*}
$$

We call $\mathcal{P}^{\lambda}(u)$ the D-highest weight polynomial for highest weight $d_{k}$.

When $U\left(L\left(s l_{2}\right)\right) \Omega$ is irreducible, we call it the Drinfeld polynomial of the representation.

## Conjecture on highest weight vectors

## Conjecture (Fabricius and McCoy)

Bethe eigenvectors are highest weight vectors of the $s l_{2}$ loop algebra, and they have the Drinfeld polynomials [FM].
[FM] K. Fabricius and B. M. McCoy, Progress in Math. Phys. Vol. 23 (MathPhys Odyssey 2001), (Birkhäuser, Boston, 2002) 119-144.

It was proved in sector A: $S^{Z} \equiv 0(\bmod N)$ when $q^{2 N}=1$ (and in sector B: $S^{Z} \equiv N / 2(\bmod N)$ when $q^{N}=1$ with $N$ being odd $)$ : T.D., J. Phys. A: Math. Theor. (2007)

Taking the limit of infinite rapidities, we have

$$
\begin{align*}
& \hat{A}( \pm \infty)=q^{ \pm S^{Z}}, \quad \hat{B}(\infty)=T^{-}, \quad \hat{B}(-\infty)=S^{-} \\
& \hat{D}( \pm \infty)=S^{Z}, \quad \hat{C}(\infty)=S^{+}, \quad \hat{C}(-\infty)=T^{+} \tag{54}
\end{align*}
$$

Let $N$ be a positive integer.

## Definition (Complete $N$-string)

We call a set of rapidities $z_{j}$ a complete $N$-string, if they satisfy

$$
\begin{equation*}
z_{j}=\Lambda+\eta(N+1-2 j) \quad(j=1,2, \ldots, N) . \tag{55}
\end{equation*}
$$

We call $\Lambda$ the center of the $N$-string.

## Sufficient conditions of a highest weight vector

## Lemma

Suppose that $x_{0}^{ \pm}, x_{-1}^{+}, x_{1}^{-}$and $h_{0}$ satisfy the defining relations of $U\left(L\left(s l_{2}\right)\right)$, and $x_{k}^{ \pm}$and $h_{k}(k \in \boldsymbol{Z})$ are generated from them. If a vector $|\Phi\rangle$ satisfies the following:

$$
\begin{align*}
& x_{0}^{+}|\Phi\rangle=x_{-1}^{+}|\Phi\rangle=0  \tag{56}\\
& h_{0}|\Phi\rangle=r|\Phi\rangle  \tag{57}\\
& \left(x_{0}^{+}\right)^{(n)}\left(x_{1}^{-}\right)^{(n)}|\Phi\rangle=\lambda_{n}|\Phi\rangle \quad \text { for } n=1,2, \ldots, r \tag{58}
\end{align*}
$$

where $r$ is a nonnegative integer and $\lambda_{n}$ are complex numbers. Then $|\Phi\rangle$ is highest weight, i.e. we have

$$
\begin{align*}
x_{k}^{+}|\Phi\rangle & =0 \quad(k \in \boldsymbol{Z})  \tag{59}\\
h_{k}|\Phi\rangle & =d_{k}|\Phi\rangle \quad(k \in \boldsymbol{Z}) \tag{60}
\end{align*}
$$

where $d_{k}$ are complex numbers.

## Diagonal property

In addition to regular Bethe roots at generic $q, t_{1}, t_{2}, \ldots, t_{R}$, we introduce $k N$ rapidities, $z_{1}, z_{2}, \ldots, z_{k N}$, forming a complete $k N$-string:
$z_{j}=\Lambda+(k N+1-2 j) \eta$ for $j=1,2, \ldots, k N$.
We calculate the action of $\left(S_{\xi}^{+(N)}\right)^{k}\left(T_{\xi}^{-(N)}\right)^{k}$ on the Bethe state at $q_{0}$,

$$
|R\rangle=B\left(\tilde{t}_{1}\right) \cdots B\left(\tilde{t}_{R}\right)|0\rangle,
$$

and we have explicitly shown

$$
\begin{aligned}
& \left(S_{\xi}^{+(N)}\right)^{k}\left(T_{\xi}^{-(N)}\right)^{k}|R\rangle=\lim _{q \rightarrow q_{0}}\left(\lim _{\Lambda \rightarrow \infty} \frac{1}{\left([N]_{q}!\right)^{k}}(\hat{C}(\infty))^{k N}\right. \\
& \left.\quad \times \frac{1}{\left([N]_{q}!\right)^{k}} \hat{B}\left(z_{1}, \eta\right) \cdots \hat{B}\left(z_{k N}, \eta_{n}\right) B\left(t_{1}, \eta\right) \cdots B\left(t_{R}, \eta\right)|0\rangle\right) \\
& =\lambda_{k}|R\rangle
\end{aligned}
$$

## Connection to SCP model

## The 1D transverse Ising model

$$
\mathcal{H}=A_{0}+h A_{1}
$$

where $A_{0}$ and $A_{1}$ are given by

$$
A_{0}=\sum_{j=1}^{L} \sigma_{j}^{z} \sigma_{j+1}^{z}, \quad A_{1}=\sum_{j=1}^{L} \sigma_{j}^{x}
$$

The $A_{0}$ and $A_{1}$ satisfy the Dolan-Grady conditions:

$$
\left[A_{i},\left[A_{i},\left[A_{i}, A_{1-i}\right]\right]\right]=16\left[A_{i}, A_{1-i}\right],(i=0,1)
$$

and generate the Onsager algebra (OA). [L. Onsager (1944)]

$$
\begin{aligned}
{\left[A_{\ell}, A_{m}\right] } & =4 G_{\ell-m} \\
{\left[G_{\ell}, A_{m}\right] } & =2 A_{m+\ell}-2 A_{m-\ell} \\
{\left[G_{\ell}, G_{m}\right] } & =0
\end{aligned}
$$

L. Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev. 65 (1944) 117 - 149.

## The $Z_{N}$-symmetric Hamiltonian by von Gehlen and Rittenberg:

$$
\begin{aligned}
H_{\mathrm{Z}_{\mathrm{N}}} & =A_{0}+k^{\prime} A_{1} \\
& =\frac{4}{N} \sum_{i=1}^{L} \sum_{m=1}^{N-1} \frac{1}{1-\omega^{-m}} Z_{i}^{2 m}+k^{\prime} \frac{4}{N} \sum_{i=1}^{L} \sum_{m=1}^{N-1} \frac{1}{1-\omega^{-m}} X_{i}^{-m} X_{i+1}^{m}
\end{aligned}
$$

Here, $q^{N}=1$ and $\omega=q^{2}$, and the operators $Z_{i}, X_{i} \in \operatorname{End}\left(\left(\boldsymbol{C}^{N}\right)^{\otimes L}\right)$ are defined by

$$
\begin{aligned}
& Z_{i}\left(v_{\sigma_{1}} \otimes \cdots \otimes v_{\sigma_{i}} \otimes \cdots \otimes v_{\sigma_{L}}\right)=q^{\sigma_{i}} v_{\sigma_{1}} \otimes \cdots \otimes v_{\sigma_{i}} \otimes \cdots \otimes v_{\sigma_{L}} \\
& X_{i}\left(v_{\sigma_{1}} \otimes \cdots \otimes v_{\sigma_{i}} \otimes \cdots \otimes v_{\sigma_{L}}\right)=v_{\sigma_{1}} \otimes \cdots \otimes v_{\sigma_{i}+1} \otimes \cdots \otimes v_{\sigma_{L}}
\end{aligned}
$$

for the standard basis $\left\{v_{\sigma} \mid \sigma=0,1, \cdots, N-1\right\}$ of $\mathbb{C}^{N}$ and under the P.B.C.s: $Z_{L+1}=Z_{1}$ and $X_{L+1}=X_{1}$.

The Hamiltonian $H_{Z_{\mathrm{N}}}$ is derived from the expansion of the SCP transfer matrix with respect to the spectral parameter.

## The superintegrable $\tau_{2}$ model

The transfer matix of the superintegrable $\tau_{2}$ model commutes with that of the superintegrable chiral Potts (SCP) model.

The $L$-opetrator of the superintegrable $\tau_{2}$ model is given by that of the integrable spin- $(N-1) / 2$ XXZ spin chain with twisted boundary conditions.

We define SCP polynomial (superintegrable chiral Potts polynomial) by

$$
\begin{equation*}
P_{\mathrm{SCP}}\left(z^{N}\right)=\omega^{-p_{b}} \sum_{j=0}^{N-1} \frac{\left(1-z^{N}\right)^{L}\left(z \omega^{j}\right)^{-p_{a}-p_{b}}}{\left(1-z \omega^{j}\right)^{L} F_{\mathrm{CP}}\left(z \omega^{j}\right) F_{\mathrm{CP}}\left(z \omega^{j+1}\right)}, \tag{61}
\end{equation*}
$$

Here $F_{\mathrm{CP}}(z)=\prod_{i=1}^{R}\left(1+z u_{i} \omega\right)$ and $\left\{u_{i}\right\}$ satisfy the Bethe ansatz equations.

## Proposition

If $q^{N}=1$ and $L$ is a multiple of $N$, the transfer matrix $\tau_{\tau_{2}}(z)$ has the sl(2) loop algebra symmetry in the sector with $S^{Z} \equiv 0(\bmod N)$.

## Proposition

The superintegrable chiral Potts $(S C P)$ polynomial $P_{\mathrm{SCP}}(\zeta)$ is equivalent to the D-highest weight polynomial $P_{\mathrm{D}}(\zeta)$ in the sector $S^{Z} \equiv 0(\bmod N)$.

Observations: (1) SCP and the D-highest weight polynomials have the same 'Bethe roots'. (2) The dimensions are the same for the OA representation and the highest weight representation of the loop algebra of the $\tau_{2}$ model.

## Conjecture

The OA representation space $V_{O A}$ should correspond to the highest weight representation of the sl(2) loop algebra generated by the regular Bethe states $\left|R,\left\{z_{i}\right\}\right\rangle$ of $\tau_{2}$ model.

## Corollary

The eigenvectors of the $Z_{N}$ symmetric Hamiltonian, $|V\rangle$ are given by

$$
|V\rangle=\left(\text { some element of } L\left(s l_{2}\right)\right) \times B\left(z_{1}\right) \cdots B\left(z_{R}\right)|0\rangle
$$

Here $B\left(z_{1}\right) \cdots B\left(z_{R}\right)|0\rangle$ denotes a regular Bethe state of the $\tau_{2}$ model and generates the highest weight rep. of the sl(2) loop algebra.

## $N=2$ case

The Hamiltonians of the SCP model and the $\tau_{2}$-model are given in the forms

$$
H_{\mathrm{SCP}}=\sum_{i=1}^{L} \sigma_{i}^{z}+\lambda \sum_{i=1}^{L} \sigma_{i}^{x} \sigma_{i+1}^{x}, \quad H_{\tau_{2}}=\sum_{i=1}^{L}\left(\sigma_{i}^{x} \sigma_{i+1}^{y}-\sigma_{i}^{y} \sigma_{i+1}^{x}\right)
$$

where $\sigma^{x}, \sigma^{y}$ and $\sigma^{z}$ are Pauli's matrices. In terms of fermion operators:

$$
c_{i}=\sigma_{i}^{+} \prod_{j=1}^{i-1} \sigma_{j}^{z}, \quad \tilde{c}_{k}=\frac{1}{L} \sum_{i=1}^{L} e^{-1\left(k i+\frac{\pi}{4}\right)} c_{i}
$$

the Hamiltonian $H_{\tau_{2}}$ in the sector with $S^{z} \equiv \frac{1}{2} \sum_{i=1}^{L} \sigma_{i}^{z} \equiv 0 \bmod 2$ is written as

$$
H_{\tau_{2}}=\sum_{k \in K} \sin (k) \tilde{c}_{k}^{\dagger} \tilde{c}_{k},
$$

where $K=\left\{\frac{\pi}{L}, \frac{3 \pi}{L}, \ldots, \frac{(L-1) \pi}{L}\right\}$.

For even $L$, the generators of the $\mathfrak{s l}_{2}$ loop algebra symmetry of the $\tau_{2}$-model is given by

$$
\begin{align*}
h_{n} & =\sum_{k \in K} \cot ^{2 n}\left(\frac{k}{2}\right)(H)_{k}, \quad x_{n}^{+}=\sum_{k \in K} \cot ^{2 n+1}\left(\frac{k}{2}\right)(E)_{k} \\
x_{n}^{-} & =\sum_{k \in K} \cot ^{2 n-1}\left(\frac{k}{2}\right)(F)_{k} \tag{62}
\end{align*}
$$

where $(H)_{k},(E)_{k},(F)_{k}$ are given by

$$
(H)_{k}=1-\tilde{c}_{k}^{\dagger} \tilde{c}_{k}-\tilde{c}_{-k}^{\dagger} \tilde{c}_{-k}, \quad(E)_{k}=\tilde{c}_{-k} \tilde{c}_{k}, \quad(F)_{k}=\tilde{c}_{k}^{\dagger} \tilde{c}_{-k}^{\dagger}
$$

The reference state $|0\rangle$, generates a $2^{L / 2}$-dimensional irreducible representation, a degenerate eigenspace of the Hamiltonian $H_{\tau_{2}}$.

$$
H_{\mathrm{SCP}}=2 \sum_{k \in K}(H)_{k}+2 \lambda \sum_{k \in K}\left(\cos (k)(H)_{k}+\sin (k)\left((E)_{k}+(F)_{k}\right)\right)
$$

The $2^{L / 2}$ eigenvalues of $H_{\mathrm{SCP}}$ and the eigenstates are given by

$$
\begin{aligned}
E\left(K_{+} ; K_{-}\right)= & 2 \sum_{k \in K_{+}} \sqrt{1-2 \lambda \cos (k)+\lambda^{2}} \\
& -2 \sum_{k \in K_{-}} \sqrt{1-2 \lambda \cos (k)+\lambda^{2}} \\
\left|K_{+} ; K_{-}\right\rangle= & \prod_{k \in K_{+}}\left(\cos \theta_{k}+\sin \theta_{k}(F)_{k}\right) \prod_{k \in K_{-}}\left(\sin \theta_{k}-\cos \theta_{k}(F)_{k}\right)|0\rangle,
\end{aligned}
$$

where $K_{+}$and $K_{-}$are such disjoint subsets of $K$ that $K=K_{+} \cup K_{-}$and $\tan \left(2 \theta_{k}\right)=\frac{2 \lambda \sin (k)}{2(\lambda \cos (k)-1)}$.

## QISP for the SCP model

We consider the spin-1/2 chain of $(N-1) L$ lattice sites. We set $\ell=N-1$.
For $m=n(0 \leq m \leq N-1)$, upto gauge transformations, we have

$$
\begin{aligned}
& \widetilde{E}_{i}^{n, n(N-1+)} \\
= & \binom{\ell}{n} \widetilde{P}_{1 \cdots(N-1) L}^{(\ell)} \prod_{\alpha=1}^{(i-1) \ell}\left(A^{(\ell+)}+e^{\varphi} D^{(\ell+)}\right)\left(w_{\alpha}^{(\ell+)}\right) \\
& \prod_{k=1}^{n} D^{(\ell+)}\left(w_{(i-1) \ell+k}^{(\ell+)}\right) \times \prod_{k=n+1}^{\ell} A^{(\ell+)}\left(w_{(i-1) \ell+k}\right) \\
& \prod_{\alpha=i \ell+1}^{\ell L}\left(A^{(\ell+)}+e^{\varphi} D^{(\ell+)}\right)\left(w_{\alpha}^{(\ell+)}\right) \widetilde{P}_{1 \cdots L(N-1)}^{(\ell)}
\end{aligned}
$$

Here we set $e^{\varphi}=q$.
We next consider the case of $N=3, q^{3}=1$ and $\omega=q^{2}$

$$
\begin{aligned}
Z_{i}= & E_{i}^{00}+\omega E_{i}^{11}+\omega^{2} E_{i}^{22} \\
= & \widetilde{P}_{1 \cdots 2 L}^{(2)} \prod_{\alpha=1}^{2(i-1)}\left(A^{(2+)}+e^{\varphi} D^{(2+)}\right)\left(w_{\alpha}^{(2+)}\right) \\
& \times \prod_{k=1}^{2} A^{(2+)}\left(w_{2(i-1)+k}^{(2+)}\right) \prod_{\alpha=2 i+1}^{2 L}\left(A^{(2+)}+e^{\varphi} D^{(2+)}\right)\left(w_{\alpha}^{(2+)}\right) \widetilde{P}_{1 \cdots 2 L}^{(2)} \\
+ & \omega \widetilde{P}_{1 \cdots 2 L}^{(2)} \prod_{\alpha=1}^{2(i-1)}\left(A^{(2+)}+e^{\varphi} D^{(2+)}\right)\left(w_{\alpha}^{(2+)}\right) D^{(2+)}\left(w_{2(i-1)+1}^{(2+)}\right) \\
& \times A^{(2+)}\left(w_{2(i-1)+2}^{(2+)} \prod_{\alpha=2 i+1}^{2 L}\left(A^{(2+)}+e^{\varphi} D^{(2+)}\right)\left(w_{\alpha}^{(2+)}\right) \widetilde{P}_{1 \cdots 2 L}^{(2)}\right. \\
+ & \omega^{2} \widetilde{P}_{1 \cdots 2 L}^{(2)} \prod_{\alpha=1}^{2(i-1)}\left(A^{(2+)}+e^{\varphi} D^{(2+)}\right)\left(w_{\alpha}^{(2+)}\right) \prod_{k=1}^{2} D^{(2+)}\left(w_{2(i-1)+k}^{(2+)}\right) \\
& \times \prod^{2 L}\left(A^{(2+)}+e^{\varphi} D^{(2+)}\right)\left(w_{\alpha}^{(2+)}\right) \widetilde{P}_{1 \cdots 2 L}^{(2)}
\end{aligned}
$$

## Conclusion

- I-1: QISP for the spin- $s$ XXZ spin chains both in the massless and massive regimes New tricks such as Hermitian elementary matrices
- I-2: Single-product form of the multiple-integral representation of an arbitrary spin- $s$ XXZ correlation function
We have evaluated one-point functions for spin-1 and show $\left\langle\widetilde{E}^{00}\right\rangle+\left\langle\widetilde{E}^{11}\right\rangle+\left\langle\widetilde{E}^{22}\right\rangle=1 .(0 \leq \zeta<\pi / 2 s)$
- II: QISP for SCP model

Possible future work:

- Spin-s correlation functions in the massive regime
- Factorization property: Are all the multiple integrals reduced into single integrals ? (A question given by B.M. McCoy)
- Confirmation of conjectures by Au-Yang and Perk for deriving correlation functions of $Z_{N}$-symmetric Hamiltonian (SCP model)


## Thank you for your attention!

## Reference

[1,2] T.D. and Chihiro Matsui, NPB 814[FS](2009)405;831[FS](2010)359
[3] T. D. and Kohei Motegi, in preparation.
Partially in collaboration with Jun Sato
[4] Akinori Nishino and T. D., J. Stat. Phys. 133 (2008) 587
(For SCP model and the $s l_{2}$ loop algebra symmetry)

