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Outline of the talk

Motivations

Building blocks needed

Part 1:  equilibrium dynamics

Part 2:  quench dynamics

Lieb-Liniger, Heisenberg, Richardson
Applications

Richardson, Heisenberg
Geometric quench
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The idea (always the same):
Start with your favourite quantum state 

(expressed in terms of Bethe states)

O
Apply some operator on it

Reexpress the result in the basis of Bethe states:

O|{λ}� =
�

{µ}

FO

{µ},{λ}|{µ}�

FO

{µ},{λ} = �{µ}|O|{λ}�using ‘matrix elements’

Wednesday, 16 June, 2010



Bethe Ansatz (1931)

July 2, 1906 – March 6, 2005

Wednesday, 16 June, 2010



Bethe Ansatz (1931)

July 2, 1906 – March 6, 2005

H =
� L

0
dx H(x)

Integrable Hamiltonian:

Wednesday, 16 June, 2010



Bethe Ansatz (1931)

July 2, 1906 – March 6, 2005

H =
� L

0
dx H(x)

Integrable Hamiltonian:

‘Reference state’: vacuum, FM state,...

Wednesday, 16 June, 2010



Bethe Ansatz (1931)

July 2, 1906 – March 6, 2005

H =
� L

0
dx H(x)

Integrable Hamiltonian:

‘Reference state’:

‘Particles’:

vacuum, FM state,...

atoms, down spins, ...

Wednesday, 16 June, 2010



Bethe Ansatz (1931)

July 2, 1906 – March 6, 2005

H =
� L

0
dx H(x)

Integrable Hamiltonian:

‘Reference state’:

‘Particles’:

vacuum, FM state,...

atoms, down spins, ...

Exact many-body wavefunctions (in N-particle sector):

Wednesday, 16 June, 2010



Bethe Ansatz (1931)

July 2, 1906 – March 6, 2005

H =
� L

0
dx H(x)

Integrable Hamiltonian:

‘Reference state’:

‘Particles’:

vacuum, FM state,...

atoms, down spins, ...

Exact many-body wavefunctions (in N-particle sector):

ΨN ({x}|{λ}) =
�

P

(−1)[P ]AP ({λ})eixjk(λPj )

Wednesday, 16 June, 2010



Bethe Ansatz (1931)

July 2, 1906 – March 6, 2005

H =
� L

0
dx H(x)

Integrable Hamiltonian:

‘Reference state’:

‘Particles’:

vacuum, FM state,...

atoms, down spins, ...

Exact many-body wavefunctions (in N-particle sector):

ΨN ({x}|{λ}) =
�

P

(−1)[P ]AP ({λ})eixjk(λPj )

... made up of free waves ...

Wednesday, 16 June, 2010



Bethe Ansatz (1931)

July 2, 1906 – March 6, 2005

H =
� L

0
dx H(x)

Integrable Hamiltonian:

‘Reference state’:

‘Particles’:

vacuum, FM state,...

atoms, down spins, ...

Exact many-body wavefunctions (in N-particle sector):

ΨN ({x}|{λ}) =
�

P

(−1)[P ]AP ({λ})eixjk(λPj )

Wednesday, 16 June, 2010



Bethe Ansatz (1931)

July 2, 1906 – March 6, 2005

H =
� L

0
dx H(x)

Integrable Hamiltonian:

‘Reference state’:

‘Particles’:

vacuum, FM state,...

atoms, down spins, ...

Exact many-body wavefunctions (in N-particle sector):

ΨN ({x}|{λ}) =
�

P

(−1)[P ]AP ({λ})eixjk(λPj )

... with specified relative amplitudes...

Wednesday, 16 June, 2010



Bethe Ansatz (1931)

July 2, 1906 – March 6, 2005

H =
� L

0
dx H(x)

Integrable Hamiltonian:

‘Reference state’:

‘Particles’:

vacuum, FM state,...

atoms, down spins, ...

Exact many-body wavefunctions (in N-particle sector):

ΨN ({x}|{λ}) =
�

P

(−1)[P ]AP ({λ})eixjk(λPj )

Wednesday, 16 June, 2010



Bethe Ansatz (1931)

July 2, 1906 – March 6, 2005

H =
� L

0
dx H(x)

Integrable Hamiltonian:

‘Reference state’:

‘Particles’:

vacuum, FM state,...

atoms, down spins, ...

Exact many-body wavefunctions (in N-particle sector):

ΨN ({x}|{λ}) =
�

P

(−1)[P ]AP ({λ})eixjk(λPj )

... parametrized by rapidities...

Wednesday, 16 June, 2010



Bethe Ansatz (1931)

July 2, 1906 – March 6, 2005

H =
� L

0
dx H(x)

Integrable Hamiltonian:

‘Reference state’:

‘Particles’:

vacuum, FM state,...

atoms, down spins, ...

Exact many-body wavefunctions (in N-particle sector):

ΨN ({x}|{λ}) =
�

P

(−1)[P ]AP ({λ})eixjk(λPj )

Wednesday, 16 June, 2010



Bethe Ansatz (1931)

July 2, 1906 – March 6, 2005

H =
� L

0
dx H(x)

Integrable Hamiltonian:

‘Reference state’:

‘Particles’:

vacuum, FM state,...

atoms, down spins, ...

Exact many-body wavefunctions (in N-particle sector):

ΨN ({x}|{λ}) =
�

P

(−1)[P ]AP ({λ})eixjk(λPj )

... and obeying some form of Pauli principle

Wednesday, 16 June, 2010



Bethe Ansatz (1931)

July 2, 1906 – March 6, 2005

H =
� L

0
dx H(x)

Integrable Hamiltonian:

‘Reference state’:

‘Particles’:

vacuum, FM state,...

atoms, down spins, ...

Exact many-body wavefunctions (in N-particle sector):

ΨN ({x}|{λ}) =
�

P

(−1)[P ]AP ({λ})eixjk(λPj )

Wednesday, 16 June, 2010



Imposing boundary conditions quantizes the allowable 
rapidities according to the Bethe equations

θkin(λj) +
1
L

�

k

θscat(λj − λk) =
2π

L
Ij

Wednesday, 16 June, 2010



Imposing boundary conditions quantizes the allowable 
rapidities according to the Bethe equations

θkin(λj) +
1
L

�

k

θscat(λj − λk) =
2π

L
Ij

Eigenstates:  labeled by set of quantum numbers

Wednesday, 16 June, 2010



Imposing boundary conditions quantizes the allowable 
rapidities according to the Bethe equations

θkin(λj) +
1
L

�

k

θscat(λj − λk) =
2π

L
Ij

Eigenstates:  labeled by set of quantum numbers

Constructing all 
states in the 
Hilbert space

Obtaining all solutions 
to the Bethe equations
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Like ‘2nd quantization’ for Bethe Ansatz
A(λ), B(λ), C(λ), D(λ)Introduce family                                  of nonlocal 

operators which act in Hilbert space of model

|Ψ({λ})〉 =
∏

j

B(λj)|0〉Wavefunctions:

provided the rapidities satisfy Bethe equations

B(λ)  creation operator, increasing particle number by 1

Mapping ABA ops to local ops:  quantum inverse 
problem (Maillet 1999)

A(λ), B(λ), C(λ), D(λ) ←→ Sa
jFor spin chains:

State norms:  Gaudin-Korepin formula

‘Technology’ needed:  Algebraic BA
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Scalar products:  Slavnov’s formula

gives (at least in principle) 
all matrix elements needed
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Heisenberg spin-1/2 chain 

H =
N

∑

j=1

[

J(Sx
j S

x
j+1+S

y
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z
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z
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z
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Interacting Bose gas (Lieb-Liniger)
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j S
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z
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]

HN = −

N∑

j=1

∂2

∂x2
j

+ 2c
∑

1≤j<l≤N

δ(xj − xl)

Interacting Bose gas (Lieb-Liniger)

Richardson model (+ Gaudin magnets) 

HBCS =

N∑

α=1

σ=+,−

εα

2
c†ασcασ − g

N∑

α,β=1

c
†
α+c

†
α−cβ−cβ+
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What we can calculate:
DYNAMICAL STRUCTURE FACTOR

Saā(q, ω) =
1

N

N∑
j,j′=1

eiq(j−j′)

∫
∞

−∞

dteiωt〈Sa
j (t)Sā

j′(0)〉c
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Saā(q, ω) =
1

N

N∑
j,j′=1

eiq(j−j′)

∫
∞

−∞

dteiωt〈Sa
j (t)Sā
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j,j′=1

eiq(j−j′)

∫
∞

−∞

dteiωt〈Sa
j (t)Sā

j′(0)〉c

ONE-BODY FN G2(x, t) = 〈Ψ†(x, t)Ψ(0, 0〉

S(k, ω) =

∫
dx
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dte−ikx+iωt〈ρ(x, t)ρ(0, 0)〉

DENSITY-DENSITY FUNCTION
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What we can calculate:

inelastic neutron scattering

Bragg spectroscopy, interference experiments, ...
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1
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∞
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j′(0)〉c
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∫
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What we can calculate:

(zero temperature only (for now !))

inelastic neutron scattering

Bragg spectroscopy, interference experiments, ...

DYNAMICAL STRUCTURE FACTOR

Saā(q, ω) =
1

N

N∑
j,j′=1

eiq(j−j′)

∫
∞

−∞

dteiωt〈Sa
j (t)Sā

j′(0)〉c

ONE-BODY FN G2(x, t) = 〈Ψ†(x, t)Ψ(0, 0〉

S(k, ω) =

∫
dx

∫
dte−ikx+iωt〈ρ(x, t)ρ(0, 0)〉

DENSITY-DENSITY FUNCTION
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Building correlation functions
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Sa,ā(q, ω) = 2π
∑

µ

|〈0|Oa

q |µ〉|
2δ(ω − Eµ + E0)

Our needed building blocks are:
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Building correlation functions
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Sa,ā(q, ω) = 2π
∑

µ

|〈0|Oa

q |µ〉|
2δ(ω − Eµ + E0)

Our needed building blocks are:

1) A basis of eigenstates  

Bethe Ansatz;  quantum groups
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Building correlation functions
piece by piece

Sa,ā(q, ω) = 2π
∑

µ

|〈0|Oa

q |µ〉|
2δ(ω − Eµ + E0)

Our needed building blocks are:

2) The matrix elements of interesting 
operators in this basis  

1) A basis of eigenstates  
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Building correlation functions
piece by piece

Sa,ā(q, ω) = 2π
∑

µ

|〈0|Oa

q |µ〉|
2δ(ω − Eµ + E0)

Our needed building blocks are:

2) The matrix elements of interesting 
operators in this basis  

1) A basis of eigenstates  

Algebraic Bethe Ansatz;  q. groups
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Building correlation functions
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∑
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2δ(ω − Eµ + E0)

Our needed building blocks are:

2) The matrix elements of interesting 
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Building correlation functions
piece by piece

Sa,ā(q, ω) = 2π
∑

µ

|〈0|Oa

q |µ〉|
2δ(ω − Eµ + E0)

Our needed building blocks are:

2) The matrix elements of interesting 
operators in this basis  

3) A way to sum over intermediate states

1) A basis of eigenstates  
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Building correlation functions
piece by piece

Sa,ā(q, ω) = 2π
∑

µ

|〈0|Oa

q |µ〉|
2δ(ω − Eµ + E0)

Our needed building blocks are:

2) The matrix elements of interesting 
operators in this basis  

3) A way to sum over intermediate states

1) A basis of eigenstates  

Numerics (ABACUS);  analytics
Wednesday, 16 June, 2010



Building correlation functions
piece by piece

Sa,ā(q, ω) = 2π
∑

µ

|〈0|Oa

q |µ〉|
2δ(ω − Eµ + E0)

Our needed building blocks are:

2) The matrix elements of interesting 
operators in this basis  

3) A way to sum over intermediate states

1) A basis of eigenstates  
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Lieb-Liniger Bose gas

S(k, ω) =
2π

L

∑

α

|〈0|ρk|α〉|
2δ(ω − Eα + E0)

(J-S C & P Calabrese, PRA 2006)Density-density (dynamical SF)
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Correspondence 
with excitations
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Drag force on impurity in 1d BG:  
superfluidity revisited 

(A. Yu. Cherny J.-S.C & J. Brand, PRA 2009)
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Drag force on impurity in 1d BG:  
superfluidity revisited 
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v

`Impurity’ moving 
through gas

Gas moving 
through impurity

Fv(v) =
� +∞

0
dkk|Ṽi(k)|2S(k, kv)/L

Drag force is given in linear 
response theory by integral 

over structure factor:

(A. Yu. Cherny J.-S.C & J. Brand, PRA 2009)
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Drag force on impurity in 1d BG:  
superfluidity revisited 

v

`Impurity’ moving 
through gas

Gas moving 
through impurity

(A. Yu. Cherny J.-S.C & J. Brand, PRA 2009)
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G2(x, t) = 〈Ψ†(x, t)Ψ(0, 0)〉N

One-particle dynamical function

(J-S C, P Calabrese & N Slavnov, JSTAT 2007)
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The attractive Lieb-Liniger model:  
analytical solution

H = −

h̄
2

2m

N∑

j=1

∂2

∂x2
j

− 2c̄
∑

〈i,j〉

δ(xi − xj)
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H = −

h̄
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2m

N∑

j=1

∂2

∂x2
j

− 2c̄
∑

〈i,j〉

δ(xi − xj)

!!!  

eiλaL
=

∏

a!=b

λa − λb − ic̄

λa − λb + ic̄
, a = 1, ..., NBethe eqns:
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The attractive Lieb-Liniger model:  
analytical solution

H = −

h̄
2

2m

N∑

j=1

∂2

∂x2
j

− 2c̄
∑

〈i,j〉

δ(xi − xj)

!!!  

eiλaL
=

∏

a!=b

λa − λb − ic̄

λa − λb + ic̄
, a = 1, ..., NBethe eqns:

bound state solutions:  strings

λj,a
α = λj

α +
ic̄

2
(j + 1 − 2a) + iδj,a

α .
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The attractive Lieb-Liniger model:  
analytical solution

H = −

h̄
2

2m

N∑

j=1

∂2

∂x2
j

− 2c̄
∑

〈i,j〉

δ(xi − xj)

!!!  

eiλaL
=

∏

a!=b

λa − λb − ic̄

λa − λb + ic̄
, a = 1, ..., NBethe eqns:

bound state solutions:  strings

λj,a
α = λj

α +
ic̄

2
(j + 1 − 2a) + iδj,a

α .

(J. B. McGuire, 1964;   F. Calogero & A. DeGasperis, 1975;  Y. Castin & C. Herzog, 2001)
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Attractive Lieb-Liniger:  analytical 
solution for CFs

Single-particle coherent part + two-particle continuum

(J.-S.C & P. Calabrese PRL 2007;  JSTAT 2007)
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Single-particle coherent part + two-particle continuum

(J.-S.C & P. Calabrese PRL 2007;  JSTAT 2007)

Finite threshold
Square-root singularity
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Attractive Lieb-Liniger:  analytical 
solution for CFs

Single-particle coherent part + two-particle continuum

Single-particle part:  leads to Mössbauer-like effect
(gas reacts like a single massive particle)

(J.-S.C & P. Calabrese PRL 2007;  JSTAT 2007)

Finite threshold
Square-root singularity

Broad peak
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The 2-component Bose gas
(special case of  Yang permutation model)

H = −

NC∑

a=1

Na∑

i=1

∂2

∂x2
a,i

+ 2c
∑

(a,i)<(b,j)

δ(xa,i − xb,j)
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The 2-component Bose gas
(special case of  Yang permutation model)

H = −

NC∑

a=1

Na∑

i=1

∂2

∂x2
a,i

+ 2c
∑

(a,i)<(b,j)

δ(xa,i − xb,j)

Dynamics:  hum...  nested BA 

ε1(λ) = f ∗ T ln(1 + e−ε(λ)/T ) + f ∗ T ln(1 + eε2(λ)/T )

ε(λ) = λ2
− µ − Ω − a2 ∗ T ln(1 + e−ε(λ)/T ) −

∞∑

n=1

an ∗ T ln(1 + e−εn(λ)/T )

εn(λ) = f ∗ T ln(1 + eεn−1(λ)/T ) + f ∗ T ln(1 + eεn+1(λ)/T )

lim
n→∞

εn(λ)

n
= 2Ω

Equilibrium thermodynamics:  OK !
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The 2-component Bose gas
(special case of  Yang permutation model)

H = −

NC∑

a=1

Na∑

i=1

∂2

∂x2
a,i

+ 2c
∑

(a,i)<(b,j)

δ(xa,i − xb,j)

Numerical solution

Dynamics:  hum...  nested BA 

ε1(λ) = f ∗ T ln(1 + e−ε(λ)/T ) + f ∗ T ln(1 + eε2(λ)/T )

ε(λ) = λ2
− µ − Ω − a2 ∗ T ln(1 + e−ε(λ)/T ) −

∞∑

n=1

an ∗ T ln(1 + e−εn(λ)/T )

εn(λ) = f ∗ T ln(1 + eεn−1(λ)/T ) + f ∗ T ln(1 + eεn+1(λ)/T )

lim
n→∞

εn(λ)

n
= 2Ω

Equilibrium thermodynamics:  OK !

J.-S. C., A. Klauser & J. van den Brink, PRA 2009
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The 2-component Bose gas
Ferromagnetism using interacting bosons
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S(k, ω), ∆ = 1, h = 0

Heisenberg chains
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Zero field chain:  longitudinal SF
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Method 2:  analytics (XXX, h = 0)
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Method 2:  analytics (XXX, h = 0)
Infinite model, zero field:  possesses

quantum group symmetry
Uq(ŝl2)
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Method 2:  analytics (XXX, h = 0)

Representation theory of q group

Infinite model, zero field:  possesses
quantum group symmetry

Uq(ŝl2)
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Method 2:  analytics (XXX, h = 0)

eigenstates and form factors (Jimbo, Miwa, ...)
Representation theory of q group

Infinite model, zero field:  possesses
quantum group symmetry

Uq(ŝl2)
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Method 2:  analytics (XXX, h = 0)

Excitations:  built up of even numbers of spinons 
eigenstates and form factors (Jimbo, Miwa, ...)

Representation theory of q group
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quantum group symmetry

Uq(ŝl2)
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Two spinon part of the structure factor:
Bougourzi, Couture, Kacir 1996;  Karbach, Müller, B., Fledderjohann, Mütter 1997
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Two spinon part of the structure factor:
Bougourzi, Couture, Kacir 1996;  Karbach, Müller, B., Fledderjohann, Mütter 1997

Two spinon states carry 72.89% of integrated 
intensity (71.30% of first frequency moment)
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Excitations:  built up of even numbers of spinons 
eigenstates and form factors (Jimbo, Miwa, ...)

Representation theory of q group

Infinite model, zero field:  possesses
quantum group symmetry

Uq(ŝl2)

Remarkable:  measure 0 set in Hilbert space 
carries majority of correlation weight !
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Two spinon part of the structure factor:
Bougourzi, Couture, Kacir 1996;  Karbach, Müller, B., Fledderjohann, Mütter 1997

Two spinon states carry 72.89% of integrated 
intensity (71.30% of first frequency moment)

Missing part:  higher spinon numbers

Method 2:  analytics (XXX, h = 0)

Excitations:  built up of even numbers of spinons 
eigenstates and form factors (Jimbo, Miwa, ...)

Representation theory of q group

Infinite model, zero field:  possesses
quantum group symmetry

Uq(ŝl2)

Remarkable:  measure 0 set in Hilbert space 
carries majority of correlation weight !
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Four spinon part of zero-field structure 
factor in the thermodynamic limit

(Abada, Bougourzi, Si-Lakhal 1997, revised in JSC & R. Hagemans JSTAT 2006)

At each point, 4 spinon SF is two-fold integral: 

S4(k, ω) = C4

∫

DK

dK

∫ Ωu(k,ω,K)

Ωl(k,ω,K)
dΩ

J(k, ω, K,Ω)
{[

ω2
2,u(K) − Ω2

] [

ω2
2,u(k − K) − (ω − Ω)2

]}1/2
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Four spinon part of zero-field structure 
factor in the thermodynamic limit

(Abada, Bougourzi, Si-Lakhal 1997, revised in JSC & R. Hagemans JSTAT 2006)

At each point, 4 spinon SF is two-fold integral: 

S4(k, ω) = C4

∫

DK

dK

∫ Ωu(k,ω,K)

Ωl(k,ω,K)
dΩ

J(k, ω, K,Ω)
{[

ω2
2,u(K) − Ω2

] [

ω2
2,u(k − K) − (ω − Ω)2

]}1/2

4-spinon continuum:

k

a b c

Integration regions:  intersection 
of two 2-spinon continua
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4-spinon states carry about 27% of full intensity
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4-spinon states carry about 27% of full intensity
2 + 4 spinons:  approx 98% of correlations !
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Analytics (II):  gapped XXZ, h = 0
(Bougourzi, Karbach, Müller 1998, revisited in JSC, Mossel & Pérez Castillo, JSTAT 2008)
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Analytics (II):  gapped XXZ, h = 0
(Bougourzi, Karbach, Müller 1998, revisited in JSC, Mossel & Pérez Castillo, JSTAT 2008)

Spinon excitations:  
e(β) = Idn(β), p(β) = am(β) +

π

2
, I ≡

JK

π
sinh

(

πK ′

K

)
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Analytics (II):  gapped XXZ, h = 0
(Bougourzi, Karbach, Müller 1998, revisited in JSC, Mossel & Pérez Castillo, JSTAT 2008)

Nontrivial 2-spinon continuum:

‘Folding up’ of  continuum at 
small momentum transfer
(curvature of dispersion 

relation changes sign as fn of 
momentum)

Spinon excitations:  
e(β) = Idn(β), p(β) = am(β) +

π

2
, I ≡

JK

π
sinh

(

πK ′

K

)

Dispersion relation: e1(p) = I
√

1 − k2 cos2(p) , 0 ≤ p ≤ π
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Gapped XXZ AFM, h = 0, 2spinons
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Gapped XXZ AFM, h = 0, 2spinons

periodicity only recovered in true Ising limitπ
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Gapped XXZ AFM, h = 0, 2spinons
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Gapped XXZ AFM, h = 0, 2spinons

EXACT correlation function in thermodynamic limit for 
energies below twice the gap
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Neutron 
scattering

Wednesday, 16 June, 2010



Neutron 
scattering

Wednesday, 16 June, 2010



Neutron 
scattering

Wednesday, 16 June, 2010
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Neutron 
scattering
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Neutron 
scattering
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Neutron 
scattering

‘new’ particles:
spinons (quantum solitons)
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Neutron 
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Neutron 
scattering
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Neutron 
scattering
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Neutron 
scattering

time &
direction:
energy &

momentum
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Neutron scattering (HMI, Berlin)

NEAT time-of-flight spectrometer
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Hahn-Meitner-Institut Berlin
in der Helmholtz-Gemeinschaft

Spinons in KCuF3S(Q,w) Bethe Ansatz
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Sr CuO :  XXX32

Walters, Perring, JSC, Savici, Gu, Lee, Ku, Zaliznyak, NatPhys 2009
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(C D  N) CuBr125 2 4

XXZ AFM at 
anisotropy ∆ = 1/2

B. Thielemann, Ch. Rüegg, H. M. Rønnow, A. M. 
Läuchli, J.-S. Caux, B. Normand, D. Biner, K. W. 
Krämer, H.-U. Güdel, J. Stahn, K. Habicht, K. Kiefer, M. 
Boehm, D. F. McMorrow, J. Mesot, 
PRL, 2009
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New experimental method:  RIXS
(Resonant Inelastic X-ray Scattering)

Synchrotron

X-ray induces a 
1s-4p transition on 
copper, modifying 
exchange term
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Energy- and momentum-dependent scattering amplitude:

SRIXS(k, ω) =
2π

N

�

α

|�α|
�

j

e−ikjSz
j Sz

j+1|GS�|2δ(ω − Eα + E0)
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Energy- and momentum-dependent scattering amplitude:

SRIXS(k, ω) =
2π

N

�

α

|�α|
�

j

e−ikjSz
j Sz

j+1|GS�|2δ(ω − Eα + E0)

RIXS reveals 
4-spinon 
states !
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|GS� Sz
p |GS� Sz

q−p Sz
p |GS�

RIXS response:  intuitive picture
�α|Sz

j Sz
j+1|GS�‘Two-step’ process:  
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The Richardson model
HBCS =

N∑

α=1

σ=+,−

εα

2
c†ασcασ − g

N∑

α,β=1

c
†
α+c

†
α−cβ−cβ+

(R. W. Richardson, 1963;  R. W. Richardon & N. Sherman, 1964)
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“Reduced BCS”:  ground  state is BCS in th. limit, grand-canonical.  
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B(wk)|0〉

Eigenstates are Bethe,
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“Reduced BCS”:  ground  state is BCS in th. limit, grand-canonical.  
Exactly solvable in canonical ensemble. 

(R. W. Richardson, 1963;  R. W. Richardon & N. Sherman, 1964)

Rapidities:  (Bethe) Richardson equations 
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Eigenstates are Bethe,
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For excited states:  
can become a real 

challenge !!

(Richardson, 1964;  Schechter, Imry, Levinson & von Delft, 2001;  von Delft & Ralph, 2001; Yuzbashyan, 
Baytin &  Altshuler, 2003;  Roman, Sierra & Dukelsky, 2003; Snyman & Geyer, 2006; Sambataro, 2007)
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The Richardson model:  
(static) correlation functions

(A. Faribault, P. Calabrese & J-S C, PRB 2008)

(Following up on ABA work by J. von Delft & R. Poghossian, 2002 
and H.-Q. Zhou, J. Links, R. H. McKenzie & M. D. Gould, 2002-3)

〈S−

1 S
+
α
〉 〈Sz

1S
z

α
〉
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Integrability for correlations:  
generic features

Exact realization of ground state, 
taking all ‘entanglement’ into account

Exact realization of excited states
(spinons, Lieb types I, II, Gaudinos,...), 

irrespective of their energy

Action of local operators:  accurately captured 
by using only a handful of BA excitations  

incredibly efficient basis for 
many physically relevant correlations
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Part 2:  

Quench 
dynamics
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Single

t = 0
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Quenches:  some trivialities
Sudden change of 

interaction parameter

We know how to calculate the quench matrix for 
the Richardson model !!
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Quench matrix elements  
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Time dependence of observables
‘order parameter’

Plotted against 
mean-field 
prediction

(Barankov & Levitov, 
PRL 2006)

∆∞

gap for initial g

gap for final g

asymptotic gap

∆g

∆g0

ΨOD(t) ∝
�

α,β

�ψ(t)|S+
α S−

β
|ψ(t)�
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Sequential

2t1t

quenchGeneric 
situation, here 
for 2 quenches:

Sequential quenches

Wednesday, 16 June, 2010



Sequential

2t1t

quenchGeneric 
situation, here 
for 2 quenches:

Sequential quenches

‘Quench propagator’
for quench-dequench

Qβα(tq) =
∑

γ∈Hg1

Mβγ
g0g1

Mγα
g1g0

e−iωγtq
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Sequential

2t1t

quenchGeneric 
situation, here 
for 2 quenches:

t

quench

sequential

Targeted

2t1

Possible to 
focus on specific 
excited states ?

Sequential quenches

‘Quench propagator’
for quench-dequench

Qβα(tq) =
∑

γ∈Hg1

Mβγ
g0g1

Mγα
g1g0

e−iωγtq
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Re(Aα)

Im(Aα)

At t = 0, the initial quench 
populates excited states 

of Hg

α
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Re(Aα)

Im(Aα)

At t = 0, the initial quench 
populates excited states 

of Hg

α

Re(Aα)

Im(Aα)

α

As the quench lasts, each 
‘arrow’ rotates at the 
appropriate frequency
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At t = 0, the initial quench 
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α

The dequench repopulates states of original Hamiltonian 
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Re(Aα)

Im(Aα)

At t = 0, the initial quench 
populates excited states 

of Hg

α

When arrows ‘add up to zero’:  state destruction
The dequench repopulates states of original Hamiltonian 

Re(Aα)

Im(Aα)

α
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Re(Aα)

Im(Aα)

At t = 0, the initial quench 
populates excited states 

of Hg

α

When arrows ‘add up to zero’:  state destruction
When arrows realign:  state reconstruction

The dequench repopulates states of original Hamiltonian 

Re(Aα)

Im(Aα)

α

As the quench lasts, each 
‘arrow’ rotates at the 
appropriate frequency
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State occupation probabilities after 
double quench (quench-dequench)

Ground state 
disappears and 

reappears (‘collapse 
and revival’);
excited states 

nontrivially 
weighted

Weight distribution among 
excited states:  look at IPRs

Iq,r =
∑

α>0

|Aα|
2q/(

∑

α>0

|Aα|
2)q

Wednesday, 16 June, 2010



Domain wall quenched into XXZ
J. Mossel and JSC, NJP 2010
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Domain wall quenched into XXZ
J. Mossel and JSC, NJP 2010

|φ� = | ↓ . . . ↓� �� �
M

↑ . . . ↑� �� �
N−M

�.Initial state:
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Domain wall quenched into XXZ
J. Mossel and JSC, NJP 2010

|φ� = | ↓ . . . ↓� �� �
M

↑ . . . ↑� �� �
N−M

�.

HXXZ = J

N�

j=1

�
1

2∆
�
S
−
j S

+
j+1 + S

+
j S

−
j+1

�
+ S

z
j S

z
j+1

�

Initial state:

Time evolution dictated by
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Domain wall quenched into XXZ
J. Mossel and JSC, NJP 2010
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Initial state:

Time evolution dictated by

Solution to Schrödinger eqn:
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Domain wall quenched into XXZ
J. Mossel and JSC, NJP 2010

|φ� = | ↓ . . . ↓� �� �
M

↑ . . . ↑� �� �
N−M

�.

|φ(t)� =
�

n

e−iEntQn|Ψn�

Qn ≡ �Ψn|φ�

HXXZ = J

N�

j=1

�
1
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�
S
−
j S

+
j+1 + S

+
j S

−
j+1

�
+ S

z
j S

z
j+1

�

�

n

|Qn|2 = 1

Initial state:

Time evolution dictated by

Solution to Schrödinger eqn:

Quench vector elements:
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P (W ) =
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n
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Work probability distribution
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Loschmidt echo
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Geometric quenches

t < 0 : xi ∈ [0, L1[
J. Mossel, G. Palacios and JSC, 2010
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Geometric quenches

t < 0 : xi ∈ [0, L1[

t > 0 : xi ∈ [0, L2[

J. Mossel, G. Palacios and JSC, 2010
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Geometric quenches

t < 0 : xi ∈ [0, L1[

t > 0 : xi ∈ [0, L2[

Ψ(1)
c ({x}|{λ}L1) =

�
Ψ(2)

c ({x}|{λ}L1), 0 ≤ xi < L1,
0 otherwise

Initial wavefunction:  nonlinear mapping

J. Mossel, G. Palacios and JSC, 2010
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Geometric quenches
The overlap can in fact be calculated using Slavnov !
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Geometric quenches
The overlap can in fact be calculated using Slavnov !

�{λL1
c }|{µL2

c }� =
�

0≤x1<x2<...≤L1

dNx(ψL1
c ({xi}|{λi}))∗ψL2

c ({xi}|{µi}) = F ({λ}|{µ})

It’s just the overlap in the original space domain:
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Geometric quench:  Heisenberg
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‘Release’ M = N/3 from system size N to 2N
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Not discussed here...

Correlations in nested systems

Contact with field theory calculations
(`Nonlinear Luttinger Liquid’ theory)

Better classification of solutions to Bethe eqns

Quenches from integrability:  other cases

To do list/work in progress:

Renormalization from integrable points

Q group approach:  other regimes/polarizations
Finite temperatures
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