In- and out-of-equilibrium dynamics in integrable systems

Jean-Sébastien Caux

Universiteit van Amsterdam

Work done in collaboration with:
'Amsterdam integrable models group':
A. Klauser, J. Mossel, M. Panfil, B. Pozsgay, G. Palacios
P. Calabrese, I. Pérez Castillo, A. Faribault, N. Slavnov

Isaiah Berlin

(June 6, 1909- Nov 5,1997)

Isaiah Berlin

(June 6, 1909- Nov 5,1997)

Isaiah Berlin

(June 6, I909- Nov 5,I997)

Isaiah Berlin

(June 6, 1909- Nov 5, 1997)

The fox knows many things...

Isaiah Berlin

(June 6, 1909- Nov 5, I997)

The fox knows many things...

... but the hedgehog knows one big thing.
(Archilochus)

Isaiah Berlin

(June 6, 1909- Nov 5,1997)

The fox knows many things...

(Archilochus)

Isaiah Berlin
(June 6, 1909- Nov 5, 1997)

The fox knows many things...

(Archilochus)

Isaiah Berlin (June 6, 1909- Nov 5, 1997)

The fox knows many things...

but the hedgehog knows one big thing.
(Archilochus)

Isaiah Berlin (June 6, 1909- Nov 5, 1997)

The fox knows many things...

$$
R_{12}(\lambda, \mu) T_{1}(\lambda) T_{2}(\mu)=T_{2}(\mu) T_{1}(\lambda) R_{12}(\lambda, \mu)
$$

(Archilochus)

Isaiah Berlin (June 6, 1909- Nov 5, 1997)

The fox knows many things...

Isaiah Berlin (June 6, 1909- Nov 5, 1997)

The fox knows many things...

Condensed

MATTER THEORIST

Condensed
 MATTER THEORIST

Condensed MATTER THEORIST

Mathematical
physicist

Condensed MATTER THEORIST

Mathematical physicist

Computing nerd

Condensed MATTER THEORIST

Computing nerd

Jack of all trades

Outline of the talk

- Motivations

Building blocks needed

- Part I: equilibrium dynamics

Lieb-Liniger, Heisenberg, Richardson Applications

O Part 2: quench dynamics
Richardson, Heisenberg
Geometric quench

Correlation functions and quantum quenches from integrability...

Correlation functions and quantum

 quenches from integrability... Why would you want to do that?Correlation functions and quantum quenches from integrability... Why would you want to do that?

Integrable models: exception rather than rule

Correlation functions and quantum

 quenches from integrability... Why would you want to do that?Integrable models: exception rather than rule

Theory developments: geological timescales

Correlation functions and quantum

 quenches from integrability... Why would you want to do that?Integrable models: exception rather than rule

Theory developments: geological timescales
It's a Russian kind of business

Correlation functions and quantum

 quenches from integrability... Why would you want to do that?Integrable models: exception rather than rule

Theory developments: geological timescales
It's a Russian kind of business

Correlation functions and quantum

 quenches from integrability... Why would you want to do that?Integrable models: exception rather than rule

It's a Russian kind of business
Way to reliably study quantum correlation effects in many-body systems (exotic excitations: transmutation, fractionalization, ...)

Correlation functions and quantum

 quenches from integrability...
Why would you want to do that?

Integrable models: exception rather than rule

It's a Russian kind of business

Way to reliably study quantum correlation effects in many-body systems (exotic excitations:
transmutation, fractionalization, ...)
There are some very good experimental realizations requiring phenomenology

Correlation functions and quantum

 quenches from integrability...
Why would you want to do that?

Integrable models: exception rather than rule
Theory developments: geological timescales
It's a Russian kind of business
Way to reliably study quantum correlation effects in many-body systems (exotic excitations:
transmutation, fractionalization, ...)
There are some very good experimental realizations requiring phenomenology

Great way to provide reliable beacons for other, more general methods (field theory-based, numerical)

The idea (always the same):

The idea (always the same):

Start with your favourite quantum state (expressed in terms of Bethe states)

$$
|\{\lambda\}\rangle
$$

The idea (always the same):

Start with your favourite quantum state (expressed in terms of Bethe states)

Apply some operator on it

The idea (always the same):

Start with your favourite quantum state (expressed in terms of Bethe states)

Apply some operator on it
Reexpress the result in the basis of Bethe states:

$$
\mathcal{O}|\{\lambda\}\rangle=\sum_{\{\mu\}} F_{\{\mu\},\{\lambda\}}^{\mathcal{O}}|\{\mu\}\rangle
$$

using 'matrix elements' $\quad F_{\{\mu\},\{\lambda\}}^{\mathcal{O}}=\langle\{\mu\}| \mathcal{O}|\{\lambda\}\rangle$

July 2, 1906 - March 6, 2005

Bethe Ansatz (I93I)

Integrable Hamiltonian:

$$
H=\int_{0}^{L} d x \mathcal{H}(x)
$$

Bethe Ansatz (I93I)

Integrable Hamiltonian:

$$
H=\int_{0}^{L} d x \mathcal{H}(x)
$$

'Reference state': vacuum, FM state,...

July 2, 1906 - March 6, 2005

Bethe Ansatz (I93I)

Integrable Hamiltonian:

$$
H=\int_{0}^{L} d x \mathcal{H}(x)
$$

'Reference state’: vacuum, FM state,...
'Particles': atoms, down spins, ...

July 2, 1906 - March 6, 2005

Bethe Ansatz (I93I)

Integrable Hamiltonian:

$$
H=\int_{0}^{L} d x \mathcal{H}(x)
$$

'Reference state’: vacuum, FM state,...
'Particles': atoms, down spins, ...
Exact many-body wavefunctions (in N -particle sector):

July 2, 1906 - March 6, 2005

Bethe Ansatz (I93I)

Integrable Hamiltonian:

$$
H=\int_{0}^{L} d x \mathcal{H}(x)
$$

'Reference state’: vacuum, FM state,...
'Particles': atoms, down spins, ...
Exact many-body wavefunctions (in N -particle sector):

$$
\Psi_{N}(\{x\} \mid\{\lambda\})=\sum_{P}(-1)^{[P]} A_{P}(\{\lambda\}) e^{i x_{j} k\left(\lambda_{P_{j}}\right)}
$$

July 2, 1906 - March 6, 2005

Bethe Ansatz (I93I)

Integrable Hamiltonian:

$$
H=\int_{0}^{L} d x \mathcal{H}(x)
$$

'Reference state’: vacuum, FM state,...
'Particles': atoms, down spins, ...
Exact many-body wavefunctions (in N -particle sector):

$$
\begin{aligned}
& \Psi_{N}(\{x\} \mid\{\lambda\})= \sum_{P}(-1)^{[P]} A_{P}\left(\{\lambda\} e^{i x_{j} k\left(\lambda_{P_{j}}\right)}\right) \\
& \quad . . . \text { made up of free waves ... }
\end{aligned}
$$

July 2, 1906 - March 6, 2005

Bethe Ansatz (I93I)

Integrable Hamiltonian:

$$
H=\int_{0}^{L} d x \mathcal{H}(x)
$$

'Reference state’: vacuum, FM state,...
'Particles': atoms, down spins, ...
Exact many-body wavefunctions (in N -particle sector):

$$
\Psi_{N}(\{x\} \mid\{\lambda\})=\sum_{P}(-1)^{[P]} A_{P}(\{\lambda\}) e^{i x_{j} k\left(\lambda_{P_{j}}\right)}
$$

July 2, 1906 - March 6, 2005

Bethe Ansatz (I93I)

Integrable Hamiltonian:

$$
H=\int_{0}^{L} d x \mathcal{H}(x)
$$

'Reference state’: vacuum, FM state,...
'Particles': atoms, down spins, ...
Exact many-body wavefunctions (in N -particle sector):

$$
\Psi_{N}(\{x\} \mid\{\lambda\})=\sum_{P}(-1)^{[P} A_{P}(\{\lambda\}) e^{i x_{j} k\left(\lambda_{P_{j}}\right)}
$$

... with specified relative amplitudes...

July 2, 1906 - March 6, 2005

Bethe Ansatz (I93I)

Integrable Hamiltonian:

$$
H=\int_{0}^{L} d x \mathcal{H}(x)
$$

'Reference state’: vacuum, FM state,...
'Particles': atoms, down spins, ...
Exact many-body wavefunctions (in N -particle sector):

$$
\Psi_{N}(\{x\} \mid\{\lambda\})=\sum_{P}(-1)^{[P]} A_{P}(\{\lambda\}) e^{i x_{j} k\left(\lambda_{P_{j}}\right)}
$$

July 2, 1906 - March 6, 2005

Bethe Ansatz (I93I)

Integrable Hamiltonian:

$$
H=\int_{0}^{L} d x \mathcal{H}(x)
$$

'Reference state’: vacuum, FM state,...
'Particles': atoms, down spins, ...
Exact many-body wavefunctions (in N -particle sector):

$$
\Psi_{N}\left(\{x\}\{\lambda\}=\sum_{P}(-1)^{[P]} A_{P}(\{\lambda\}) e^{i x_{j} k\left(\lambda_{P_{j}}\right)}\right.
$$

... parametrized by rapidities...

July 2, 1906 - March 6, 2005

Bethe Ansatz (I93I)

Integrable Hamiltonian:

$$
H=\int_{0}^{L} d x \mathcal{H}(x)
$$

'Reference state’: vacuum, FM state,...
'Particles': atoms, down spins, ...
Exact many-body wavefunctions (in N -particle sector):

$$
\Psi_{N}(\{x\} \mid\{\lambda\})=\sum_{P}(-1)^{[P]} A_{P}(\{\lambda\}) e^{i x_{j} k\left(\lambda_{P_{j}}\right)}
$$

July 2, 1906 - March 6, 2005

Bethe Ansatz (I93I)

Integrable Hamiltonian:

$$
H=\int_{0}^{L} d x \mathcal{H}(x)
$$

'Reference state’: vacuum, FM state,...
'Particles': atoms, down spins, ...
Exact many-body wavefunctions (in N -particle sector):

$$
\Psi_{N}(\{x\} \mid\{\lambda\})=\sum_{P}(-1)^{[P]} A_{P}(\{\lambda\}) e^{i x_{j} k\left(\lambda_{P_{j}}\right)}
$$

... and obeying some form of Pauli principle

July 2, 1906 - March 6, 2005

Bethe Ansatz (I93I)

Integrable Hamiltonian:

$$
H=\int_{0}^{L} d x \mathcal{H}(x)
$$

'Reference state’: vacuum, FM state,...
'Particles': atoms, down spins, ...
Exact many-body wavefunctions (in N -particle sector):

$$
\Psi_{N}(\{x\} \mid\{\lambda\})=\sum_{P}(-1)^{[P]} A_{P}(\{\lambda\}) e^{i x_{j} k\left(\lambda_{P_{j}}\right)}
$$

Imposing boundary conditions quantizes the allowable rapidities according to the Bethe equations

$$
\theta_{k i n}\left(\lambda_{j}\right)+\frac{1}{L} \sum_{k} \theta_{\text {scat }}\left(\lambda_{j}-\lambda_{k}\right)=\frac{2 \pi}{L} I_{j}
$$

Imposing boundary conditions quantizes the allowable rapidities according to the Bethe equations

$$
\theta_{k i n}\left(\lambda_{j}\right)+\frac{1}{L} \sum_{k} \theta_{\text {scat }}\left(\lambda_{j}-\lambda_{k}\right)=\frac{2 \pi}{L} I_{j}
$$

Eigenstates: labeled by set of quantum numbers

Imposing boundary conditions quantizes the allowable rapidities according to the Bethe equations

$$
\theta_{k i n}\left(\lambda_{j}\right)+\frac{1}{L} \sum_{k} \theta_{\text {scat }}\left(\lambda_{j}-\lambda_{k}\right)=\frac{2 \pi}{L} I_{j}
$$

Eigenstates: labeled by set of quantum numbers

Constructing all states in the Hilbert space

Obtaining all solutions to the Bethe equations

Navigating the Hilbert space

Navigating the Hilbert space

Ground state:
$\{I\}: \quad \bigcirc \bigcirc \bigcirc \bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ \circ \circ \circ$

Navigating the Hilbert space

Ground state:

Navigating the Hilbert space

Ground state:

Simple excitations:

Navigating the Hilbert space

Ground state:

Simple excitations:

‘Technology’ needed: Algebraic BA

‘Technology’ needed: Algebraic BA Like '2nd quantization' for Bethe Ansatz
‘Technology’ needed: Algebraic BA Like '2nd quantization' for Bethe Ansatz
Introduce family $A(\lambda), B(\lambda), C(\lambda), D(\lambda)$ of nonlocal operators which act in Hilbert space of model
‘Technology’ needed: Algebraic BA Like '2nd quantization' for Bethe Ansatz
Introduce family $A(\lambda), B(\lambda), C(\lambda), D(\lambda)$ of nonlocal operators which act in Hilbert space of model $B(\lambda)$ creation operator, increasing particle number by I
‘Technology’ needed: Algebraic BA Like '2nd quantization' for Bethe Ansatz Introduce family $A(\lambda), B(\lambda), C(\lambda), D(\lambda)$ of nonlocal operators which act in Hilbert space of model
$B(\lambda)$ creation operator, increasing particle number by I Wavefunctions: $|\Psi(\{\lambda\})\rangle=\prod_{j} B\left(\lambda_{j}\right)|0\rangle$
provided the rapidities satisfy Bethe equations
‘Technology’ needed: Algebraic BA Like '2nd quantization' for Bethe Ansatz
Introduce family $A(\lambda), B(\lambda), C(\lambda), D(\lambda)$ of nonlocal operators which act in Hilbert space of model
$B(\lambda)$ creation operator, increasing particle number by I
Wavefunctions: $|\Psi(\{\lambda\})\rangle=\prod_{j} B\left(\lambda_{j}\right)|0\rangle$
provided the rapidities satisfy Bethe equations
Mapping ABA ops to local ops: quantum inverse problem (Maillet I999)
‘Technology’ needed: Algebraic BA Like '2nd quantization' for Bethe Ansatz
Introduce family $A(\lambda), B(\lambda), C(\lambda), D(\lambda)$ of nonlocal operators which act in Hilbert space of model
$B(\lambda)$ creation operator, increasing particle number by I
Wavefunctions: $|\Psi(\{\lambda\})\rangle=\prod_{j} B\left(\lambda_{j}\right)|0\rangle$
provided the rapidities satisfy Bethe equations
Mapping ABA ops to local ops: quantum inverse problem (Maillet 1999)
For spin chains: $A(\lambda), B(\lambda), C(\lambda), D(\lambda) \longleftrightarrow S_{j}^{a}$
‘Technology’ needed: Algebraic BA Like '2nd quantization' for Bethe Ansatz
Introduce family $A(\lambda), B(\lambda), C(\lambda), D(\lambda)$ of nonlocal operators which act in Hilbert space of model
$B(\lambda)$ creation operator, increasing particle number by I
Wavefunctions: $|\Psi(\{\lambda\})\rangle=\prod_{j} B\left(\lambda_{j}\right)|0\rangle$
provided the rapidities satisfy Bethe equations
Mapping ABA ops to local ops: quantum inverse problem (Maillet 1999)
For spin chains: $A(\lambda), B(\lambda), C(\lambda), D(\lambda) \longleftrightarrow S_{j}^{a}$
State norms: Gaudin-Korepin formula

Scalar products: Slavnov’s formula

$$
S_{M}(\{\mu\},\{\lambda\})=\langle 0| \prod_{j=1}^{M} C\left(\mu_{j}\right) \prod_{k=1}^{M} B\left(\lambda_{k}\right)|0\rangle
$$

Scalar products: Slavnov's formula

$$
S_{M}(\{\mu\},\{\lambda\})=\langle 0| \prod_{j=1}^{M} \underbrace{M}_{\text {Bethe }} B\left(\mu_{j}\right)|0\rangle
$$

Scalar products: Slavnov's formula

$$
S_{M}(\{\mu\},\{\lambda\})=\langle 0 \prod_{j=1}^{M} \underbrace{2}_{\text {Bethe }} \mu_{\text {Arbitrary }}^{M}
$$

Scalar products: Slavnov's formula

$$
S_{M}(\{\mu\},\{\lambda\})=\langle 0| \prod_{j=1}^{M} C\left(\mu_{j}\right) \prod_{k=1}^{M} B\left(\lambda_{k}\right)|0\rangle
$$

$$
S_{M}(\{\mu\},\{\lambda\})=\frac{\prod_{j=1}^{M} \prod_{k=1}^{M} \varphi\left(\mu_{j}-\lambda_{k}\right)}{\prod_{j<k} \varphi\left(\mu_{j}-\mu_{k}\right) \prod_{j>k} \varphi\left(\lambda_{j}-\lambda_{k}\right)} \operatorname{det} T(\{\mu\},\{\lambda\}),
$$

where $T_{a b}=\frac{\partial}{\partial \lambda_{a}} \tau\left(\mu_{b},\{\lambda\}\right)$
(N.Slavnov, I988)

Scalar products: Slavnov's formula

$$
S_{M}(\{\mu\},\{\lambda\})=\langle 0| \prod_{j=1}^{M} C\left(\mu_{j}\right) \prod_{k=1}^{M} B\left(\lambda_{k}\right)|0\rangle
$$

$$
S_{M}(\{\mu\},\{\lambda\})=\frac{\prod_{j=1}^{M} \prod_{k=1}^{M} \varphi\left(\mu_{j}-\lambda_{k}\right)}{\prod_{j<k} \varphi\left(\mu_{j}-\mu_{k}\right) \prod_{j>k} \varphi\left(\lambda_{j}-\lambda_{k}\right)} \operatorname{det} T(\{\mu\},\{\lambda\}),
$$

where $T_{a b}=\frac{\partial}{\partial \lambda_{a}} \tau\left(\mu_{b},\{\lambda\}\right)$

gives (at least in principle) all matrix elements needed

Part I:

Equilibrium
 dynamics

Models which we treat:

Models which we treat:
O Heisenberg spin- I/2 chain

$$
\left.H=\sum_{j=1}^{N}\left[J S_{j}^{S} S_{j+1}^{S} S_{1+}^{S}+S_{j}^{u} S_{j+1}^{S}+\Delta S_{j}^{S} S_{j+1}^{S}\right)-H_{S} S_{j}\right]
$$

Models which we treat:

O Heisenberg spin- I/2 chain

$$
H=\sum_{j=1}^{N}\left[J\left(S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y}+\Delta S_{j}^{z} S_{j+1}^{z}\right)-H_{z} S_{j}^{z}\right]
$$

Models which we treat: Heisenberg spin-I/2 chain

$$
H=\sum_{j=1}^{N}\left[J\left(S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y}+\Delta S_{j}^{z} S_{j+1}^{z}\right)-H_{z} S_{j}^{z}\right]
$$

Olnteracting Bose gas (Lieb-Liniger)

$$
\mathcal{H}_{N}=-\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}+2 c \sum_{1 \leq j<l \leq N} \delta\left(x_{j}-x_{l}\right)
$$

Richardson model (+ Gaudin magnets)

$$
H_{B C S}=\sum_{\substack{\alpha=1 \\ \sigma=+,-}}^{N} \frac{\varepsilon_{\alpha}}{2} c_{\alpha \sigma}^{\dagger} c_{\alpha \sigma}-g \sum_{\alpha, \beta=1}^{N} c_{\alpha+}^{\dagger} c_{\alpha-}^{\dagger} c_{\beta-} c_{\beta+}
$$

What we can calculate:

What we can calculate:

What we can calculate:

OdYNAMICAL STRUCTURE FACTOR

$$
S^{a \bar{a}}(q, \omega)=\frac{1}{N} \sum_{j, j^{\prime}=1}^{N} e^{i q\left(j-j^{\prime}\right)} \int_{-\infty}^{\infty} d t e^{i \omega t}\left\langle S_{j}^{a}(t) S_{j^{\prime}}^{\bar{a}}(0)\right\rangle_{c}
$$

What we can calculate:

OdYNAMICAL STRUCTURE FACTOR

$$
S^{a \bar{a}}(q, \omega)=\frac{1}{N} \sum_{j, j^{\prime}=1}^{N} e^{i q\left(j-j^{\prime}\right)} \int_{-\infty}^{\infty} d t e^{i \omega t}\left\langle S_{j}^{a}(t) S_{j^{\prime}}^{\bar{a}}(0)\right\rangle_{c}
$$

inelastic neutron scattering

What we can calculate:

OdYNAMICAL STRUCTURE FACTOR

$$
S^{a \bar{a}}(q, \omega)=\frac{1}{N} \sum_{j, j^{\prime}=1}^{N} e^{i q\left(j-j^{\prime}\right)} \int_{-\infty}^{\infty} d t e^{i \omega t}\left\langle S_{j}^{a}(t) S_{j^{\prime}}^{\bar{a}}(0)\right\rangle_{c}
$$

inelastic neutron scattering

What we can calculate:

OdYNAMICAL STRUCTURE FACTOR

$$
S^{a \bar{a}}(q, \omega)=\frac{1}{N} \sum_{j, j^{\prime}=1}^{N} e^{i q\left(j-j^{\prime}\right)} \int_{-\infty}^{\infty} d t e^{i \omega t}\left\langle S_{j}^{a}(t) S_{j^{\prime}}^{\bar{a}}(0)\right\rangle_{c}
$$

inelastic neutron scattering
ODENSITY-DENSITY FUNCTION

$$
S(k, \omega)=\int d x \int d t e^{-i k x+i \omega t}\langle\rho(x, t) \rho(0,0)\rangle
$$

What we can calculate:

OdYNAMICAL STRUCTURE FACTOR

$$
S^{a \bar{a}}(q, \omega)=\frac{1}{N} \sum_{j, j^{\prime}=1}^{N} e^{i q\left(j-j^{\prime}\right)} \int_{-\infty}^{\infty} d t e^{i \omega t}\left\langle S_{j}^{a}(t) S_{j^{\prime}}^{\bar{a}}(0)\right\rangle_{c}
$$

inelastic neutron scattering
ODENSITY-DENSITY FUNCTION

$$
S(k, \omega)=\int d x \int d t e^{-i k x+i \omega t}\langle\rho(x, t) \rho(0,0)\rangle
$$

\bigcirc ONE-BODY FN $\quad G_{2}(x, t)=\left\langle\Psi^{\dagger}(x, t) \Psi(0,0\rangle\right.$

What we can calculate:

OdYnamical structure factor

$$
S^{a \bar{a}}(q, \omega)=\frac{1}{N} \sum_{j, j^{\prime}=1}^{N} e^{i q\left(j-j^{\prime}\right)} \int_{-\infty}^{\infty} d t e^{i \omega t}\left\langle S_{j}^{a}(t) S_{j^{\prime}}^{\bar{a}}(0)\right\rangle_{c}
$$

inelastic neutron scattering
ODENSITY-DENSITY FUNCTION

$$
S(k, \omega)=\int d x \int d t e^{-i k x+i \omega t}\langle\rho(x, t) \rho(0,0)\rangle
$$

\bigcirc ONE-BODY FN $\quad G_{2}(x, t)=\left\langle\Psi^{\dagger}(x, t) \Psi(0,0\rangle\right.$ Bragg spectroscopy, interference experiments, ...

What we can calculate:

OdYnamical structure factor

$$
S^{a \bar{u}}(q, \omega)=\frac{1}{N} \sum_{j, j^{\prime}=1}^{N} e^{i q\left(j-j^{\prime}\right)} \int_{-\infty}^{\infty} d t e^{i \omega t}\left\langle S_{j}^{a}(t) S_{j^{\prime}}^{\bar{a}}(0)\right\rangle_{c}
$$

inelastic neutron scattering
ODENSITY-DENSITY FUNCTION

$$
S(k, \omega)=\int d x \int d t e^{-i k x+i \omega t}\langle\rho(x, t) \rho(0,0)\rangle
$$

\bigcirc ONE-BODY FN $\quad G_{2}(x, t)=\left\langle\Psi^{\dagger}(x, t) \Psi(0,0\rangle\right.$ Bragg spectroscopy, interference experiments, ... (zero temperature only (for now !))

Building correlation functions

 piece by piece
Building correlation functions

piece by piece

Our needed building blocks are:

$$
\left.S^{a, \bar{a}}(q, \omega)=2 \pi \sum_{\mu}\left|\langle 0| \mathcal{O}_{q}^{a}\right| \mu\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\mu}+E_{0}\right)
$$

Building correlation functions

piece by piece

Our needed building blocks are:

$$
\left.S^{a, \bar{a}}(q, \omega)=2 \pi \sum_{\mu}\left|\langle 0| \mathcal{O}_{q}^{a}\right| \mu\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\mu}+E_{0}\right)
$$

I) A basis of eigenstates

Building correlation functions

piece by piece

Our needed building blocks are:

$$
\left.S^{a, \bar{a}}(q, \omega)=2 \pi \sum\left|\langle 0| \mathcal{O}_{q}^{a}\right| \mu\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\mu}+E_{0}\right)
$$

1) A basis of eigenstates

Building correlation functions

piece by piece

Our needed building blocks are:

$$
\left.S^{a, \bar{a}}(q, \omega)=2 \pi \sum\left|\langle 0| \mathcal{O}_{q}^{a}\right| \mu\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\mu}+E_{0}\right)
$$

I) A basis of eigenstates

Building correlation functions

 piece by pieceOur needed building blocks are:

$$
\left.S^{a, \bar{a}}(q, \omega)=2 \pi \sum\left|\langle 0| \mathcal{O}_{q}^{a}\right| \mu\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\mu}+E_{0}\right)
$$

I) A basis of eigenstates
2) The matrix elements of interesting operators in this basis

Building correlation functions

 piece by pieceOur needed building blocks are:

$$
\left.S^{a, \bar{a}}(q, \omega)=2 \pi \sum\left|\langle 0| \mathcal{O}_{q}^{a}\right| \mu\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\mu}+E_{0}\right)
$$

I) A basis of eigenstates
2) The matrix elements of interesting operators in this basis

Building correlation functions

 piece by pieceOur needed building blocks are:

$$
\left.S^{a, \bar{a}}(q, \omega)=2 \pi \sum\left|\langle 0| \mathcal{O}_{q}^{a}\right| \mu\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\mu}+E_{0}\right)
$$

I) A basis of eigenstates
2) The matrix elements of interesting operators in this basis

Building correlation functions

 piece by pieceOur needed building blocks are:

$$
\left.S^{a, \bar{a}}(q, \omega)=2 \pi \sum\left|\langle 0| \mathcal{O}_{q}^{a}\right| \mu\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\mu}+E_{0}\right)
$$

I) A basis of eigenstates
2) The matrix elements of interesting operators in this basis
3) A way to sum over intermediate states

Building correlation functions

 piece by pieceOur needed building blocks are:
$\left.S^{a, \bar{a}}(q, \omega)=2 \pi \sum_{\mu}\left|\langle 0| \mathcal{O}_{q}^{a}\right| \mu\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\mu}+E_{0}\right)$
I) A basis of eigenstates
2) The matrix elements of interesting operators in this basis
3) A way to sum over intermediate states

Building correlation functions

 piece by pieceOur needed building blocks are:

$$
\left.S^{a, \bar{a}}(q, \omega)=2 \pi \sum\left|\langle 0| \mathcal{O}_{q}^{a}\right| \mu\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\mu}+E_{0}\right)
$$

I) A basis of eigenstates
2) The matrix elements of interesting operators in this basis
3) A way to sum over intermediate states

Lieb-Liniger Bose gas

Density-density (dynamical SF)
(J-S C \& P Calabrese, PRA 2006)

$$
\left.S(k, \omega)=\frac{2 \pi}{L} \sum_{\alpha}\left|\langle 0| \rho_{k}\right| \alpha\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\alpha}+E_{0}\right)
$$

Correspondence with excitations

Correspondence

 with excitations

Particle-like
$\bigcirc \circ \circ \bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \circ \stackrel{\rightharpoonup}{\bullet}$

Correspondence

 with excitations

Particle-like Hole-like

Correspondence

 with excitations

Particle-like Hole-like

Umklapp

$\bigcirc \bigcirc \bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Correspondence with excitations

$\begin{array}{cccc}\text { Particle-like } & \bigcirc \bigcirc \bigcirc \bigcirc \bullet \bullet \bullet \bullet \bullet \bullet ○ ○ ○ ○ ○ \\ \text { Hole-like } & \bigcirc \bigcirc \bigcirc \bigcirc \bullet \bullet \bullet \bullet \bigcirc \bullet \bullet \bullet \bullet \bigcirc ○ ○\end{array}$

Umklapp

$\bigcirc \bigcirc \bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Drag force on impurity in Id BG: superfluidity revisited

Drag force on impurity in Id BG: superfluidity revisited

'Impurity' moving. through gas

Drag force on impurity in Id BG: superfluidity revisited

'Impurity' moving. through gas

Drag force on impurity in Id BG: superfluidity revisited

`Impurity' moving.
through gas
Gas moving through impurity

Drag force is given in linear response theory by integral over structure factor:

$$
F_{\mathrm{v}}(v)=\int_{0}^{+\infty} d k k\left|\tilde{V}_{\mathrm{i}}(k)\right|^{2} S(k, k v) / L
$$

Drag force on impurity in Id BG: superfluidity revisited

'Impurity' moving. through gas

Drag force on impurity in Id BG: superfluidity revisited

`Impurity' moving. through gas
Gas moving through impurity

(A. Yu. Cherny J.-S.C \& J. Brand, PRA 2009)

Drag force on impurity in Id BG: superfluidity revisited

`Impurity' moving. through gas
Gas moving through impurity

(A. Yu. Cherny J.-S.C \& J. Brand, PRA 2009)

One-particle dynamical function

$$
G_{2}(x, t)=\left\langle\Psi^{\dagger}(x, t) \Psi(0,0)\right\rangle_{N}
$$

(J-S C, P Calabrese \& N Slavnov, JSTAT 2007)

The attractive Lieb-Liniger model: analytical solution

$$
H=-\frac{\hbar^{2}}{2 m} \sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}-2 \bar{c} \sum_{\langle i, j\rangle} \delta\left(x_{i}-x_{j}\right)
$$

The attractive Lieb-Liniger model: analytical solution

The attractive Lieb-Liniger model:
 analytical solution

$$
\begin{gathered}
H=-\frac{\hbar^{2}}{2 m} \sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}-2 \bar{c} \sum_{\langle i, j\rangle} \delta\left(x_{i}-x_{j}\right) . \\
!!!\left\langle N^{2}\right.
\end{gathered}
$$

Bethe eqns: $\quad e^{i \lambda_{a} L}=\prod_{a \neq b} \frac{\lambda_{a}-\lambda_{b}-i \bar{c}}{\lambda_{a}-\lambda_{b}+i \bar{c}}, \quad a=1, \ldots, N$

The attractive Lieb-Liniger model: analytical solution

$$
\begin{gathered}
H=-\frac{\hbar^{2}}{2 m} \sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}-2 \bar{c} \sum_{\langle i, j\rangle} \delta\left(x_{i}-x_{j}\right) \\
!!!\langle\underbrace{\langle i,}
\end{gathered}
$$

Bethe eqns: $\quad e^{i \lambda_{a} L}=\prod_{a \neq b} \frac{\lambda_{a}-\lambda_{b}-i \bar{c}}{\lambda_{a}-\lambda_{b}+i \bar{c}}, \quad a=1, \ldots, N$

bound state solutions: strings

$$
\lambda_{\alpha}^{j, a}=\lambda_{\alpha}^{j}+\frac{i \bar{c}}{2}(j+1-2 a)+i \delta_{\alpha}^{j, a} .
$$

The attractive Lieb-Liniger model: analytical solution

$$
\begin{gathered}
H=-\frac{\hbar^{2}}{2 m} \sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}-2 \bar{c} \sum_{\langle i, j\rangle} \delta\left(x_{i}-x_{j}\right) . \\
!!!\left\langle N^{2}\right.
\end{gathered}
$$

Bethe eqns: $\quad e^{i \lambda_{a} L}=\prod_{a \neq b} \frac{\lambda_{a}-\lambda_{b}-i \bar{c}}{\lambda_{a}-\lambda_{b}+i \bar{c}}, \quad a=1, \ldots, N$

bound state solutions: strings

$$
\lambda_{\alpha}^{j, a}=\lambda_{\alpha}^{j}+\frac{i \bar{c}}{2}(j+1-2 a)+i \delta_{\alpha}^{j, a} .
$$

(J. B. McGuire, I964; F. Calogero \& A. DeGasperis, I975; Y. Castin \& C. Herzog, 200I)

Attractive Lieb-Liniger: analytical solution for CFs u.Sc\& P. Cababrese Pet 2007 ; STAT 2007) Single-particle coherent part + two-particle continuum

Attractive Lieb-Liniger: analytical

Single-particle coherent part + two-particle continuum

Attractive Lieb-Liniger: analytical

 Single-particle coherent part + two-particle continuum

Finite threshold

Attractive Lieb-Liniger: analytical

 Single-particle coherent part + two-particle continuum

Finite threshold

Square-root singularity

Attractive Lieb-Liniger: analytical

 solution for CFs u.-Sc \& . Cababrese PRL 2007; jstar 2007) Single-particle coherent part + two-particle continuum

Finite threshold

Square-root singularity

Attractive Lieb-Liniger: analytical solution for CFs u.Sc\& P. Cababrese Pet 2007 ; STAT 2007) Single-particle coherent part + two-particle continuum

Finite threshold

Square-root singularity

Single-particle part: leads to Mössbauer-like effect (gas reacts like a single massive particle)

The 2-component Bose gas

 (special case of Yang permutation model)

$$
H=-\sum_{a=1}^{N_{C}} \sum_{i=1}^{N_{a}} \frac{\partial^{2}}{\partial x_{a, i}^{2}}+2 c \sum_{(a, i)<(b, j)} \delta\left(x_{a, i}-x_{b, j}\right)
$$

The 2-component Bose gas

 (special case of Yang permutation model)

$$
H=-\sum_{a=1}^{N_{C}} \sum_{i=1}^{N_{a}} \frac{\partial^{2}}{\partial x_{a, i}^{2}}+2 c \sum_{(a, i)<(b, j)} \delta\left(x_{a, i}-x_{b, j}\right)
$$

Dynamics: hum... nested BA

The 2-component Bose gas

 (special case of Yang permutation model)$$
H=-\sum_{a=1}^{N_{C}} \sum_{i=1}^{N_{a}} \frac{\partial^{2}}{\partial x_{a, i}^{2}}+2 c \sum_{(a, i)<(b, j)} \delta\left(x_{a, i}-x_{b, j}\right)
$$

Dynamics: hum... nested BA
Equilibrium thermodynamics: OK!

$$
\begin{aligned}
& \epsilon(\lambda)=\lambda^{2}-\mu-\Omega-a_{2} * T \ln \left(1+e^{-\epsilon(\lambda) / T}\right)-\sum_{n=1}^{\infty} a_{n} * T \ln \left(1+e^{-\epsilon_{n}(\lambda) / T}\right) \\
& \epsilon_{1}(\lambda)=f * T \ln \left(1+e^{-\epsilon(\lambda) / T}\right)+f * T \ln \left(1+e^{\epsilon_{2}(\lambda) / T}\right) \\
& \epsilon_{n}(\lambda)=f * T \ln \left(1+e^{\epsilon_{n-1}(\lambda) / T}\right)+f * T \ln \left(1+e^{\epsilon_{n+1}(\lambda) / T}\right) \\
& \lim _{n \rightarrow \infty} \frac{\epsilon_{n}(\lambda)}{n}=2 \Omega
\end{aligned}
$$

The 2-component Bose gas

 (special case of Yang permutation model)$$
H=-\sum_{a=1}^{N_{C}} \sum_{i=1}^{N_{a}} \frac{\partial^{2}}{\partial x_{a, i}^{2}}+2 c \sum_{(a, i)<(b, j)} \delta\left(x_{a, i}-x_{b, j}\right)
$$

Dynamics: hum... nested BA
Equilibrium thermodynamics: OK!

$$
\begin{aligned}
& \epsilon(\lambda)=\lambda^{2}-\mu-\Omega-a_{2} * T \ln \left(1+e^{-\epsilon(\lambda) / T}\right)-\sum_{n=1}^{\infty} a_{n} * T \ln \left(1+e^{-\epsilon_{n}(\lambda) / T}\right) \\
& \epsilon_{1}(\lambda)=f * T \ln \left(1+e^{-\epsilon(\lambda) / T}\right)+f * T \ln \left(1+e^{\epsilon_{2}(\lambda) / T}\right) \\
& \epsilon_{n}(\lambda)=f * T \ln \left(1+e^{\epsilon_{n-1}(\lambda) / T}\right)+f * T \ln \left(1+e^{\epsilon_{n+1}(\lambda) / T}\right) \\
& \lim _{n \rightarrow \infty} \frac{\epsilon_{n}(\lambda)}{n}=2 \Omega
\end{aligned}
$$

The 2-component Bose gas

Ferromagnetism using interacting bosons

The 2-component Bose gas

Ferromagnetism using interacting bosons

Populations as a function of total chemical potential

The 2-component Bose gas

Ferromagnetism using interacting bosons

Populations as a function of total chemical potential

This + LDA: predictions for density profile in a trap

$$
N_{1} / L, N_{2} / L\left[\begin{array}{l}
\mu_{1}-\mu_{2}=100 \\
\mu_{1}-\mu_{2}=250 \\
\mu_{1}-\mu_{2}=400 \\
\mu_{1}-\mu_{2}=550 \\
\mu_{1}-\mu_{2}=700
\end{array}\right.
$$

$\mu_{1}+\mu_{2}$

2CBG: nonmonotonic g(2)

Heisenberg chains
$S(k, \omega), \quad \Delta=1, \quad h=0$

Zero field chain: longitudinal SF

Method 2: analytics $(X X X, h=0)$

Method 2: analytics $(X X X, h=0)$
Infinite model, zero field: possesses $U_{q}\left(\hat{s l}_{2}\right)$ quantum group symmetry

Method 2: analytics $(X X X, h=0)$
Infinite model, zero field: possesses $U_{q}\left(\hat{s l}_{2}\right)$ quantum group symmetry
Representation theory of q group

Method 2: analytics $(X X X, h=0)$
Infinite model, zero field: possesses $U_{q}\left(\hat{s l}_{2}\right)$ quantum group symmetry
Representation theory of q group
eigenstates and form factors (Jimbo, Miwa, ...)

Method 2: analytics $(X X X, h=0)$
\bigcirc Infinite model, zero field: possesses $U_{q}\left(\hat{s} l_{2}\right)$ quantum group symmetry
Representation theory of q group eigenstates and form factors (Jimbo, Miwa, ...)
Excitations: built up of even numbers of spinons

Method 2: analytics $(X X X, h=0)$
\bigcirc Infinite model, zero field: possesses $U_{q}\left(\hat{s l_{2}}\right)$ quantum group symmetry
Representation theory of q group eigenstates and form factors (Jimbo, Miwa, ...)
Excitations: built up of even numbers of spinons
Two spinon part of the structure factor:
Bougourzi, Couture, Kacir 1996; Karbach, Müller, B., Fledderjohann, Mütter 1997

Method 2: analytics $(X X X, h=0)$
\bigcirc Infinite model, zero field: possesses $U_{q}\left(\hat{s l_{2}}\right)$ quantum group symmetry
Representation theory of q group eigenstates and form factors (Jimbo, Miwa, ...)
Excitations: built up of even numbers of spinons
Two spinon part of the structure factor:
Bougourzi, Couture, Kacir 1996; Karbach, Müller, B., Fledderjohann, Mütter 1997
Two spinon states carry 72.89% of integrated intensity (71.30\% of first frequency moment)

Method 2: analytics $(X X X, h=0)$
\bigcirc Infinite model, zero field: possesses $U_{q}\left(\hat{s l_{2}}\right)$ quantum group symmetry
Representation theory of q group \square eigenstates and form factors (Jimbo, Miwa, ...)
Excitations: built up of even numbers of spinons
Two spinon part of the structure factor:
Bougourzi, Couture, Kacir 1996; Karbach, Müller, B., Fledderjohann, Mütter 1997
Two spinon states carry 72.89% of integrated intensity (71.30\% of first frequency moment)

Remarkable: measure 0 set in Hilbert space carries majority of correlation weight !

Method 2: analytics $(X X X, h=0)$

OInfinite model, zero field: possesses $U_{q}\left(\hat{s l_{2}}\right)$ quantum group symmetry
Representation theory of q group \square eigenstates and form factors (Jimbo, Miwa, ...)
Excitations: built up of even numbers of spinons
Two spinon part of the structure factor:
Bougourzi, Couture, Kacir 1996; Karbach, Müller, B., Fledderjohann, Mütter 1997
Two spinon states carry 72.89% of integrated intensity (71.30\% of first frequency moment)

Remarkable: measure 0 set in Hilbert space carries majority of correlation weight !

Missing part: higher spinon numbers

Four spinon part of zero-field structure factor in the thermodynamic limit

(Abada, Bougourzi, Si-Lakhal I997, revised in JSC \& R. Hagemans JSTAT 2006)
At each point, 4 spinon SF is two-fold integral:

$$
S_{4}(k, \omega)=C_{4} \int_{\mathcal{D}_{K}} d K \int_{\Omega_{l}(k, \omega, K)}^{\Omega_{u}(k, \omega, K)} d \Omega \frac{J(k, \omega, K, \Omega)}{\left\{\left[\omega_{2, u}^{2}(K)-\Omega^{2}\right]\left[\omega_{2, u}^{2}(k-K)-(\omega-\Omega)^{2}\right]\right\}^{1 / 2}}
$$

Four spinon part of zero-field structure factor in the thermodynamic limit

(Abada, Bougourzi, Si-Lakhal I997, revised in JSC \& R. Hagemans JSTAT 2006)
At each point, 4 spinon SF is two-fold integral:

$$
S_{4}(k, \omega)=C_{4} \int_{\mathcal{D}_{K}} d K \int_{\Omega_{l}(k, \omega, K)}^{\Omega_{u}(k, \omega, K)} d \Omega \frac{J(k, \omega, K, \Omega)}{\left\{\left[\omega_{2, u}^{2}(K)-\Omega^{2}\right]\left[\omega_{2, u}^{2}(k-K)-(\omega-\Omega)^{2}\right]\right\}^{1 / 2}}
$$

4-spinon continuum:

Four spinon part of zero-field structure factor in the thermodynamic limit

 (Abada, Bougourzi, Si-Lakhal I997, revised in JSC \& R. Hagemans JSTAT 2006)At each point, 4 spinon SF is two-fold integral:
$S_{4}(k, \omega)=C_{4} \int_{\mathcal{D}_{K}} d K \int_{\Omega_{l}(k, \omega, K)}^{\Omega_{u}(k, \omega, K)} d \Omega \frac{J(k, \omega, K, \Omega)}{\left\{\left[\omega_{2, u}^{2}(K)-\Omega^{2}\right]\left[\omega_{2, u}^{2}(k-K)-(\omega-\Omega)^{2}\right]\right\}^{1 / 2}}$

4-spinon continuum:

Integration regions: intersection of two 2-spinon continua

4-spinon states carry about 27\% of full intensity

4-spinon states carry about 27% of full intensity $2+4$ spinons: approx 98% of correlations!

Analytics (II): gapped XXZ, h = 0

(Bougourzi, Karbach, Müller 1998, revisited in JSC, Mossel \& Pérez Castillo, JSTAT 2008)

Analytics (II): gapped XXZ, h = 0

(Bougourzi, Karbach, Müller 1998, revisited in JSC, Mossel \& Pérez Castillo, JSTAT 2008)

Spinon excitations:

$$
e(\beta)=I \operatorname{dn}(\beta), \quad p(\beta)=\operatorname{am}(\beta)+\frac{\pi}{2}, \quad I \equiv \frac{J K}{\pi} \sinh \left(\frac{\pi K^{\prime}}{K}\right)
$$

Analytics (II): gapped XXZ, h = 0

(Bougourzi, Karbach, Müller 1998, revisited in JSC, Mossel \& Pérez Castillo, JSTAT 2008)

Spinon excitations:

$$
e(\beta)=I \operatorname{dn}(\beta), \quad p(\beta)=\operatorname{am}(\beta)+\frac{\pi}{2}, \quad I \equiv \frac{J K}{\pi} \sinh \left(\frac{\pi K^{\prime}}{K}\right)
$$

Dispersion relation: $\quad e_{1}(p)=I \sqrt{1-k^{2} \cos ^{2}(p)}, \quad 0 \leq p \leq \pi$

Analytics (II): gapped XXZ, h = 0

(Bougourzi, Karbach, Müller 1998, revisited in JSC, Mossel \& Pérez Castillo, JSTAT 2008)
Spinon excitations:

$$
e(\beta)=I \operatorname{dn}(\beta), \quad p(\beta)=\operatorname{am}(\beta)+\frac{\pi}{2}, \quad I \equiv \frac{J K}{\pi} \sinh \left(\frac{\pi K^{\prime}}{K}\right)
$$

Dispersion relation: $\quad e_{1}(p)=I \sqrt{1-k^{2} \cos ^{2}(p)}, \quad 0 \leq p \leq \pi$
Nontrivial 2-spinon continuum:

Analytics (II): gapped XXZ, h = 0

(Bougourzi, Karbach, Müller 1998, revisited in JSC, Mossel \& Pérez Castillo, JSTAT 2008)
Spinon excitations:

$$
e(\beta)=I \operatorname{dn}(\beta), \quad p(\beta)=\operatorname{am}(\beta)+\frac{\pi}{2}, \quad I \equiv \frac{J K}{\pi} \sinh \left(\frac{\pi K^{\prime}}{K}\right)
$$

Dispersion relation: $\quad e_{1}(p)=I \sqrt{1-k^{2} \cos ^{2}(p)}, \quad 0 \leq p \leq \pi$
Nontrivial 2-spinon continuum:

Analytics (II): gapped XXZ, h = 0

(Bougourzi, Karbach, Müller 1998, revisited in JSC, Mossel \& Pérez Castillo, JSTAT 2008)

Spinon excitations:

$$
e(\beta)=I \operatorname{dn}(\beta), \quad p(\beta)=\operatorname{am}(\beta)+\frac{\pi}{2}, \quad I \equiv \frac{J K}{\pi} \sinh \left(\frac{\pi K^{\prime}}{K}\right)
$$

Dispersion relation: $\quad e_{1}(p)=I \sqrt{1-k^{2} \cos ^{2}(p)}, \quad 0 \leq p \leq \pi$
Nontrivial 2-spinon continuum:
'Folding up' of continuum at small momentum transfer
(curvature of dispersion relation changes sign as fn of momentum)

Gapped XXZ AFM, h = 0, 2spinons

$\Delta=8$

$\Delta=16$

Gapped XXZ AFM, h = 0, 2spinons

$\Delta=8$

π periodicity only recovered in true Ising limit

Gapped XXZ AFM, h = 0, 2spinons

$\Delta=8$

$\Delta=16$

Gapped XXZ AFM, h = 0, 2spinons

$\Delta=8$

EXACT correlation function in thermodynamic limit for energies below twice the gap

Neutron scattering

Neutron scattering

Neutron scattering

Neutron scattering

Neutron scattering

Neutron scattering

$\hat{3}$

Neutron scattering

'new' particles: spinons (quantum solitons)

Neutron scattering

$\hat{3}$

Neutron scattering

$\hat{3}$

Neutron scattering

0

$\hat{3}$

Neutron scattering

 0

$\hat{3}$

Neutron scattering

Bo \&
$\hat{3}$

Neutron seattering

人)

Neutron scattering

 0

$\hat{3}$

Neutron scattering

 $\longrightarrow 0$
Bo \&
$\hat{3}$

Neutron scattering

neutrons

今 of of ô
from reactor

$\hat{3}$

Neutron scattering

 $\longrightarrow 0$
Bo \&
$\hat{3}$

Neutron scattering

$\stackrel{\circ}{\circ}$

$\hat{\delta}$

\Leftrightarrow
\Rightarrow

Neutron scattering

人)

Neutron scattering

time \& direction: $\longrightarrow 0$ energy \&

今

 8
on:

$\hat{\delta}$

亿

Neutron scattering (HMI, Berlin)

Neutron scattering (HMI, Berlin)

Neutron scattering (HMI, Berlin)

NEAT time-of-flight spectrometer

$\mathrm{Sr}_{2} \mathrm{CuO}_{3}: \mathrm{XXX}$

(b)
(c) $\uparrow a$
(d)
(e)

Walters, Perring, JSC, Savici, Gu, Lee, Ku, Zaliznyak, NatPhys 2009
Cu^{2+} ionic form factor $\mathrm{LDA}+\mathrm{U}$ covalent form factor

Momentum transfer Q_{n} [r.l.u.]

$\left(\mathrm{C}_{5} \mathrm{D}_{12} \mathrm{~N}\right)_{2} \mathrm{CuBr}_{4}$

XXZ AFM at

 anisotropy $\Delta=1 / 2$B. Thielemann, Ch. Rüegg, H. M. Rønnow, A. M. Läuchli, J.-S. Caux, B. Normand, D. Biner, K. W. Krämer, H.-U. Güdel, J. Stahn, K. Habicht, K. Kiefer, M. Boehm, D. F. McMorrow, J. Mesot, PRL, 2009

(g)

(h)

New experimental method: RIXS

 (Resonant Inelastic X-ray Scattering)Synchrotron

New experimental method: RIXS

 (Resonant Inelastic X-ray Scattering)Synchrotron

New experimental method: RIXS

 (Resonant Inelastic X-ray Scattering)
Synchrotron

X-ray induces a Is-4p transition on copper, modifying exchange term

Energy- and momentum-dependent scattering amplitude:

$$
\left.S^{R I X S}(k, \omega)=\frac{2 \pi}{N} \sum_{\alpha}\left|\langle\alpha| \sum_{j} e^{-i k j} S_{j}^{z} S_{j+1}^{z}\right| G S\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\alpha}+E_{0}\right)
$$

Energy- and momentum-dependent scattering amplitude:

$$
\left.S^{R I X S}(k, \omega)=\frac{2 \pi}{N} \sum_{\alpha}\left|\langle\alpha| \sum_{j} e^{-i k j} S_{j}^{z} S_{j+1}^{z}\right| G S\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\alpha}+E_{0}\right)
$$

Energy- and momentum-dependent scattering amplitude:

$$
\left.S^{R I X S}(k, \omega)=\frac{2 \pi}{N} \sum_{\alpha}\left|\langle\alpha| \sum_{j} e^{-i k j} S_{j}^{z} S_{j+1}^{z}\right| G S\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\alpha}+E_{0}\right)
$$

RIXS reveals 4-spinon states!

RIXS response: intuitive picture
‘Two-step’ process: $\quad\langle\alpha| S_{j}^{z} S_{j+1}^{z}|G S\rangle$

The Richardson model

$$
H_{B C S}=\sum_{\substack{\alpha=1 \\ \sigma=+,-}}^{N} \frac{\varepsilon_{\alpha}}{2} c_{\alpha \sigma}^{\dagger} c_{\alpha \sigma}-g \sum_{\alpha, \beta=1}^{N} c_{\alpha+}^{\dagger} c_{\alpha-}^{\dagger} c_{\beta-} c_{\beta+}
$$

(R.W. Richardson, I963; R.W. Richardon \& N. Sherman, I964)

The Richardson model

$$
H_{B C S}=\sum_{\substack{\alpha=1 \\ \sigma=+,-}}^{N} \frac{\varepsilon_{\alpha}}{2} c_{\alpha \sigma}^{\dagger} c_{\alpha \sigma}-g \sum_{\alpha, \beta=1}^{N} c_{\alpha+}^{\dagger} c_{\alpha-}^{\dagger} c_{\beta-} c_{\beta+}
$$

(R.W. Richardson, I963; R.W. Richardon \& N. Sherman, I964)
"Reduced BCS": ground state is BCS in th. limit, grand-canonical. Exactly solvable in canonical ensemble.

The Richardson model

$$
H_{B C S}=\sum_{\substack{\alpha=1 \\ \sigma=+,-}}^{N} \frac{\varepsilon_{\alpha}}{2} c_{\alpha \sigma}^{\dagger} c_{\alpha \sigma}-g \sum_{\alpha, \beta=1}^{N} c_{\alpha+}^{\dagger} c_{\alpha-}^{\dagger} c_{\beta-} c_{\beta+}
$$

(R.W. Richardson, I963; R.W. Richardon \& N. Sherman, I964)
"Reduced BCS": ground state is BCS in th. limit, grand-canonical. Exactly solvable in canonical ensemble.

Eigenstates are Bethe,

$$
\left|\left\{w_{j}\right\}\right\rangle=\prod_{k=1}^{N_{r}} \mathcal{B}\left(w_{k}\right)|0\rangle
$$

The Richardson model

$$
H_{B C S}=\sum_{\substack{\alpha=1 \\ \sigma=+,-}}^{N} \frac{\varepsilon_{\alpha}}{2} c_{\alpha \sigma}^{\dagger} c_{\alpha \sigma}-g \sum_{\alpha, \beta=1}^{N} c_{\alpha+}^{\dagger} c_{\alpha-}^{\dagger} c_{\beta-} c_{\beta+}
$$

(R.W. Richardson, I963; R.W. Richardon \& N. Sherman, I964)
"Reduced BCS": ground state is BCS in th. limit, grand-canonical. Exactly solvable in canonical ensemble.

Eigenstates are Bethe, Rapidities: (Bethe) Richardson equations

$$
\left|\left\{w_{j}\right\}\right\rangle=\prod_{k=1}^{N_{r}} \mathcal{B}\left(w_{k}\right)|0\rangle
$$

$$
\frac{1}{g}=\sum_{\alpha=1}^{N} \frac{1}{w_{j}-\varepsilon_{\alpha}}-\sum_{k \neq j}^{N_{r}} \frac{2}{w_{j}-w_{k}}, \quad j=1, \ldots, N_{r}
$$

The Richardson model

$$
H_{B C S}=\sum_{\substack{\alpha=1 \\ \sigma=+,-}}^{N} \frac{\varepsilon_{\alpha}}{2} c_{\alpha \sigma}^{\dagger} c_{\alpha \sigma}-g \sum_{\alpha, \beta=1}^{N} c_{\alpha+}^{\dagger} c_{\alpha-}^{\dagger} c_{\beta-} c_{\beta+}
$$

(R.W. Richardson, I963; R.W. Richardon \& N. Sherman, I964)
"Reduced BCS": ground state is BCS in th. limit, grand-canonical. Exactly solvable in canonical ensemble.

Eigenstates are Bethe, Rapidities: (Bethe) Richardson equations

$$
\left|\left\{w_{j}\right\}\right\rangle=\prod_{k=1}^{N_{r}} \mathcal{B}\left(w_{k}\right)|0\rangle
$$

$$
\frac{1}{g}=\sum_{\alpha=1}^{N} \frac{1}{w_{j}-\varepsilon_{\alpha}}-\sum_{k \neq j}^{N_{r}} \frac{2}{w_{j}-w_{k}}, \quad j=1, \ldots, N_{r}
$$

Pseudospin representation: $S_{\alpha}^{z}=b_{\alpha}^{\dagger} b_{\alpha}-1 / 2, \quad S_{\alpha}^{-}=b_{\alpha}, \quad S_{\alpha}^{+}=b_{\alpha}^{\dagger}$

$$
b_{\alpha}=c_{\alpha-} c_{\alpha+}, \quad b_{\alpha}^{\dagger}=c_{\alpha+}^{\dagger} c_{\alpha-}^{\dagger} \quad H=\sum_{\alpha=1}^{N} \varepsilon_{\alpha} S_{\alpha}^{z}-g \sum_{\alpha, \beta=1}^{N} S_{\alpha}^{+} S_{\beta}^{-}
$$

Solving the Richardson equations

Solving the Richardson equations

(relatively)
straightforward for the ground state

Solving the Richardson equations

(relatively)

 straightforward for the ground state

For excited states:
can become a real challenge !!

Solving the Richardson equations

(relatively)

 straightforward for the ground state

For excited states: can become a real challenge !!
(Richardson, 1964; Schechter, Imry, Levinson \& von Delft, 200I; von Delft \& Ralph, 200I;Yuzbashyan, Baytin \& Altshuler, 2003; Roman, Sierra \& Dukelsky, 2003; Snyman \& Geyer, 2006; Sambataro, 2007)

The Richardson model:

(static) correlation functions

(A. Faribault, P. Calabrese \& J-S C, PRB 2008)
(Following up on ABA work by J. von Delft \& R. Poghossian, 2002 and H.-Q. Zhou, J. Links, R. H. McKenzie \& M. D. Gould, 2002-3)

$$
\left\langle S_{1}^{-} S_{\alpha}^{+}\right\rangle
$$

$\left\langle S_{1}^{z} S_{\alpha}^{z}\right\rangle$

Integrability for correlations: generic features

Integrability for correlations: generic features

Exact realization of ground state, taking all 'entanglement' into account

Integrability for correlations:

 generic featuresExact realization of ground state, taking all 'entanglement' into accountExact realization of excited states (spinons, Lieb types I, II, Gaudinos,...), irrespective of their energy

Integrability for correlations:

 generic featuresExact realization of ground state, taking all 'entanglement' into account

Exact realization of excited states (spinons, Lieb types I, II, Gaudinos,...), irrespective of their energy

Action of local operators: accurately captured by using only a handful of BA excitations

Integrability for correlations: generic features
Exact realization of ground state, taking all 'entanglement' into account

Exact realization of excited states (spinons, Lieb types I, II, Gaudinos,...), irrespective of their energy

Action of local operators: accurately captured by using only a handful of BA excitations
\longrightarrow incredibly efficient basis for many physically relevant correlations

Part 2:

Quench
 dynamics

Quenches: some trivialities

Quenches: some trivialities

Sudden change of interaction parameter

Quenches: some trivialities

Sudden change of interaction parameter

(Barouch \& McCoy, ..., Calabrese \& Cardy, ... Cazalilla, Lamacraft, Klich, Lannert \& Refael,

Barmettler \& al, ...)

Quenches: some trivialities

Sudden change of interaction parameter

(Barouch \& McCoy, ..., Calabrese \& Cardy, .. Cazalilla, Lamacraft, Klich, Lannert \& Refael,

Barmettler \& al, ...)

Quenches: some trivialities

Sudden change of interaction parameter

(Barouch \& McCoy, ..., Calabrese \& Cardy, ... Cazalilla, Lamacraft, Klich, Lannert \& Refael,

Barmettler \& al, ...)
At quench time: $\quad\left|\Psi_{g}^{0}\right\rangle=\sum_{\alpha}\left|\Psi_{g^{\prime}}^{\alpha}\right\rangle\left\langle\Psi_{g^{\prime}}^{\alpha} \mid \Psi_{g}^{0}\right\rangle \equiv \sum_{\alpha} M_{g^{\prime} g}^{\alpha 0}\left|\Psi_{g^{\prime}}^{\alpha}\right\rangle$

Quenches: some trivialities

Sudden change of interaction parameter
(Barouch \& McCoy, ..., Calabrese \& Cardy, ... Cazalilla, Lamacraft, Klich, Lannert \& Refael,

Barmettler \& al, ...)

At quench time: $\quad\left|\Psi_{g}^{0}\right\rangle=\sum_{\alpha}\left|\Psi_{g^{\prime}}^{\alpha}\right\rangle\left\langle\Psi_{g^{\prime}}^{\alpha} \mid \Psi_{g}^{0}\right\rangle \equiv \sum_{\alpha} M_{g^{\prime} g}^{\alpha 0}\left|\Psi_{g^{\prime}}^{\alpha}\right\rangle$
Subsequent time evolution:

$$
|\Psi(t)\rangle=\sum_{\alpha} M_{g^{\prime} g}^{\alpha 0} e^{-i \omega_{g^{\prime}}^{\alpha} t}\left|\Psi_{g^{\prime}}^{\alpha}\right\rangle
$$

Quenches: some trivialities

Sudden change of interaction parameter
(Barouch \& McCoy, ..., Calabrese \& Cardy, ... Cazalilla, Lamacraft, Klich, Lannert \& Refael,

Barmettler \& al, ...)

At quench time: $\quad\left|\Psi_{g}^{0}\right\rangle=\sum_{\alpha}\left|\Psi_{g^{\prime}}^{\alpha}\right\rangle\left\langle\Psi_{g^{\prime}}^{\alpha} \mid \Psi_{g}^{0}\right\rangle \equiv \sum_{\alpha} M_{g^{\prime} g}^{\alpha 0}\left|\Psi_{g^{\prime}}^{\alpha}\right\rangle$
Subsequent time evolution:

$$
|\Psi(t)\rangle=\sum_{\alpha} M_{g^{\prime} g}^{\alpha 0} e^{-i \omega_{g^{\prime}}^{\alpha} t}\left|\Psi_{g^{\prime}}^{\alpha}\right\rangle
$$

Crucial building block:

$$
\left\langle\Psi_{g^{\prime}}^{\alpha} \mid \Psi_{g}^{\beta}\right\rangle \equiv M_{g^{\prime} g}^{\alpha \beta}
$$

Quenches: some trivialities

Sudden change of interaction parameter
(Barouch \& McCoy, ..., Calabrese \& Cardy, ... Cazalilla, Lamacraft, Klich, Lannert \& Refael,

Barmettler \& al, ...)

At quench time: $\quad\left|\Psi_{g}^{0}\right\rangle=\sum_{\alpha}\left|\Psi_{g^{\prime}}^{\alpha}\right\rangle\left\langle\Psi_{g^{\prime}}^{\alpha} \mid \Psi_{g}^{0}\right\rangle \equiv \sum_{\alpha} M_{g^{\prime} g}^{\alpha 0}\left|\Psi_{g^{\prime}}^{\alpha}\right\rangle$
Subsequent time evolution:

$$
|\Psi(t)\rangle=\sum_{\alpha} M_{g^{\prime} g}^{\alpha 0} e^{-i \omega_{g^{\prime}}^{\alpha} t}\left|\Psi_{g^{\prime}}^{\alpha}\right\rangle
$$

Crucial building block:

$$
\left\langle\Psi_{g^{\prime}}^{\alpha} \mid \Psi_{g}^{\beta}\right\rangle \equiv M_{g^{\prime} g}^{\alpha \beta}
$$

We know how to calculate the quench matrix for the Richardson model !!

Quench matrix elements

Time dependence of observables

'order parameter' $\quad \Psi_{O D}(t) \propto \sum_{\alpha, \beta}\langle\psi(t)| S_{\alpha}^{+} S_{\beta}^{-}|\psi(t)\rangle$

Plotted against mean-field \square prediction (Barankov \& Levitov, PRL 2006)	$\Delta_{\infty} / \Delta_{9}$	$\psi_{\text {oo }}(\omega)$ (Arb. Units)	
			$\mathrm{g}=1.0$
	$0.8{ }^{2}$	1	$\mathrm{g}=0.9$
			$\mathrm{g}=0.8$
	${ }_{(t)}^{0.1} \quad{ }^{1} \Delta_{\mathrm{g}_{0}} / \Delta_{\mathrm{g}}{ }^{10}$		$\mathrm{g}=0.7$
$\Delta_{g_{0}}$ gap for initial g Δ_{g} gap for final g Δ_{∞} asymptotic gap		μ	$\mathrm{g}=0.6$
	50 Wertwantertaw		$\mathrm{g}=0.5$
			$\mathrm{g}=0.4$
	30 ,		$\mathrm{g}=0.3$
	20 tommmmmummmmmume		$\mathrm{g}=0.2$
	10 Nommonmmummin		$\mathrm{g}=0.1$
		$5 \quad 10 \quad 15 \omega^{20}$	3035

Sequential quenches

Sequential quenches

Generic situation, here for 2 quenches:

Sequential quenches

Generic situation, here for 2 quenches:

| 'Quench propagator' |
| :--- | :--- |
| for quench-dequench |$Q_{\beta \alpha}\left(t_{q}\right)=\sum_{\gamma \in \mathcal{H}_{g_{1}}} M_{g_{0} g_{1}}^{\beta \gamma} M_{g_{1} g_{0}}^{\gamma \alpha} e^{-i \omega_{\gamma} t_{q}}$

Sequential quenches

Generic

 situation, here for 2 quenches:
'Quench propagator' for quench-dequench

Possible to
focus on specific excited states?
Possible to
focus on specific
excited states?
Targeted
sequential
quench

At $\mathrm{t}=0$, the initial quench populates excited states of H_{g}

At $\mathrm{t}=0$, the initial quench populates excited states of H_{g}

As the quench lasts, each 'arrow' rotates at the appropriate frequency

At $\mathrm{t}=0$, the initial quench populates excited states of H_{g}

As the quench lasts, each 'arrow' rotates at the appropriate frequency

The dequench repopulates states of original Hamiltonian

At $t=0$, the initial quench populates excited states of H_{g}

As the quench lasts, each 'arrow' rotates at the appropriate frequency

The dequench repopulates states of original Hamiltonian
When arrows 'add up to zero': state destruction

At $\mathrm{t}=0$, the initial quench populates excited states of H_{g}

As the quench lasts, each 'arrow' rotates at the appropriate frequency

The dequench repopulates states of original Hamiltonian
When arrows 'add up to zero': state destruction When arrows realign: state reconstruction

State occupation probabilities after

 double quench (quench-dequench)Ground state disappears and reappears ('collapse and revival'); excited states nontrivially weighted

Weight distribution among excited states: look at IPRs

$$
I_{q, r}=\sum_{\alpha>0}\left|A_{\alpha}\right|^{2 q} /\left(\sum_{\alpha>0}\left|A_{\alpha}\right|^{2}\right)^{q}
$$

Domain wall quenched into $X X Z$

J. Mossel and JSC, NJP 2010

Domain wall quenched into $X X Z$

J. Mossel and JSC, NJP 2010

Domain wall quenched into $X X Z$

J. Mossel and JSC, NJP 2010

Initial state:

$$
|\phi\rangle=|\underbrace{\downarrow \cdots \downarrow}_{M} \underbrace{\uparrow \cdots \uparrow}_{N-M}\rangle .
$$

Time evolution dictated by

$$
H_{X X Z}=J \sum_{j=1}^{N}\left[\frac{1}{2 \Delta}\left(S_{j}^{-} S_{j+1}^{+}+S_{j}^{+} S_{j+1}^{-}\right)+S_{j}^{z} S_{j+1}^{z}\right]
$$

Domain wall quenched into XXZ

J. Mossel and JSC, NJP 2010

Initial state:

$$
|\phi\rangle=|\underbrace{\downarrow \cdots \downarrow}_{M} \underbrace{\uparrow \cdots \uparrow}_{N-M}\rangle .
$$

Time evolution dictated by

$$
H_{X X Z}=J \sum_{j=1}^{N}\left[\frac{1}{2 \Delta}\left(S_{j}^{-} S_{j+1}^{+}+S_{j}^{+} S_{j+1}^{-}\right)+S_{j}^{z} S_{j+1}^{z}\right]
$$

Solution to Schrödinger eqn: $\quad|\phi(t)\rangle=\sum_{n} e^{-i E_{n} t} Q_{n}\left|\Psi_{n}\right\rangle$

Domain wall quenched into XXZ

J. Mossel and JSC, NJP 2010

Initial state:

$$
|\phi\rangle=|\underbrace{\downarrow \cdots \downarrow}_{M} \underbrace{\uparrow \cdots \uparrow}_{N-M}\rangle .
$$

Time evolution dictated by

$$
H_{X X Z}=J \sum_{j=1}^{N}\left[\frac{1}{2 \Delta}\left(S_{j}^{-} S_{j+1}^{+}+S_{j}^{+} S_{j+1}^{-}\right)+S_{j}^{z} S_{j+1}^{z}\right]
$$

Solution to Schrödinger eqn: $|\phi(t)\rangle=\sum_{n} e^{-i E_{n} t} Q_{n}\left|\Psi_{n}\right\rangle$
Quench vector elements: $\quad Q_{n} \equiv\left\langle\Psi_{n} \mid \phi\right\rangle \quad \sum_{n}\left|Q_{n}\right|^{2}=1$

Dominant overlaps: with string states

Dominant

 overlaps: with string states

Excitation continua for various state families

Work probability distribution

$$
P(W)=\sum_{n}\left|\left\langle\phi \mid \Psi_{n}\right\rangle\right|^{2} \delta\left(W-E_{n}+E_{0}\right)
$$

Loschmidt echo

$$
\left.\mathcal{L}(t)=\left|\langle\phi| e^{i H_{0} t} e^{-i H t}\right| \phi\right\rangle\left.\right|^{2}
$$

Loschmidt echo

$$
\left.\mathcal{L}(t)=\left|\langle\phi| e^{i H_{0} t} e^{-i H t}\right| \phi\right\rangle\left.\right|^{2}
$$

`Eigenstate thermalization hypothesis’ (Deutsch, Srednicki) does not apply here

Loschmidt echo

$$
\left.\mathcal{L}(t)=\left|\langle\phi| e^{i H_{0} t} e^{-i H t}\right| \phi\right\rangle\left.\right|^{2}
$$

`Eigenstate thermalization hypothesis’ (Deutsch, Srednicki) does not apply here Initial state is `remembered' at all times

Geometric quenches

J. Mossel, G. Palacios and JSC, 2010

$$
t<0: x_{i} \in\left[0, L_{1}[\right.
$$

Geometric quenches

J. Mossel, G. Palacios and JSC, 2010
$t<0: x_{i} \in\left[0, L_{1}[\right.$

$t>0: x_{i} \in\left[0, L_{2}[\right.$

Geometric quenches

J. Mossel, G. Palacios and JSC, 2010

$$
t<0: x_{i} \in\left[0, L_{1}[\right.
$$

$$
t>0: x_{i} \in\left[0, L_{2}[\right.
$$

Initial wavefunction: nonlinear mapping

$$
\Psi_{c}^{(1)}\left(\{x\} \mid\{\lambda\}_{L_{1}}\right)=\left\{\begin{array}{cc}
\Psi_{c}^{(2)}\left(\{x\} \mid\{\lambda\}_{L_{1}}\right), & 0 \leq x_{i}<L_{1} \\
0 & \text { otherwise }
\end{array}\right.
$$

Geometric quenches

Geometric quenches

The overlap can in fact be calculated using Slavnov!

Geometric quenches

The overlap can in fact be calculated using Slavnov!
It's just the overlap in the original space domain:

$$
\left\langle\left\{\lambda_{c}^{L_{1}}\right\} \mid\left\{\mu_{c}^{L_{2}}\right\}\right\rangle=\int_{0 \leq x_{1}<x_{2}<\ldots \leq L_{1}} d^{N} x\left(\psi_{c}^{L_{1}}\left(\left\{x_{i}\right\} \mid\left\{\lambda_{i}\right\}\right)\right)^{*} \psi_{c}^{L_{2}}\left(\left\{x_{i}\right\} \mid\left\{\mu_{i}\right\}\right)=F(\{\lambda\} \mid\{\mu\})
$$

Geometric quenches

The overlap can in fact be calculated using Slavnov!
It's just the overlap in the original space domain:

$$
\left\langle\left\{\lambda_{c}^{L_{1}}\right\} \mid\left\{\mu_{c}^{L_{2}}\right\}\right\rangle=\int_{0 \leq x_{1}<x_{2}<\ldots \leq L_{1}} d^{N} x\left(\psi_{c}^{L_{1}}\left(\left\{x_{i}\right\} \mid\left\{\lambda_{i}\right\}\right)\right)^{*} \psi_{c}^{L_{2}}\left(\left\{x_{i}\right\} \mid\left\{\mu_{i}\right\}\right)=F(\{\lambda\} \mid\{\mu\})
$$

This works for any model for which Slavnov is available.

Geometric quenches

The overlap can in fact be calculated using Slavnov! It's just the overlap in the original space domain:

$$
\left\langle\left\{\lambda_{c}^{L_{1}}\right\} \mid\left\{\mu_{c}^{L_{2}}\right\}\right\rangle=\int_{0 \leq x_{1}<x_{2}<\ldots \leq L_{1}} d^{N} x\left(\psi_{c}^{L_{1}}\left(\left\{x_{i}\right\} \mid\left\{\lambda_{i}\right\}\right)\right)^{*} \psi_{c}^{L_{2}}\left(\left\{x_{i}\right\} \mid\left\{\mu_{i}\right\}\right)=F(\{\lambda\} \mid\{\mu\})
$$

This works for any model for which Slavnov is available.

Geometric quenches

The overlap can in fact be calculated using Slavnov! It's just the overlap in the original space domain:

$$
\left\langle\left\{\lambda_{c}^{L_{1}}\right\} \mid\left\{\mu_{c}^{L_{2}}\right\}\right\rangle=\int_{0 \leq x_{1}<x_{2}<\ldots \leq L_{1}} d^{N} x\left(\psi_{c}^{L_{1}}\left(\left\{x_{i}\right\} \mid\left\{\lambda_{i}\right\}\right)\right)^{*} \psi_{c}^{L_{2}}\left(\left\{x_{i}\right\} \mid\left\{\mu_{i}\right\}\right)=F(\{\lambda\} \mid\{\mu\})
$$

This works for any model for which Slavnov is available.

Geometric quench: Heisenberg

'Release' $M=N / 3$ from system size N to $2 N$

Not discussed here...

O Contact with field theory calculations
('Nonlinear Luttinger Liquid' theory)

To do list/work in progress:

- Better classification of solutions to Bethe eqns

Q group approach: other regimes/polarizations

- Finite temperatures

Correlations in nested systems

- Quenches from integrability: other cases
- Renormalization from integrable points

