RAQIS 2010

Electronic properties of junctions of quantum wires
Vincent Caudrelier
Centre for Mathematics

CITY UNIVERSITY LONDON

Based on V.C, E. Ragoucy, Nucl. Phys. B828 (2010), 515 and arXiv:0907.5359 and preliminary work with M. Minthev

INTRODUCTION

Motivation: theoretical description of circuits of carbon nanotubes

Amazing realizations:

- transistors

- simple electronic circuits

Why can we hope to get such a description?
3 facts

- Low energy properties of interacting electrons in single wall carbon nanotubes have been shown ${ }^{1}$ to be captured by an integrable onedimensional effective model: the Tomonaga-Luttinger model.
- This model has been solved on a star graph ${ }^{2}$. Crucial ingredient: scattering properties at the central vertex.
- Scattering properties on any finite connected graph with external edges can be effectively described by a star graph ${ }^{3}$.

[^0]Conclusion : to model an arbitrary circuit of nanotubes, put the model on a graph: edges=nanotubes and vertices=connections.

Plan

1. The ingredients

- Solution of the Tomonaga-Luttinger model via bosonization
- Solution on a star graph: role of Reflection-Transmission algebras and scattering matrix
- Effective description of an arbitrary graph as a star graph

2. The recipe: example of a ring in a magnetic field

- Total scattering matrix
- Conductance

3. Conclusions
1.1 Solution of the Tomonaga-Luttinger model via bosonization

- Model on the line for two fermionic fields ψ_{1}, ψ_{2} with Lagrangian density

$$
\mathcal{L}=i \psi_{1}^{\dagger}\left(\partial_{t}+\partial_{x}\right) \psi_{1}+i \psi_{2}^{\dagger}\left(\partial_{t}-\partial_{x}\right) \psi_{2}-g_{+}\left(\psi_{1}^{\dagger} \psi_{1}+\psi_{2}^{\dagger} \psi_{2}\right)^{2}-g_{-}\left(\psi_{1}^{\dagger} \psi_{1}-\psi_{2}^{\dagger} \psi_{2}\right)^{2} .
$$

- Solvable by expressing the fermionic fields in terms of bosonic free massless fields $\varphi, \widetilde{\varphi}$ satisfying

$$
\left(\partial_{t}^{2}-\partial_{x}^{2}\right) \varphi=0 \quad, \quad \partial_{t} \widetilde{\varphi}=-\partial_{x} \varphi, \quad \partial_{x} \widetilde{\varphi}=-\partial_{t} \varphi
$$

- The fields $\varphi, \widetilde{\varphi}$ are expressed in the usual way in terms of creation/annihilation operators

$$
\left[a\left(k_{1}\right), a\left(k_{2}\right)\right]=0=\left[a^{\dagger}\left(k_{1}\right) a^{\dagger}\left(k_{2}\right)\right], \quad\left[a\left(k_{1}\right), a^{\dagger}\left(k_{2}\right)\right]=2 \pi \delta\left(k_{1}-k_{2}\right)
$$

- The correlation functions of the quantum fermionic theory can then be computed using a representation of this algebra.
1.2 Solution on a star graph
- Put the previous model on a star graph with N external edges and one central vertex: fermionic fields $\psi_{1}(x, t, j), \psi_{2}(x, t, j), j=1, \ldots, N$, $x>0$.

- On top of interactions on the external edges, presence of interactions at the vertex encoded in boundary conditions on the fields at $x=0$.
- Same principle of solution as before: N pairs of free bosonic massless fields $\varphi(x, t, j), \widetilde{\varphi}(x, t, j), j=1, \ldots, N, x>0$ but with boundary conditions at $x=0$ now.
- Set of boundary conditions ensuring unitarity is known ${ }^{4}$.
- Associated scattering matrix describing transition and reflexion probabilities between edges satisfies important properties

$$
S^{\dagger}(k) S(k)=\mathbb{1} \quad, \quad S(k) S(-k)=\mathbb{1} .
$$

- Key to solve the problem: change the oscillator algebra into a ReflectionTransmission algebra ${ }^{5}$

$$
\begin{gather*}
{\left[a_{j}(p), a_{k}(q)\right]=0=\left[a_{j}^{\dagger}(p), a_{k}^{\dagger}(q)\right]} \\
{\left[a_{j}(p), a_{k}^{\dagger}(q)\right]=2 \pi \delta_{j k} \delta(p-q)+2 \pi S_{j k}(p) \delta(p+q) \mathbf{1},} \\
a_{j}(p)=\sum_{k=1}^{n} S_{j k}(p) a_{k}(-p), \quad a_{j}^{\dagger}(p)=\sum_{k=1}^{n} a_{k}^{\dagger}(-p) S_{k j}(-p) \tag{1}
\end{gather*}
$$

[^1]Application: computation of the conductance

- Method: couple the field to a classical electric field A_{μ} and compute the response of the vacuum expectation value of the current $J(x, t, j)=\left(\psi_{1}^{\dagger} \psi_{1}-\psi_{2}^{\dagger} \psi_{2}\right)(x, t, j)$.
- Response theory yields

$$
\begin{aligned}
\langle J(x, t, j)\rangle_{A_{\mu}} & =\langle J(x, t, j)\rangle+i \int_{-\infty}^{t}\left\langle\left[H_{\text {int }}(\tau), J(x, t, j)\right]\right\rangle d \tau \\
H_{\text {int }}(\tau) & =\sum_{j=1}^{n} \int_{0}^{\infty} d x\left[\frac{1}{\alpha \pi} J A_{x}-\frac{1}{2 \pi} A^{\mu} A_{\mu}\right](x, \tau, j)
\end{aligned}
$$

- All calculations can be reduced to using the RT algebra relations to get an exact result.

The result ${ }^{6}$:

$$
\begin{aligned}
\langle J(x, t, j)\rangle_{A_{\mu}}= & G_{\text {line }} \sum_{k=1}^{n} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \hat{A}_{x}(\omega, k) e^{-i \omega t} \\
& \times\left[\delta_{k j}-S_{k j}(\omega)-\sum_{\eta \in \operatorname{Res}} \frac{\eta}{\eta+i \omega} \operatorname{Res}\left(S_{k j}, \eta\right) e^{\left(t-t_{0}\right)(\eta+i \omega)}\right]
\end{aligned}
$$

- The conductance $G_{k j}\left(\omega, t-t_{0}\right)$ is the term in brackets (in units of $G_{\text {line }}$, the conductance of an infinite line).
- Main message: behaviour of physical quantities completely determined by $S(p)$ and its analytic structure (as expected).
\rightarrow One needs an efficient method to compute $S(p)$.
${ }^{6}$ assuming a constant electric field $E(t, j)=\partial_{t} A_{x}(t, j)$ in the Weyl gauge $A_{t}=0$ and switched on at $t=t_{0}$.

1.3 Total scattering matrix of an arbitrary graph

- Several existing results in the literature ${ }^{7}$ but all with drawbacks for our purposes: no explicit formula or impractical recursive methods.

Goal: knowing all the local scattering matrices, obtain the total scattering matrix simply and explicitly.

- Our method is based on a simple gluing procedure and uses only linear algebra!

Idea: Lego-type approach
arbitrary graph $=$ collection of star graphs glued together
See figures

[^2]

Figure 1: Three star graphs to be glued together

(b) Local and topological information

Figure 2: Labelling and physical information

Some general notations

- Modes on the edges $a_{j}^{\alpha \beta}(p)$ (p : momentum)
- $\alpha=1,2, \ldots, N$ denotes the vertex to which the edge is attached;
- $\beta=0,1,2, \ldots, N$ denotes the vertex linked to α by the edge under consideration, with the convention that external edges corresponds to $\beta=0$;
- $j=1, \ldots, N_{\alpha \beta}$ numbers the different edges between α and $\beta, N_{\alpha \beta}$ being their total number. We set $N_{\alpha \beta}=0$ if α is not connected to β. $N_{\alpha \beta}=N_{\beta \alpha}$.
- $d_{j}^{\alpha \beta}=d_{j}^{\beta \alpha}$ is the length of edge (α, β, j).

Two fundamental set of relations:

- Local scattering at vertex α :

$$
a_{j}^{\alpha \beta}(p)=\sum_{\gamma=0}^{N} \sum_{k=1}^{N_{\alpha \gamma}} s_{\alpha ; j k}^{\beta \gamma}(p) a_{k}^{\alpha \gamma}(-p)
$$

where $s_{\alpha ; j k}^{\beta \gamma}(p)$ are the components of the local scattering matrix $S_{\alpha}(p)$ which satisfies $S_{\alpha}(p) S_{\alpha}(-p)=\mathbb{1}$.

- Propagation on edge $(\alpha \beta j)$:

$$
a_{j}^{\alpha \beta}(p)=\exp \left(-i d_{j}^{\alpha \beta} p\right) a_{j}^{\beta \alpha}(-p)
$$

Question: what is the equivalent star graph with total scattering matrix Stot?

Answer: we seek the scattering relations directly between the external modes i.e. relations of the form
$a_{j}^{\alpha 0}(p)=\sum_{\gamma=1}^{N} \sum_{k=1}^{N_{\gamma 0}} S_{t o t ; j k}^{\alpha \gamma}(p) a_{k}^{\gamma 0}(-p) \quad \forall j=1, \ldots, N_{\alpha 0} ; \forall \alpha=1, \ldots, N$,
where $S_{t o t ; j k}^{\alpha \gamma}(p)$ are the components of the total scattering matrix for the graph, $S_{t o t}(p)$.

Derivation of the result: put modes in vectors and use linear algebra.

- All external modes in vector $A(p)$, internal modes in $B(p)$.
- Collect external elements of the local S^{\prime} s in $S_{11}(p)$.
- Collect internal elements in $S_{22}(p)$.
- Collect the elements linking external to internal modes in $S_{21}(p)$
- Collect the elements linking internal to external in $S_{12}(p)$.
- Finally, let $E(p)$ be the connectivity matrix encoding the propagation:
it has one $e^{-i p d_{j}^{\alpha \beta}}$ term in each row and column and connects the elements of $B(p)$
- The set of scattering and propagation relations becomes

$$
\begin{aligned}
& A(p)=S_{11}(p) A(-p)+S_{12}(p) B(-p) \\
& B(p)=S_{21}(p) A(-p)+S_{22}(p) B(-p) \\
& B(p)=E(p) B(-p)
\end{aligned}
$$

Assuming that $E(p)-S^{(22)}(p)$ is invertible this yields the desired relations

$$
A(p)=S_{t o t}(p) A(-p),
$$

with

$$
S_{t o t}(p)=S_{11}(p)+S_{12}(p)\left[E(p)-S_{22}(p)\right]^{-1} S_{21}(p)
$$

- The internal modes can be deduced from the external ones through

$$
B(p)=\left[E(-p)-S_{22}(-p)\right]^{-1} S_{21}(-p) A(p)
$$

2.1 Ring a magnetic field

Figure 3 : Example of a regular ring with 6 external edges, identical local scattering matrices σ and length d between edges pierced by a flux ϕ.

- For N external edges, $S_{t o t}(p, \phi)$ is a $N \times N$ circulant matrix. Can be diagonalised and using our method we find

$$
S_{\text {tot }}(p, \phi)=W\left(\begin{array}{ccc}
\lambda_{1}\left(p, \frac{\phi}{N}\right) & & \\
& \ddots & \\
& & \lambda_{N}\left(p, \frac{\phi}{N}\right)
\end{array}\right) W^{-1}
$$

With

$$
W=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & \omega & \ldots & \omega^{N-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \cdots & \left(\omega^{N-1}\right)^{N-1}
\end{array}\right) \quad, \quad \omega=e^{\frac{2 i \pi}{N}}
$$

and
$\lambda_{j}(p, \theta)=\frac{e^{2 i p d} \operatorname{det} \sigma+e^{i p d}\left[\left(\sigma_{11} \sigma_{23}-\sigma_{13} \sigma_{21}\right) e^{i \theta} \omega^{j-1}+\left(\sigma_{11} \sigma_{32}-\sigma_{31} \sigma_{12}\right) e^{-i \theta} \omega^{1-j}\right]-\sigma_{11}}{e^{2 i p d}\left(\sigma_{22} \sigma_{33}-\sigma_{23} \sigma_{32}\right)+e^{i p d}\left(\sigma_{23} e^{i \theta} \omega^{j-1}+\sigma_{32} e^{-i \theta} \omega^{1-j}\right)-1}$,

- Thanks to this explicit expression, the conductance tensor can be computed exactly.

In general, one gets complex entries: resistance and inductance/capacitance effects.

- Next page: impedance Z_{12} between the edges 1 and 2 in the limit $d=0$ with the flux θ held finite (result for $N=3, \sigma$ a given constant matrix).

Figure 4: Impedance Z_{12} (between edges 1 and 2) as a function of the flux θ.

Approach on the line

3 Conclusions

- Complete solution of the Tomonaga-Luttinger model on an arbitrary graph \rightarrow study of electronic properties of circuits of quantum wires (carbon nanotubes).
- Application: preliminary results for the conductance on a ring in a magnetic field. Comparison with previous works in condensed matter physics ${ }^{8}$ employing different, perturbative methods in progress.
- Question of conductance for simple graphs already addressed in the context of integrable QFT ${ }^{9}$. Use of TBA and form factor to get finite temperature conductance of free fermions on a 1D array of impurities.

Prospectives

- Brings us closer to the understanding of integrable QFT on graphs.
- Case of finite temperature can be tackled along the same lines: only difference is to take a Gibbs representation of the RT algebra instead of Fock representation.

[^3]
THANK YOU!

Sources of inspiration: a) Diamond, b) Graphite, c) Lonsdaleite, d) C60 (Buckminsterfullerene or buckyball), e) C540, f) C70, g) Amorphous carbon, and h) single-walled carbon nanotube or buckytube.

[^0]: ${ }^{1}$ R. Egger and A. Gogolin, Phys. Rev. Lett. 79 (1997) 5082; C. Kane, L. Balents, M. Fisher, Phys. Rev. Lett. 79 (1997) 5086
 ${ }^{2}$ B. Bellazzini, M. Mintchev, P. Sorba, J.Phys.A40:2485-2508,2007
 ${ }^{3}$ V. Caudrelier, E. Ragoucy, Nucl.Phys.B828:515-535,2010

[^1]: ${ }^{4}$ V. Kostrykin, R. Schrader, J. Phys. A: Math. Gen. Vol. 32 (1999) 595-630
 ${ }^{5}$ M. Mintchev, E. Ragoucy, P. Sorba, J. Phys. A36 (2003), 10407.

[^2]: ${ }^{ }$V. Kostrykin, R. Schrader, J. Phys. A32 (1999) 595 ; Sh. Khachatryan, R. Schrader, A. Sedrakyan, J. Phys. A42 (2009) 304019 ; E. Ragoucy J. Phys. A42 (2009) 295205

[^3]: ${ }^{8}$ M. Oshikawa, C. Chamon, I Affleck, J.Stat.Mech. 0602 (2006) P008.
 ${ }^{9}$ O. Castro-Alvaredo, A. Fring, Nucl.Phys. B649 (2003) 449-490.

