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INTRODUCTION

Motivation: theoretical description of circuits of carbon nanotubes

Amazing realizations:

- transistors

- simple electronic circuits



This talk in a nutshell

Why can we hope to get such a description?

3 facts

- Low energy properties of interacting electrons in single wall carbon
nanotubes have been shown1 to be captured by an integrable one-
dimensional effective model: the Tomonaga-Luttinger model.

- This model has been solved on a star graph2. Crucial ingredient:
scattering properties at the central vertex.

- Scattering properties on any finite connected graph with external
edges can be effectively described by a star graph3.

1R. Egger and A. Gogolin, Phys. Rev. Lett. 79 (1997) 5082; C. Kane, L. Balents, M. Fisher, Phys. Rev.
Lett. 79 (1997) 5086

2B. Bellazzini, M. Mintchev, P. Sorba, J.Phys.A40:2485-2508,2007
3V. Caudrelier, E. Ragoucy, Nucl.Phys.B828:515-535,2010



Conclusion : to model an arbitrary circuit of nanotubes, put the model
on a graph: edges=nanotubes and vertices=connections.



Plan

1. The ingredients

• Solution of the Tomonaga-Luttinger model via bosonization

• Solution on a star graph: role of Reflection-Transmission algebras
and scattering matrix

• Effective description of an arbitrary graph as a star graph

2. The recipe: example of a ring in a magnetic field

• Total scattering matrix

• Conductance

3. Conclusions



1.1 Solution of the Tomonaga-Luttinger model via bosonization

- Model on the line for two fermionic fields ψ1, ψ2 with Lagrangian
density

L = iψ
†
1(∂t+∂x)ψ1+iψ

†
2(∂t−∂x)ψ2−g+(ψ

†
1ψ1+ψ

†
2ψ2)

2−g−(ψ
†
1ψ1−ψ

†
2ψ2)

2 .

- Solvable by expressing the fermionic fields in terms of bosonic free
massless fields ϕ, ϕ̃ satisfying

(∂2
t − ∂2

x)ϕ = 0 , ∂tϕ̃ = −∂xϕ , ∂xϕ̃ = −∂tϕ

- The fields ϕ, ϕ̃ are expressed in the usual way in terms of cre-
ation/annihilation operators

[a(k1) , a(k2)] = 0 = [a†(k1) a
†(k2)] , [a(k1) , a

†(k2)] = 2π δ(k1 − k2)

- The correlation functions of the quantum fermionic theory can then
be computed using a representation of this algebra.



1.2 Solution on a star graph

- Put the previous model on a star graph with N external edges and
one central vertex: fermionic fields ψ1(x, t, j), ψ2(x, t, j), j = 1, ..., N ,
x > 0.
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- On top of interactions on the external edges, presence of interactions
at the vertex encoded in boundary conditions on the fields at x = 0.

- Same principle of solution as before: N pairs of free bosonic mass-
less fields ϕ(x, t, j), ϕ̃(x, t, j), j = 1, ..., N , x > 0 but with boundary
conditions at x = 0 now.



- Set of boundary conditions ensuring unitarity is known4.

- Associated scattering matrix describing transition and reflexion prob-
abilities between edges satisfies important properties

S†(k)S(k) = 1I , S(k)S(−k) = 1I .

- Key to solve the problem: change the oscillator algebra into a Reflection-
Transmission algebra 5

[aj(p), ak(q)] = 0 = [a
†
j(p), a

†
k
(q)] ,

[aj(p), a
†
k
(q)] = 2πδjkδ(p− q) + 2πSjk(p)δ(p + q)1 ,

aj(p) =

n∑

k=1

Sjk(p)ak(−p) , a
†
j(p) =

n∑

k=1

a
†
k
(−p)Skj(−p) (1)

4V. Kostrykin, R. Schrader, J. Phys. A: Math. Gen. Vol.32 (1999) 595-630
5M. Mintchev, E. Ragoucy, P. Sorba, J. Phys. A36 (2003),10407.



Application: computation of the conductance

- Method: couple the field to a classical electric field Aµ and com-
pute the response of the vacuum expectation value of the current

J(x, t, j) = (ψ
†
1ψ1 − ψ

†
2ψ2)(x, t, j).

- Response theory yields

〈J(x, t, j)〉Aµ = 〈J(x, t, j)〉 + i

∫ t

−∞
〈[Hint(τ ), J(x, t, j)]〉dτ

Hint(τ ) =

n∑

j=1

∫ ∞

0
dx

[
1

απ
J Ax −

1

2π
AµAµ

]
(x, τ, j)

- All calculations can be reduced to using the RT algebra relations to
get an exact result.



The result6:

〈J(x, t, j)〉Aµ = Gline

n∑

k=1

∫ ∞

−∞

dω

2π
Âx(ω, k)e−iωt

×


δkj − Skj(ω) −

∑

η∈Res

η

η + iω
Res(Skj, η)e

(t−t0)(η+iω)




- The conductance Gkj(ω, t − t0) is the term in brackets (in units of
Gline, the conductance of an infinite line).

- Main message: behaviour of physical quantities completely deter-
mined by S(p) and its analytic structure (as expected).
→ One needs an efficient method to compute S(p).

6assuming a constant electric field E(t, j) = ∂tAx(t, j) in the Weyl gauge At = 0 and switched on at t = t0.



1.3 Total scattering matrix of an arbitrary graph

- Several existing results in the literature7 but all with drawbacks for
our purposes: no explicit formula or impractical recursive methods.

Goal: knowing all the local scattering matrices, obtain the total scat-
tering matrix simply and explicitly.

- Our method is based on a simple gluing procedure and uses only linear
algebra!

Idea: Lego-type approach

arbitrary graph = collection of star graphs glued together

See figures

7V. Kostrykin, R. Schrader, J. Phys. A32 (1999) 595 ; Sh. Khachatryan, R. Schrader, A. Sedrakyan, J. Phys.
A42 (2009) 304019 ; E. Ragoucy J. Phys. A42 (2009) 295205
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(a) Star graphs before gluing
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(b) The resulting graph after gluing

Figure 1: Three star graphs to be glued together
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(a) Labelling of the star graphs
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(b) Local and topological information

Figure 2: Labelling and physical information



Some general notations

- Modes on the edges a
αβ
j (p) (p: momentum)

• α = 1, 2, . . . , N denotes the vertex to which the edge is attached;

• β = 0, 1, 2, . . . , N denotes the vertex linked to α by the edge under
consideration, with the convention that external edges corresponds
to β = 0;

• j = 1, . . . , Nαβ numbers the different edges between α and β, Nαβ
being their total number. We set Nαβ = 0 if α is not connected to
β. Nαβ = Nβα.

• d
αβ
j = d

βα
j is the length of edge (α, β, j).



Two fundamental set of relations:

• Local scattering at vertex α:

a
αβ
j (p) =

N∑

γ=0

Nαγ∑

k=1

s
βγ
α;jk(p) a

αγ
k

(−p)

where s
βγ
α;jk(p) are the components of the local scattering matrix

Sα(p) which satisfies Sα(p)Sα(−p) = 1I.

• Propagation on edge (αβj):

a
αβ
j (p) = exp(−i d

αβ
j p) a

βα
j (−p) .

Question: what is the equivalent star graph with total scattering matrix
Stot?



Answer: we seek the scattering relations directly between the external
modes i.e. relations of the form

aα0
j (p) =

N∑

γ=1

Nγ0∑

k=1

S
αγ
tot;jk(p) a

γ0
k

(−p) ∀j = 1, . . . , Nα0 ; ∀α = 1, . . . , N ,

where S
αγ
tot;jk(p) are the components of the total scattering matrix for

the graph, Stot(p).
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Derivation of the result: put modes in vectors and use linear algebra.

- All external modes in vector A(p), internal modes in B(p).
- Collect external elements of the local S’s in S11(p).
- Collect internal elements in S22(p).
- Collect the elements linking external to internal modes in S21(p)
- Collect the elements linking internal to external in S12(p).

- Finally, let E(p) be the connectivity matrix encoding the propagation:

it has one e
−ipd

αβ
j term in each row and column and connects the

elements of B(p)



- The set of scattering and propagation relations becomes

A(p) = S11(p)A(−p) + S12(p)B(−p)

B(p) = S21(p)A(−p) + S22(p)B(−p)

B(p) = E(p)B(−p)

Assuming that E(p) − S(22)(p) is invertible this yields the desired re-
lations

A(p) = Stot(p)A(−p) ,

with

Stot(p) = S11(p) + S12(p) [E(p) − S22(p)]
−1 S21(p) .

- The internal modes can be deduced from the external ones through

B(p) = [E(−p) − S22(−p)]
−1 S21(−p)A(p)



2.1 Ring a magnetic field

d

Figure 3: Example of a regular ring with 6 external edges, identical
local scattering matrices σ and length d between edges pierced
by a flux φ.



- For N external edges, Stot(p, φ) is a N ×N circulant matrix. Can be diagonalised
and using our method we find

Stot(p, φ) = W



λ1(p,

φ
N

)
. . .

λN(p, φ
N

)


W−1

With

W =




1 1 . . . 1
1 ω . . . ωN−1

... ... . . . ...
1 ωN−1 . . . (ωN−1)N−1


 , ω = e

2iπ
N ,

and

λj(p, θ) =
e2ipd det σ + eipd

[
(σ11σ23 − σ13σ21)e

iθωj−1 + (σ11σ32 − σ31σ12)e
−iθω1−j

]
− σ11

e2ipd(σ22σ33 − σ23σ32) + eipd(σ23eiθωj−1 + σ32e−iθω1−j) − 1
,

- Thanks to this explicit expression, the conductance tensor can be computed exactly.
In general, one gets complex entries: resistance and inductance/capacitance effects.

- Next page: impedance Z12 between the edges 1 and 2 in the limit d = 0 with the
flux θ held finite (result for N = 3, σ a given constant matrix).
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(a) Real part of Z12 (resistance).
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(b) Imaginary part of Z12

Figure 4: Impedance Z12 (between edges 1 and 2) as a function of
the flux θ.
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Figure 5: Summary



3 Conclusions

- Complete solution of the Tomonaga-Luttinger model on an arbitrary graph → study
of electronic properties of circuits of quantum wires (carbon nanotubes).

- Application: preliminary results for the conductance on a ring in a magnetic field.
Comparison with previous works in condensed matter physics 8 employing different,
perturbative methods in progress.

- Question of conductance for simple graphs already addressed in the context of in-
tegrable QFT 9. Use of TBA and form factor to get finite temperature conductance
of free fermions on a 1D array of impurities.

Prospectives

- Brings us closer to the understanding of integrable QFT on graphs.

- Case of finite temperature can be tackled along the same lines: only difference is
to take a Gibbs representation of the RT algebra instead of Fock representation.

8M. Oshikawa, C. Chamon, I Affleck, J.Stat.Mech. 0602 (2006) P008.
9O. Castro-Alvaredo, A. Fring, Nucl.Phys. B649 (2003) 449-490.



THANK YOU!

Sources of inspiration: a) Diamond, b) Graphite, c) Lonsdaleite, d) C60

(Buckminsterfullerene or buckyball), e) C540, f) C70, g) Amorphous

carbon, and h) single-walled carbon nanotube or buckytube.


