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INTRODUCTION

Motivation: theoretical description of circuits of carbon nanotubes
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Amazing realizations:

- transistors

(0,10) nanotube
(zig-zag)

- simple electronic circuits

(7,10) nanotube

(10,10) nanotube
(chiral) i

(armchair)




This talk in a nutshell

Why can we hope to get such a description?
3 facts

- Low energy properties of interacting electrons in single wall carbon
nanotubes have been shown! to be captured by an integrable one-
dimensional effective model: the Tomonaga-Luttinger model.

- This model has been solved on a star graph?. Crucial ingredient:
scattering properties at the central vertex.

- Scattering properties on any finite connected graph with external

edges can be effectively described by a star graph?.

'R. Egger and A. Gogolin, Phys. Rev. Lett. 79 (1997) 5082; C. Kane, L. Balents, M. Fisher, Phys. Rev.
Lett. 79 (1997) 5086

2B. Bellazzini, M. Mintchev, P. Sorba, J.Phys.A40:2485-2508,2007

3V. Caudrelier, E. Ragoucy, Nucl.Phys.B828:515-535,2010




Conclusion : to model an arbitrary circuit of nanotubes, put the model
on a graph: edges=nanotubes and vertices=connections.



Plan
1. The ingredients

e Solution of the Tomonaga-Luttinger model via bosonization

e Solution on a star graph: role of Reflection-Transmission algebras
and scattering matrix

e Effective description of an arbitrary graph as a star graph

2. The recipe: example of a ring in a magnetic field

e Total scattering matrix

e Conductance

3. Conclusions



1.1 Solution of the Tomonaga-Luttinger model via bosonization

- Model on the line for two fermionic fields 1)1, 7)o with Lagrangian
density

£ = it} (D0 )1+t (DD )iy — g (8o T 2— g (0T — i)

- Solvable by expressing the fermionic fields in terms of bosonic free
massless fields ¢, o satisfying

(07 —02)p =0 , P =—0up , 0up=—0rp

- The fields ¢, © are expressed in the usual way in terms of cre-
ation /annihilation operators

a(ky), a(k)] = 0= [al (k1) al(ke)] , [a(k), a'(ko)] = 27 6(ky — ko)

- The correlation functions of the quantum fermionic theory can then
be computed using a representation of this algebra.



1.2 Solution on a star graph

- Put the previous model on a star graph with N external edges and

one central vertex: fermionic fields ¢y (x,t, ), ¥o(x,t,5), 7 =1,..., N,
x > 0.

- On top of interactions on the external edges, presence of interactions
at the vertex encoded in boundary conditions on the fields at = 0.

- Same principle of solution as before: N pairs of free bosonic mass-

less fields ©(x,t,7), o(x,t,7), 7=1,..., N, x > 0 but with boundary
conditions at x = 0 now.



- Set of boundary conditions ensuring unitarity is known?.

- Associated scattering matrix describing transition and reflexion prob-
abilities between edges satisfies important properties

STk)S(k) =1, S(k)S(—k)=1.

- Key to solve the problem: change the oscillator algebra into a Reflection-
Transmission algebra °

a;(p), ay(q)] = 0 = [al(p).a(q)]

a(p), al(q)] = 276,1.6(p — q) + 275 1 (p)S(p + @)1,

= Sjrpar(—p) . Za —p)Ski(=p) (1)
k=1

k=1

1V. Kostrykin, R. Schrader, J. Phys. A: Math. Gen. Vol.32 (1999) 595-630
sM. Mintchev, E. Ragoucy, P. Sorba, J. Phys. A36 (2003),10407.



Application: computation of the conductance

- Method: couple the field to a classical electric field A, and com-
pute the response of the vacuum expectation value of the current

J(z,t,§) = (bl — ) (a, t, 5).

- Response theory yields

t
(It ) a, = (Tt ) + i / (Hing(r), J (1, 5))dr
Hip(T Z/ dx [omJA ——A“A ] (x,7,7)

- All calculations can be reduced to using the RT algebra relations to
get an exact result.



The result®:

> dw — 1wt
(J(z,t,7)) 4, = Glznez Ag(w, ke

X 5k]_Sk]<w) — Z n+sz€S(Sk]’ ) (t_t0>(77-|-iw)
neRes

- The conductance (i j(w,t — t() is the term in brackets (in units of
Gine, the conductance of an infinite line).

- Main message: behaviour of physical quantities completely deter-
mined by S(p) and its analytic structure (as expected).
— One needs an efficient method to compute S(p).

sagsuming a constant electric field E(t, ) = 0;A.(t,7) in the Weyl gauge A; = 0 and switched on at ¢t = .



1.3 Total scattering matrix of an arbitrary graph

- Several existing results in the literature’ but all with drawbacks for
our purposes: no explicit formula or impractical recursive methods.

Goal: knowing all the local scattering matrices, obtain the total scat-
tering matrix simply and explicitly.

- Our method is based on a simple gluing procedure and uses only linear
algebral!

ldea: Lego-type approach
arbitrary graph = collection of star graphs glued together

See figures

"V. Kostrykin, R. Schrader, J. Phys. A32 (1999) 595 ; Sh. Khachatryan, R. Schrader, A. Sedrakyan, J. Phys.
A42 (2009) 304019 ; E. Ragoucy J. Phys. A42 (2009) 295205
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@ otar graphs before gluing

w) The resulting graph after gluing
rigure 1: 1 hree star graphs to be glued together



» Local and topological information

rigure 22 Labelling and physical information



Some general notations

- Modes on the edges a?ﬁ(p) (p: momentum)
e =1,2,..., N denotes the vertex to which the edge is attached;

e 3=0,1,2,..., N denotes the vertex linked to o by the edge under
consideration, with the convention that external edges corresponds

to 5 =0;

e j=1,..., Ny numbers the different edges between v and 5, N3
being their total number. We set N, 3 = 0 if « is not connected to

B. Nog = Nga.
o d;w — d?a is the length of edge (o, 3, 7).



Two fundamental set of relations:

e Local scattering at vertex a:

N Nay
o) =33 s (p) o) (—p)
v=0 k=1
where Sg,vjk(p) are the components of the local scattering matrix

Sa(p) which satisfies Sa(p)Sa(—p) = 1.

e Propagation on edge (a/3j):
a}m (p) = exp(—idffﬁ p) afa(—p)-

Question: what is the equivalent star graph with total scattering matrix
Stot?



Answer: we seek the scattering relations directly between the external
modes i.e. relations of the form

N Nyo
0 .
ai’(p) =D D Sprp@al (=p)  Vji=1,.. Noo; Va=1,...




Derivation of the result: put modes in vectors and use linear algebra.

- All external modes in vector A(p), internal modes in B(p).

- Collect external elements of the local S’s in S71(p).

- Collect internal elements in Soo(p).

- Collect the elements linking external to internal modes in S5 (p)
- Collect the elements linking internal to external in Sia(p).

- Finally, let E/(p) be the connectivity matrix encoding the propagation:
e—z'pd;m

it has one term in each row and column and connects the

elements of B(p)



- The set of scattering and propagation relations becomes

A(p) = S11(p) A(=p) + S12(p) B(—p)

B(p) = 521(p) A(=p) + S22(p) B(—p)
B(p) = E(p)B(-p)
Assuming that E(p) — S'22)(p) is invertible this yields the desired re-
lations
A(p) = Stot(p)A(—p),
with

Stot(p) = S11(p) + S12(p) [E(p) — Soa(p)] " Sa1(p)-

- The internal modes can be deduced from the external ones through

B(p) = [E(—p) — Sao(—p)] ™" So1(—p) A(p)



2.1 Ring a magnetic field

rigure 3: [ixample of a regular ring with 6 external edges, identical

local scattering matrices o and length d between edges pierced
by a flux ¢.



- For N external edges, S;.1(p, @) is a N x N circulant matrix. Can be diagonalised
and using our method we find

>\1<p7 %) 1
Stot(pv ¢> =W W=
)\N(pv %)
With
1 1 1
N-1
W _ 1 CL) w | W= 62]2\? |
| wN—l (wN—i)N—l
and
A (p.6) 2P det o + €7 [(011093 — 013091 )€ w! L + (011039 — o31012)e YW T — oy
J p’ - 9

621pd(0'220'33 — 0'230'32> + eZpd(Uggewa_l + 0'326_29&)1_]> — 1

- Thanks to this explicit expression, the conductance tensor can be computed exactly.
In general, one gets complex entries: resistance and inductance/capacitance effects.

- Next page: impedance 75 between the edges 1 and 2 in the limit d = 0 with the
flux 6 held finite (result for N = 3, o a given constant matrix).



« Real part of Z5 (resistance).

w» Imaginary part of Zi

Figwe 4: Impedance Z1o (between edges 1 and 2) as a function of
the flux 6.



Approach on theline

low energy _
Carbon nanotubes . L uttinger model

A

Prediction of glectonic properties

Bosonization

Y

Computation of correlation - Bosonic free field

functions
Exact solution with oscillator algebra
Approach on agraph
Circuit of low energy |
Carbon nanotubes g Luttinger model
A on agraph
Prediction of glectonic properties Bosonization
on agraph

Y

_ - Bosonic freefield
functions Total scattering matrix on agraph
Exact solution with RT algebra

Computation of correlation

Figure 5: SUININATY



3 Conclusions

- Complete solution of the Tomonaga-Luttinger model on an arbitrary graph — study
of electronic properties of circuits of quantum wires (carbon nanotubes).

- Application: preliminary results for the conductance on a ring in a magnetic field.
Comparison with previous works in condensed matter physics ® employing different,
perturbative methods in progress.

- Question of conductance for simple graphs already addressed in the context of in-
tegrable QFT ?. Use of TBA and form factor to get finite temperature conductance
of free fermions on a 1D array of impurities.

Prospectives
- Brings us closer to the understanding of integrable QFT on graphs.

- Case of finite temperature can be tackled along the same lines: only difference is
to take a Gibbs representation of the RT algebra instead of Fock representation.

sM. Oshikawa, C. Chamon, I Affleck, J.Stat.Mech. 0602 (2006) P008.
90. Castro-Alvaredo, A. Fring, Nucl.Phys. B649 (2003) 449-490.




THANK YOU!
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Sources of inspiration: a) Diamond, b) Graphite, c) Lonsdaleite, d) C60

(Buckminsterfullerene or buckyball), ) C540, f) C70, g) Amorphous
carbon, and h) single-walled carbon nanotube or buckytube.



