Introduction to Space

Astrometry

The Gaia Mission

François Mignard

UNS & Observatoire de la Côte d'Azur
Summary

- Astrometry
- Reference frames & Parallaxes
- Hipparcos
- Gaia
Astrometry in a nutshell
What is Astrometry?

- Astrometry deals with the measurement of the positions and motions of astronomical objects on the celestial sphere.
 - Global or wide field astrometry
 - Local or small field astrometry
- Astrometry relies on specialized instrumentation and observational and analysis techniques.
- It is fundamental to all other fields of astronomy.
The astrometric revolution

- The two pillars of space astrometry

Reference frame

Absolute parallaxes
Astrometry Golden Age

2000 yrs - 4.5 dex

2000 yrs - 4.5 dex
Reference Frames
Reference frame: standard view

• Pre-existing reference graticule
Reference frame: fundamental view

- Stellar sources as fiducial points
Classical Astronomical Reference Frames

- **Astronomical catalogues**
 - Large full sky astronomical catalogues widely available in 1970
 - BD (1860) & Cordoba (1890) with 700,000 stars
 - HD (Henry Draper) since 1920, 230,000 entries with spectral type
 - SAO (1966) with 270,000 stars with positions and PM
 - Positions and PM based on an existing reference frame

- **Fundamental catalogues**
 - Absolute observations with no reference to previous determinations
 - Historically tied to the equator and equinox at a particular epoch
 - assumed to provide absolute and inertial orientation
 - observations of the Sun or planets mandatory
Fundamental Catalogues

- Small catalogues, many years of tedious labour to get absolute positions

<table>
<thead>
<tr>
<th>Year</th>
<th>Catalogue</th>
<th>Stars</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1790</td>
<td>Maskelyne</td>
<td>36</td>
<td>zodiacal stars, one epoch</td>
</tr>
<tr>
<td>1818</td>
<td>Bradley/Bessel</td>
<td>3000</td>
<td>no PM, nearly fundamental</td>
</tr>
<tr>
<td>1830</td>
<td>Bessel</td>
<td>36</td>
<td>with PM, + precession</td>
</tr>
<tr>
<td>1878</td>
<td>FK1</td>
<td>539</td>
<td></td>
</tr>
<tr>
<td>1898</td>
<td>Newcomb</td>
<td>1297</td>
<td>Start of the GC series</td>
</tr>
<tr>
<td>1907</td>
<td>FK2</td>
<td>925</td>
<td></td>
</tr>
<tr>
<td>1937</td>
<td>FK3</td>
<td>873</td>
<td>1st IAU supported international RF</td>
</tr>
<tr>
<td>1963</td>
<td>FK4</td>
<td>1535</td>
<td>$\sigma_{1950} \sim 0^" 07 - 0^"15$, $\sigma_{2000} \sim 0^"15-0^"30$</td>
</tr>
<tr>
<td>1988</td>
<td>FK5</td>
<td>1535</td>
<td>$\sigma_{2000} \sim 0^".05 - 0^"10$</td>
</tr>
<tr>
<td>1997</td>
<td>Hipparcos</td>
<td>100,000</td>
<td>(quasi fundamental)</td>
</tr>
<tr>
<td>1998</td>
<td>ICRF</td>
<td>212</td>
<td></td>
</tr>
</tbody>
</table>
Limitations of the classical approach

- System defined with equator and equinox
 - precession and nutation modelling
 - solution: fixed frame not linked to solar system \(\rightarrow\) ICRS

- Observations from the ground
 - many stations needed to cover the sky
 - disturbances from the atmosphere
 - solution: go to space for global astrometry \(\rightarrow\) Hipparcos

- System based on stars
 - problems with proper motions, multiplicity
 - solution: distant sources \(\rightarrow\) already considered by W. Herschel & Laplace
 - Adopted in \(\sim\) 1990 with ICRS and ICRF in 1998
ICRF-1 (1998)

Accuracy ~ 1 mas

- Definition sources (212)
- Candidate sources (294)
- Other sources (102)
ICRF-2 (2009)

- Accuracy ~ 0.2 to 2 mas
QSOs distribution with Gaia

- Based on the simulation used in the DPAC Universe model

Slezak & Mignard, 2007
Stellar Parallaxes
Parallactic effect

\[\pi = \frac{\beta_1 + \beta_2}{2} \]

smaller than 1"

reference directions

what you see on the sky
Absolute parallaxes

Absolute positions
No reference to distant stars

what you see on the sky

these directions not really accessible

\[\pi = \frac{\beta_1 + \beta_2}{2} \]

Methods applied:
- measurements of declinations
- zenith distances
- wide angle or global astrometry
- virtually impossible from the Earth to 0"001
Parallaxes: Evolution 1840 - 1980

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1840</td>
<td>3</td>
<td>published parallaxes</td>
</tr>
<tr>
<td>1850</td>
<td>20</td>
<td>Catalogue of Peters</td>
</tr>
<tr>
<td>1888</td>
<td>40</td>
<td>Catalogue of Oudemans</td>
</tr>
<tr>
<td>1910</td>
<td>100</td>
<td>of which 52 photog. parall. from Kapteyn</td>
</tr>
<tr>
<td>1912</td>
<td>250</td>
<td>Catalogue of Bigourdan</td>
</tr>
<tr>
<td>1917</td>
<td>500</td>
<td>Catalogue of Walkey</td>
</tr>
<tr>
<td>1924</td>
<td>1870</td>
<td>Catalogue Schlesinger</td>
</tr>
<tr>
<td>1930</td>
<td>2000</td>
<td>From here it may include spectroscopic parallaxes</td>
</tr>
<tr>
<td>1950</td>
<td>5800</td>
<td>"</td>
</tr>
<tr>
<td>1965</td>
<td>7000</td>
<td>"</td>
</tr>
<tr>
<td>1980</td>
<td>10000</td>
<td>"</td>
</tr>
</tbody>
</table>

- Estimated error: 0''.016
 \[\sigma(\pi)/\pi = 50\% \text{ at } 30 \text{ pc}! \]
- Mean value of the parallaxes: 0''.018

Many of these parallaxes have no individual significance
A route to absolute parallaxes: Two fields of view

- Overall principles set forth by P. Lacroute in 1967.
- Optical combination of two viewing directions
- The two FOVs are mapped onto a common focal plane
- Stars are combined by pairs
- Wide angle measurements are carried out
Space Astrometry Missions

From Hipparcos to Gaia
Space astrometry

- Astrometry is the main reason to go to space ...
 - global, accurate, absolute
 - not achievable from the ground

- but astrophysics is the main reason to pay for it
 - benefits almost everywhere
 - secures its foundations
Goals of Space Astrometry

• Primary Objectives not achievable from Earth
 - Ascertain the distances of the stars
 • stellar parallaxes for astronomers
 - Define and materialise the inertial frame
 • now based on extragalactic sources

• Secondary objectives
 - Astrophysics with astrometry, photometry, spectroscopy
 • stellar and galactic physics
 • detection of extrasolar planets
 • solar system dynamics
 - Tests of fundamental physics in space
 • based on light path geometry
Space astrometry: two complementary concepts

• Survey of a large number of stars
 - Continuous scanning of the sky
 - Input catalogue or on-board detection
 - Complete up to a limiting magnitude or selection of stars
 - The scanning law determines the integration time
 - Frozen observing program

• Pointing at individual sources
 - Pre-selected sources
 - Variable and adapted integration time
 - Longer operation dead time
 - Flexible program, can react to external demand
Space Astrometry: Past & Present

- **A successful forerunner: HIPPARCOS (ESA)**
 - accuracy of 1 mas ~ a coin @ 1000 km

- **The unfortunate followers**
 - accuracy of 0.1 mas ~ a nail @ 1000 km
 - Roemer, FAME-1, FAME-2, DIVA, Lomonossov, AMEX

<table>
<thead>
<tr>
<th>ESA</th>
<th>US</th>
<th>US</th>
<th>DE</th>
<th>RU</th>
<th>US</th>
</tr>
</thead>
</table>

- **Study phase**
 - JASMINE (Japan) in the IR

- **Cancelled (Dec 2010)**
 - SIM (US) with 1 μas accuracy

- **Funded - launch 2011 - 2014**
 - NanoJasmine [4 mas], J-MAPS (US) [1 mas]
 - Gaia (ESA): 25 μas (a hairwidth @ 1000 km)
Main Features of Hipparcos

- ESA mission launched in August 1989
- Continuous sky scanning over 3.5 years
- Results published in 1996-7
- One single telescope of 29 cm in diameter
- Two fields of view separated by 58°
- Detection with a photoelectric tube ($r = 0.003$)
- One source observed at a time
Basic astrometric model

- Absolute motion of Vega
 - non rotating reference frame

Motion of VEGA (2000-2005)

\[\mu_a = 200 \, \text{mas/yr} \]
\[\mu_\delta = 280 \, \text{mas/yr} \]
\[\pi = 170 \, \text{mas} \]

parallactic ellipse
Main features

• **Simultaneous observations in two widely separated directions**
 - angular distance between pair of stars
 - angular scale determined by the angle of a complex mirror
 - self calibrating instrument

• **Regular scanning of the sky over 3 years**
 - scanning instrument with no pointing
 - every direction sampled about 110 times during the mission

• **Observation of selected sources: no on-board detection**
 - fixed observing program
Main Results of Hipparcos

• An astrometric catalogue of 118 000 stars
 - Hipparcos is a quasi-fundamental catalogue
 - $\sigma(\alpha) \sim \sigma(\delta) \sim \sigma(\pi) \sim 1\text{ mas at } V = 9 \text{ at } 1991.25$
 - $\sigma(\mu_\alpha) \sim \sigma(\mu_\delta) \sim 1\text{ mas/yr at } V = 9$

• Complete to $V = 7.3 - 9.2$ (depending on galactic latitude)

• Limiting magnitude 12.4

• Distances better than 10% for 21 000 stars, $D < 200\text{ pc}$

• Density: $3.0*/\deg^2$

• Linked to the ICRF with radio stars to within 0.6 mas and 0.25 mas/yr

• Supplemented by Tycho and later Tycho-2
Additional products

• A survey of binary stars
 - solution for 13000 systems
 - discovery of about 3000 new systems
 - astrometric detection of nearly 2000 pairs
 - masses for about 50 systems

• A photometric data base with 130 observations per star
 - $\sigma(H) \sim 0.001$ mag
 - 13×10^6 epoch observations
 - survey of variability for many types of stars to the 10^{-3} mag level
 • remains the best source of homogenous data today
 - 2500 periodic variables with periods and folded light-curves
Standard error in \(\pi \) - ecliptic coordinates
PPN parameter γ with Hipparcos

- **Relativistic effect of light bending introduced in the model**
- **Solution with Hipparcos data**
 - general parameter in the astrometric model
 - measurements a large angles from the Sun
 - from 47° ($\delta \theta \sim 10$ mas) to 133°
 - serious problem with the correlation with parallaxes
- **Solution in absolute astrometry**
 - no comparison of position with or without the Sun
 - no use of small field astrometry
- **Numerous experiments designed to assess the accuracy**

<table>
<thead>
<tr>
<th>Result: $\gamma = 0.997 \pm 0.003$ (Froeschlé, Mignard & Arenou, 1997)</th>
</tr>
</thead>
</table>

- **First determination of light deflection at large angle**
After Hipparcos?

- W. Fricke (Fundamental Catalogues: Past, Present & Future, 1985)
 - "one would wish that the Hipparcos mission should not be unique but be repeated after a period of 10 to 20 years".
- Hipparcos positions degrade quickly (1 mas/yr) $\sigma \sim 15$ mas today
- With no technological improvement, two absolute catalogues
 - $\uparrow \sigma \sim 1$ mas:
 - $\Delta t \sim 20$ yrs
 - \Rightarrow PM to 50 muas/yr \Rightarrow just one order of magnitude improvement.
- ESA Survey Committee in 1994:
 "Initiate a Cornerstone-level program in interferometry to perform astrometric observations at the 10 µas level"
• 10^9 stars
• $10 \, \mu\text{as} \@ \, V < 13 \, \text{mag}$
• $25 \, \mu\text{as} \@ \, V = 15 \, \text{mag}$

• Photometry (~ 25 bands)
• Radial velocity
• Low resolution spectroscopy

ESA mission
Launch: mid 2013
Mission: 5 years
Mission requirements summary

• **A Stereoscopic Census of Our Galaxy**

• **Astrometry (V < 20):**
 - completeness to 20 mag (on-board detection) 10^9 stars
 - parallax accuracy: 7 μas at <10 mag; 12–25 μas at 15 mag; 100–300 μas at 20 mag

• **Photometry (V < 20):**
 - astrophysical diagnostics (low-dispersion photometry) + chromaticity
 - 8–20 mmag at 15 mag: $T_{\text{eff}} \sim 200$ K, log g, [Fe/H] to 0.2 dex, extinction

• **Radial velocity (V < 16.5–17):**
 - Third component of space motion, perspective acceleration
 - <1 km/s at 13–13.5 mag and <15 km/s at 16.5–17 mag
Assets of Gaia

- A single mission with three nearly synchronous data taking
 - Astrometric, photometric and spectroscopic data
- GAIA is a scanning mission
 - no pointing, no change in the schedule Uniform coverage of the sky
- Quasi regular time sampling over 5 years
 - ~ 80 observations \(\Rightarrow \) photometry, orbits of binaries, asteroids
- Survey mission sensitivity limited
- Internal and autonomous detection system to \(G = 20 \)
- Global astrometry of staggering precision
 - Internal metrology, thermal and mechanical stability
- Experienced and motivated community in Europe after Hipparcos
 - scientific and in industry
Global astrometry in space

- Wide angle measurements
- Two fields of view
- One common focal plane

Spin axis

\[P = 6h \]

\[\psi = \gamma - \Delta \]

Focal plane

FPOV

Scan direction

PFOV

image motion

106.5°
Scanning & Sky coverage

- Time average is a combination of the sky distribution and the scanning law
 - two different symmetries: galactic plane and ecliptic plane
10 µas: Incredibly small!

- 0.3 mm displacement on the Earth
- edge-on sheet of paper @ 2000 km
- 1 hair @ 1000 km
- displacement of a 100 mas/yr star in one hour
- motion of a fast minor planet in 100 µs.

10 µas = 50 prad
The Spacecraft in orbit

~10 m
Gaia: telescopes and detector

- 2 off-axis telescope
- 1.45 x 0.5 m²
- 35 m focal length

- single focal plane
- 106 CCDs
- 1 Gigapixel
- 0.93 x 0.42 m²
Detection and measurement systems

- Red & blue photometer detectors
- RVS detectors
- Photometer prisms
- RVS grating and afocal field corrector
- M5 & M6 fold mirrors
- M4/M’4 beam combiner
- BAM & WFS
- Sky mapper
- Astrometric field
Multiplexing observations

106 CCDs, 938 million pixels, 2800 cm^2

Sky Mapper CCDs

Astrometric Field CCDs

Blue Photometer CCDs

Red Photometer CCDs

Radial-Velocity Spectrometer CCDs

Star motion in 10 s

Image motion
Number of sources per day

- Number of sources detected per day (log scale) during the mission

![Graph showing the number of sources detected per day during the mission. The graph is on a log scale and displays a trend of daily detections over the course of the mission. There is a horizontal line indicating a constant value of ~45 x10^6.]
Number of stars in the FOVs

- # stars measured at any time in the combined FOVs
Astrometric accuracy: single transit

- Single observation accuracy → orbit, solar system
 - one field transit: integration over 9 AF CCDs
 - point source, 1D astrometry
Astrometric Accuracy : EOM

\[\mu \text{as} \& \mu \text{as/yr} \]

- Parallax
 - \(\sim 25 \mu \text{as} \)
 - \(\sim 20 \mu \text{as} \)
 - \(\sim 13 \mu \text{as/yr} \)

- Position

- PM
 - \(\sim 80 \mu \text{as} \)
 - \(\sim 60 \mu \text{as/yr} \)
 - \(\sim 110 \mu \text{as} \)

G mag

Astrometric Accuracy (EoM)

Nice, 08 September 2011 - F. Mignard
Distances for stellar physics

- Accurate distances through the Galaxy

Recall: Hipparcos: 20,000 stars with $\sigma_\pi/\pi < 10\%$

$\sim 2.5 \text{ kpc}$
Cepheids with Gaia

- 15 \(d < 0.5 \text{ kpc} \), 65 \(d < 1 \text{ kpc} \), 165 \(d < 2 \text{ kpc} \)
 - bright enough \((V < 14 \))

- In the plot: 400 galactic cepheids from David Dunlap DB
 - distance and magnitude \(\rightarrow \) Gaia predicted accuracy for parallax

![Histogram of \(\sigma_m / \sigma \) vs. number of cepheids](image)

F. Mignard 2002, 2009

Nice, 08 September 2011 - F. Mignard
Transverse velocity estimate with Gaia

![Graph showing accuracy in transverse velocity as a function of G (mag) and d (kpc) at G = 15, with a line at 1 km/s.](image)
Radial velocity accuracy (EOM, km/s)

- Performances strongly dependent on stellar type
- Average of 40 transits (i.e. 120 CCD crossings)

RAVE: $\langle V_r \rangle \sim 2\, \text{km/s, } 9<1<12$

data: P. Sartoretti et al., 2007; plot: J. de Bruijne
Sky coverage

• The Scanning law is optimized to explore the same area at more or less regular intervals ➔ parallax, proper motions, variability, orbits

• The scan direction must allow alpha and dec measurements

• The along-scan speed must be constant

• Mathematically: a set of two differential equations
Gaia: Scanning

Motion of the spin axis

Sky covered over 4 days

- Spin axis path over 4 months
- Sun path over 4 months
- Lines of sight over 4 days

Crédit: L. Lindegren
Sky coverage

• The Scanning law is optimized to explore the same area at more or less regular intervals \(\Rightarrow \) parallax, proper motions, variability, orbits

• The scan direction must allow \(\alpha \) and \(\delta \) measurements

• The along-scan speed must be constant

• Mathematically: a set of two differential equations
 - Three independent rotational motions
Sky coverage: Equatorial coordinates

Transits during the mission
S/C main characteristics

- **S/C launch mass**: 2 t
- **Power available**: 2 kW
- **S/C height**: 3 m
- **Sunshield diameter**: $\varnothing = 10$ m

Payload
- **Entrance pupil**: 1.45×0.5 m2
- **Focal length**: 30 m
- **Focal plane**: ~ 1 G pixels
Thermal Insulation

- 170 °C

Torus & mirrors
- 150 °C
+/- 5 µK

- 150 °C
+/- 15 µK

- 100 °C
+/- 0.1 K

Sunshield
Solar side
+ 70 °C

Credit: F. Chassat, Astrium
First full deployment test with new motor
Timeline of the mission

• Selection by ESA in 2000 (and confirmed in 2002)
• Prime contractor selected in February 2006
• Data analysis consortium formed in June 2006
 - selected by ESA SPC in March 2007
• Launch: summer 2013
 - from Kourou with a Soyouz rocket
• Orbit around L2
• Continuous observation to 2018
• End of data processing to 2020
 - data base of 1pB of volume
 - volume of computation $\sim 10^{21}$ FLOPS
• Results and data available in 2020
 - one or two intermediate releases foreseen
Thanks for your attention