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Black holes as background solutions

Initially, BHs= background solutions; e.g. spherically symmetric BHs
(Schwarschild 1916, Reissner-Nordström 1918) with mass M and
electric charge Q

ds2 = −A(r)dT 2 + B(r)dr2 + r2
(

dθ2 + sin2θdϕ2
)

(1)

A(r) = 1 − 2M
r + Q2

r2 ,

B(r) = 1
A(r) .

(2)

Kerr BH 1963: with spin J; then Kerr-Newman with spin J and electric
charge Q.
Up to the 1960’s BHs were viewed only as passive gravitational wells.
For instance, one could think of adiabatically lowering a small mass m
at the end of a string until it disappears within the BH, thereby
converting its mass-energy mc2 into work. More realistically, one was
thinking of matter orbiting a BH and radiating away its potential energy
(up to a maximum, given by the binding energy of the last stable
circular orbit around a BH).
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Black holes as energy reservoirs

Beyond potential wells: extracting energy from BHs:
(gedanken) “Penrose process” (1969)
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Global energetic properties of black holes

A detailed analysis of the efficiency of such gedanken Penrose pro-
cesses by Christodoulou and Ruffini 70, 71 then led to the understand-
ing of the existence of a fundamental irreversibility in BH dynamics, and
to the discovery of the Black Hole mass formula.

Tools:

• Conservation of E = −p0, pϕ and e during the “fall” of the test
particle.
• Conservation of E = −p0, pϕ and e during the (quantum) splitting
process (near the BH) of the incident test particle 1 into two particles 2
and 3.
• Changes in the total mass-energy M , total angular momentum J and
total charge Q of the BH when it absorbs particle 3
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δM = E3 = E1 − E2,

δJ = J3 = J1 − J2,

δQ = e3 = e1 − e2.

(3)

The Hamilton-Jacobi (”mass-shell”) equation reads

gµν (pµ − eAµ) (pν − eAν) = −µ2, (4)

in which pµ = ∂S/∂xµ, S is the action

S = −ET + pϕϕ+ S (r , θ) . (5)

(4) can then be written explicitly as

−
1

A(r)
(p0 − eA0)

2 + A(r)p2
r +

1
r2

(
p2
θ +

1
sin2θ

p2
ϕ

)
= −µ2 (6)

which we re-write as

(p0 − eA0)
2 = A(r)2p2

r + A(r)
(
µ2 +

L2

r2

)
(7)
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Using E = −p0 and −A0 = +V = +Q/r the above expression is
quadratic in E (it generalizes the famous flat-spacetime E2 = µ2 + p2)
and one finds two possible solutions for the energy as a function of
momenta and charge

E =
eQ
r
±

√
A(r)2p2

r + A(r)
(
µ2 +

L2

r2

)
. (8)

In flat space, A (r) = 1, so that, if we ignore charge, we recover the
usual Dirac dichotomy on the choice of the + or − sign between
particle and antiparticle: E = ±

√
µ2 + p2. This shows that one should

take the plus sign in the equation above.
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Figure: Classically allowed energy levels (shaded region) as a function of
radius, for test particles in the neighborhood of a BH. There exist positive-
and negative-energy solutions, corresponding (after second quantization) to
particles and anti-particles. Classically (as in the Penrose process) one
should consider only the “positive-square-root” energy levels, located in the
upper shaded region. The white region is classically forbidden. Note the
possibility of tunneling (this corresponds to particle creation via a non-thermal
mechanism).
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As particle 3 is absorbed by the BH, we can compute its (conserved)
energy when it crosses the horizon, i.e., in the limit where
r = r+(M,Q), where r+(M,Q) = M +

√
M2 − Q2 is the outer solution of

A(r) = 0. This simplifies the expression of E3 to

E3 =
e3 Q
r+

+ |pr |, (9)

where we have introduced the contravariant component
pr = grr pr = A(r)pr , which has a finite limit on the horizon.
Using E3 = δM and e3 = δQ, then yields

δM =
QδQ

r+(M,Q)
+ |pr |. (10)

Note the presence of the absolute value of pr (coming from the limit of
a positive square-root).
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Irreversibility in black hole physics

From the positivity of |pr | we find the following inequality (due to
Christodoulou and Ruffini) , expressing the fundamental irreversibility
property of BH energetics (here, with J = 0 for simplicity):

δM ≥ QδQ
r+(M,Q)

. (11)

There exist two types of processes, the reversible ones with an ‘=’ sign
in (11), and the irreversible ones with an ‘>’ sign. The former ones are
reversible because if a BH first absorbs a particle of charge +e with
vanishing |pr | (so that δ ′M = eQ/r+(M,Q) and δ ′Q = e), and then a
particle of charge −e with vanishing |pr | ( δ ′′M = −eQ/r+(M,Q) and
δ ′′Q = −e), it will be left, at the end, in the same state as the original
one (with mass M + δ ′M + δ ′′M = M and charge Q + δ ′Q + δ ′′Q = Q).
Evidently, such reversible transformations are delicate to perform, and
one expects that irreversibility will occur in most BH processes. The
situation here is clearly similar to the relation between reversible and
irreversible processes in thermodynamics.
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BH irreversibility: Kerr-Newman case

The same computation as for the Reissner-Nordström BH can be
performed for the Kerr-Newman BH. One obtains in that case, by a
slightly more complicated calculation,

δM −
aδJ + r+QδQ

r2
+ + a2

=
r2
+ + a2cos2θ

r2
+ + a2

|pr |. (12)

in which r+(M, J,Q) = M +
√

M2 − Q2 − a2. We recall that a = J/M,
and that one has the bound Q2 + (J/M)2 ≤ M2.
Using again the fact that |pr | ≥ 0 leads to the general
Christodoulou-Ruffini inequality

δM ≥ aδJ + r+QδQ
r2
+ + a2

(13)

where we recall that a = J/M, and that one has the bound
Q2 + (J/M)2 ≤ M2.
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Integrating a sequence of reversible
transformations

Consider now a sequence of infinitesimal reversible changes (i.e.,
pr → 0) of BH states which are reversibly connected to some initial BH
state. This leads to a partial differential equation for δM,

δM =
aδJ + r+QδQ

r2
+ + a2

. (14)

Integrating it yields the Christodoulou-Ruffini mass formula (1971)

M2 =

(
Mirr +

Q2

4Mirr

)2

+
J2

4M2
irr
. (15)

Here the irreducible mass Mirr =
1
2

√
r2
+ + a2 appears as an integration

constant. The mass squared thus appears as a function of three basic
contributions: irreducible mass , Coulomb energy, and rotational
energy.
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Free Energy of Black Holes

Inserting the mass formula into the inequality Eq. (13), one finds

δMirr ≥ 0 (16)

with δMirr = 0 under reversible transformations and δMirr > 0 under
irreversible transformations. The irreducible mass Mirr can only
increase or stay constant. This behaviour is reminiscent of the second
law of thermodynamics.

The free energy of a BH is therefore M − Mirr, i.e., this is the maximum
extractable energy. In this view, BHs are no longer passive geometrical
backgrounds but contain stored energy that can be extracted. Actually,
the stored energy can be enormous because a BH can store up to 29
% of its mass as rotational energy, and up to 50 % as Coulomb energy!
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Hawking’s generalization

The irreducible mass is related to the area of the horizon of a
Kerr-Newman BH, by A = 16πM2

irr so that

δA ≥ 0 (17)

with δA = 0 in a reversible process , while δA > 0 in an irreversible
one. Hawking (1971)showed that this irreversible evolution of the area
of the horizon was a general consequence of Einstein’s equations,
when assuming the weak energy condition. He also showed that in the
merging of two BHs of area A1 and A2, the total final area satisfied
Atot ≥ A1 + A2.
Such results evidently evoque the second law of thermodynamics. This
suggests to consider the analog of the first law of thermodynamics:
dE(S, extensive parameters) = dW + dQ, where the work dW is linked to
the variation of extensive parameters (volume, etc.) and where
dQ = T dS is the heat exchange.
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First law of BH thermodynamics

dM (Q, J,A) = V dQ +ΩdJ +
g
8π

dA. (18)

where
V =

Qr+
r2
+ + a2

,

Ω =
a

r2
+ + a2

,
(19)

and

g =
1
2

r+ − r−
r2
+ + a2

=

√
M2 − a2 − Q2

r2
+ + a2

. (20)

V is interpreted as the electric potential of the BH, and Ω as its
angular velocity. Expression (18) resembles the usual form of the first
law of thermodynamics in which the area term has to be interpreted as
some kind of entropy. The parameter g is called the “surface gravity”.
[In the Schwarschild case, it reduces to M/r2

+ (in G = 1 units), i.e., the
usual formula for the surface gravitational acceleration g = GM/R2.].
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Bekenstein’s proposal (1972, 1973)

Bekenstein went further in taking seriously (and no longer as a simple
analogy) the thermodynamics of BHs. He gave several arguments
(using Carnot-cycles, or Heisenberg’s uncertainty principle δrδpr ≥ 1

2h̄)
leading to attributing to a BH an entropy of the form

SBH = α̂
c3

h̄G
A, (21)

with a dimensionless coefficient α̂ = O (1), without being able to fix in
a unique, and convincing, manner the value of α̂.

This result in turn implies (by applying the law of thermodynamics) that
one should attribute to a BH a temperature equal to

TBH =
1

8πα̂
h̄
c

g. (22)
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Hawking’s radiation (1974)

This attribution of a finite temperature to a BH looked rather strange in
view of the definition of a BH has being “black”, i.e., as allowing no
radiation to come out of it. In particular, Stephen Hawking resisted this
idea, and tried to prove it wrong by studying quantum field theory in a
BH background. However, much to his own surprise, he so discovered
(in 1974) the phenomenon of quantum radiation from BH horizons
which remarkably vindicated the physical correctness of Bekenstein’s
suggestion. Hawking’s calculation also unambiguously fixed the
numerical value of α̂ to be

α̂ =
1
4

(23)
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Black Holes as Dissipative Membranes

Summarizing so far: The results on BH dynamics and thermodynamics
of the early 1970’s modified the early view of BHs as passive potential
wells by endowing them with global dynamical and thermodynamical
quantities, such as mass, charge, irreducible mass, entropy, and
temperature. Now, we shall review the further changes in viewpoint
brought by work in the mid and late 1970’s (Hartle-Hawking 72,
Hanni-Ruffini 73, Damour 78, 79, 82, Znajek 78) which attributed local
dynamical and thermodynamical quantities to BHs, and led to
considering BH horizons as some kind of dissipative branes.

Basic idea: Excise the interior of a BH, and replace the description
of the interior BH physics by quantities and phenomena taking place
entirely on the “surface of the BH” (i.e., the horizon).

In the following , we shall no longer consider only Kerr-Newman BHs
(i.e., stationary BHs in equilibrium, which are not distorted by sources
at infinity). We shall consider more general non-stationary BHs
distorted by outside forces.
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Black hole surface electrodynamics

In order to replace the internal electrodynamics of the BH by surface
effects, we replace the real electromagnetic field Fµν(x) by Fµν(x)ΘH,
where ΘH is a Heaviside-like step function, equal to 1 outside the BH
and 0 inside. Then we consider the modified Maxwell equations
satisfied by this ΘH -modified electromagnetic field.

∇ν (FµνΘ) = (∇νFµν)Θ+ Fµν∇νΘ
= 4π

(
JµΘ+ jµH

)
,

(24)

where we have introduced a BH surface current jµH as

jµH =
1

4π
Fµν∇νΘ. (25)

jµH contains a Dirac δ-function δH which restricts it to the horizon

jµH = K µδH, (26)

where K µ is the “BH surface current density”.
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Kinematics of the Horizon as a “fluid”

The horizon is a null hypersurface which by definition is normal to a
null covariant vector `µ satisfying both `µ`µ = 0 and `µdxµ = 0 for any
infinitesimal displacement dxµ within the hypersurface. In
Eddington-Finkelstein-like coordinates t = x0, x1, xA with A = 2,3
(where x1 = 0 on the horizon, and where xA are some angular-like
coordinates on the two-dimensional spatial slice St (x0 = t , x1 = 0) of
the horizon) one has

`µ∂µ =
∂

∂t
+ vA ∂

∂xA . (27)

where vA can be interpreted as the velocity of some “fluid particles” on
the horizon, which are the “constituents” of a null membrane. Similarly
to the usual description of the motion of a fluid, one has to keep track
of the changes in the distance between two fluid particles as the fluid
expands and shears.
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Black Hole as a Membrane
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Geometry of the Horizon

Distances on the horizon: they are measured by considering the
restriction to the horizon of the spacetime metric. As we are
considering a null hypersurface, we have

ds2|x1=0 = γAB

(
t , xC

)(
dxA − vAdt

)(
dxB − vBdt

)
(28)

the area element of the spatial sections St

dA =
√

detγAB dx2 ∧ dx3. (29)

Deformation tensor of the horizon geometry (Lie derivative along ~̀) :

DAB =
1
2

(
∂tγAB + vC∂CγAB + ∂AvCγCB + ∂BvCγAC

)
=

1
2
(
∂tγAB + vA|B + vB|A

) (30)

where ‘|’ denotes a covariant derivative w.r.t. the Christoffel symbols of
the 2-geometry γAB.
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Charge and Current density on the Horizon

One can decompose the current density K µ into a time component
σH = K 0, and two spatial components K A tangent to the spatial slices
St (t = const.) of the horizon,

K µ∂µ = σH∂t + K A∂A = σH`
µ + (K A − σHvA)∂A (31)

The total BH charge can be rewritten as (Hanni-Ruffini 73)

QH =

∮
H
σHdA, (32)

Moreover, an external current injected “normally” to the horizon
“closes” onto a combination of currents flowing along the horizon,
and/or of an increase in the local horizon charge density:

1
√
γ

∂

∂t
(
√
γσH) +

1
√
γ

∂

∂xA

(√
γK A

)
= −Jµ`µ. (33)
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Black Hole Surface Resistivity

Defining the electric and magnetic fields on the horizon according to

1
2

Fµνdxµ ∧ dxν|H = EAdxA ∧ dt + B⊥dA. (34)

then leads to a BH Ohm’s law

~E + ~v × ~B⊥ = 4π
(
~K − σH~v

)
. (35)

From this form of Ohm’s law, we can read off that BHs have a surface
electric resistivity equal to ρ = 4π = 377 Ohm (Damour 1978, Znajek
1978).
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Black Hole Ohm’s Law
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Black Hole Surface Density of Linear Momentum

With
∇~̀

~̀ = g ~̀,
∇A~̀ = ΩA~̀ + DB

A~eB.
(36)

one defines the “BH surface density of linear momentum” as

πA = −
1

8π
ΩA = −

1
8π

~n · ∇A~̀. (37)

With this definition, one has

JH =

∫
S
πϕdA, (38)

Then, decomposing the deformation tensor into shear and expansion,
DAB = σAB + 1

2θγAB, and introducing the following convective
derivative DπA

dt ≡ (∂t + θ)πA + vBπA|B + vB
|AπB,
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Black Hole Navier-Stokes Equation

Projecting Einstein’s equations along `µeνA, one finds the following
(exact) Black Hole Navier-Stokes Equation (Damour 1979)

(∂t + θ)πA+vBπA|B +vB
|AπB = −

∂

∂xA

( g
8π

)
+

1
8π
σB

A |B −
1

16π
∂Aθ− `

µTµA

(39)

The usual Navier-Stokes equation for a viscous fluid reads

(∂t + θ)πi + vkπi ,k = −
∂

∂x i p + 2ησk
i ,k + ζθ,i + fi , (40)

where πi is the momentum density, p the pressure, η the shear
viscosity, σij =

1
2

(
vi ,j + vj ,i

)
− Trace, the shear tensor, ζ the bulk

viscosity, θ = v i
,i the expansion rate, and fi the external force density.
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Black Hole Viscosity

From the above Black Hole Navier-Stokes Equation, one reads off (in
particular) the following value of the Black Hole surface shear viscosity

η = +
1

16π
(41)

When divided by the entropy density found by Hawking (s ≡ S/A = 1
4 ),

the latter shear viscosity yields the ratio

η

s
=

1
4π
, (42)

a result of recent interest in connection with the AdS/CFT
correspondence ( Kovtun, Son, and Starinets 05,07).
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Conclusions

• Up to 1960’s, BHs considered as passive objects, i.e. potential wells.
• In the early 1970’s the study of the dynamics of BHs was initiated
by Penrose 69, Christodoulou and Ruffini 70,71, Hawking 71, and
Bardeen, Carter and Hawking 73. They studied the global dynamics
of BHs was considered, i.e. their total mass, their total angular momen-
tum, their total irreducible mass, and the variation of these quantities.
Key results: (i) irreversibility, (ii) BH mass formula, (iii) BH entropy
• Later works by Hartle and Hawking 72, Hanni and Ruffini 73, Damour
78,79,82, and Znajek 78, considered the local dynamics of BH horizons.
In this new approach (which was later called the “membrane paradigm”
(Thorne 86)) a BH horizon is interpreted as a brane with dissipative
properties, such as, for instance, an electrical resistivity ρ, equal to 377
Ohms (Damour 78, Znajek 78) , and a Navier-Stokes-like equation with
surface (shear) viscosity, equal to η = 1

16π (Damour 79, 82). The “vis-
cous” properties of horizons has recently raised some renewed interest
( Kovtun, Son, and Starinets 05,07, Strominger et al. 11).
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