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Abstract

We give an up-to-date description of the micrOMEGAs functions. Only the

routines which are available for the users are described. Examples on how to use

these functions can be found in the sample main programs distributed with the

code.

1 Introduction

micrOMEGAs is a code to calculate the properties of cold dark matter(CDM) in a generic
model of particle physics. First developed to compute the relic density of dark matter, the
code also computes the rates for dark matter direct and indirect detection. It is assumed
that a discrete symmetry like R-parity (which is even for all standard particles and odd
for some new particles including the dark matter candidate) ensures the stability of the
lightest odd particle (LOP) 1. All annihilation and coannihilation channels are included
in the computation of the relic density. This manual gives an up-to-date description
of all micrOMEGAs functions. The methods used to compute the different dark matter
properties are described in references [1, 2, 3, 4, 5, 6]. These references also contain a
more complete description of the code. In the following the cold dark matter candidate
also called LOP or weakly-interactive massive particle (WIMP) will be denoted by χ.

micrOMEGAs contains both C and Fortran routines. Below we describe only the C-
version of the routines, in general we use the same names and the same types of argument
for both C and Fortran functions. We always use double(real*8) variables for float
point numbers and int(INTEGER) for integers. In this manual we use FD for file descriptor
variables, the file descriptors are FILE* in C and channel number in Fortran. The symbol
& before the names of variables in C-functions stands for the address of the variable. It is
used for output parameters. In Fortran calls there is no need for & since all parameters are
passed via addresses. In C programs one can substitute NULL for any output parameter
which the user chooses to ignore. In Fortran one can substitute cNull, iNull, r8Null

for unneeded parameters of character, integer and real*8 type respectively.
A few C-functions use pointer variables that specify an address in the computer mem-

ory. Because pointers do not exist in Fortran one uses any other type of variable whose
length is sufficient to store a computer address, for example INTEGER*8.

The complete format for all functions can be found in sources/micromegas.h (for C)
or sources/micromegas_f.h (for Fortran). Examples on how to use these functions are
provided in the MSSM/main.c[F] file.

1
Z3 discrete symmetries are also handled by micrOMEGAs.
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micrOMEGAs exploits the fact that models of dark matter exhibit a discrete symmetry.
This is responsible for the stability of the dark matter candidate. micrOMEGAs assumes
that all particles that are odd under the discrete symmetry have a name starting with ’~’,
for example ~o1 for the lightest neutralino.

2 Downloading and compilation of micrOMEGAs.

To download micrOMEGAs, go to
http://lapth.cnrs.fr/micromegas

and unpack the file received, micromegas_3.3.tgz, with the command
tar -xvzf micromegas_3.3.tgz

This should create the directory micromegas_3.3/ which occupies about 40 Mb of disk
space. You will need more disk space after compilation of specific models and generation
of matrix elements. In case of problems and questions

email: micromegas@lapth.cnrs.fr

2.1 File structure of micrOMEGAs.

Makefile to compile the kernel of the package
CalcHEP_src/ generator of matrix elements for micrOMEGAs
Packages/ external codes
clean to remove compiled files
man/ — contains the manual: description of micrOMEGAs routines
newProject to create a new model directory structure
sources/ micrOMEGAs code
MSSM model directory
MSSM/

Makefile to compile the code and executable for this model
main.c[pp] main.F files with sample main programs
lib/ directory for routines specific to this model

Makefile to compile the auxiliary code library lib/aLib.a
*.c *.f source codes of auxiliary functions

work/ CalcHEP working directory for the generation of
matrix elements

Makefile to compile the library work/work aux.a
models/ directory for files which specifies the model

vars1.mdl free variables
func1.mdl constrained variables
prtcls1.mdl particles
lgrng1.mdl Feynman rules

tmp/ auxiliary directories for CalcHEP sessions
results/

so_generated/ storage of matrix elements generated by CalcHEP
calchep/ directory for interactive CalcHEP sessions

Directories of other models which have the same structure as MSSM/
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NMSSM/ Next-to-Minimal Supersymmetric Model[23, 17]
CPVMSSM/ MSSM with complex parameters[26, 16]
IDM/ Inert Doublet Model[8]
LHM/ Little Higgs Model[7]
RHNM/ Right-handed Neutrino Model[21]
SM4/ Toy model with a 4th generation of lepton and neutrino DM
Z3M/ A model with scalar DM and Z3 discrete symmetry—[9]
mdlIndep/ For model independent computation of DM signals

2.2 Compilation of CalcHEP and micrOMEGAs routines.

CalcHEP and micrOMEGAs are compiled by gmake. Go to the micrOMEGAs directory
and launch

gmake

If gmake is not available, then make should work like gmake. In principle micrOMEGAs
defines automatically the names of C and Fortran compilers and the flags for compila-
tion. If you meet a problem, open the file which contains the compiler specifications,
CalcHEP_src/FlagsForSh, improve it, and launch [g]make again. The file is written is
sh script format and looks like

# C compiler

CC="gcc"

# Flags for C compiler

CFLAGS="-g -fsigned-char"

# Disposition of header files for X11

HX11=

# Disposition of lX11

LX11="-lX11"

# Fortran compiler

FC="gfortran"

FFLAGS="-fno-automatic"

........

After a successful definition of compilers and their flags, micrOMEGAs rewrites the file
FlagsForSh into FlagsForMake and substitutes its contents in all Makefiles of the package.

[g]make clean deletes all generated files, but asks permission to delete FlagsForSh.
[g]make flags only generates FlagsForSh. It allows to check and change flags

before compilation of codes.

2.3 Module structure of main programs.

Each model included in micrOMEGAs is accompanied with sample files for C and Fortran
programs which call micrOMEGAs routines, the main.c, main.F files. These files consist
of several modules enclosed between the instructions

#ifdef XXXXX

....................

#endif
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Each of these blocks contains some code for a specific problem

#define MASSES_INFO //Displays information about mass spectrum

#define CONSTRAINTS //Displays B_>sgamma, Bs->mumu, etc

#define OMEGA //Calculates the relic density

#define INDIRECT_DETECTION //Signals of DM annihilation in galactic halo

#define LoopGAMMA //Gamma-Ray lines - available only in some models

#define RESET_FORMFACTORS //Redefinition of Form Factors and other

//parameters

#define CDM_NUCLEON //Calculates amplitudes and cross-sections

//for DM-nucleon collisions

#define CDM_NUCLEUS //Calculates number of events for 1kg*day

//and recoil energy distribution for various nuclei

#define NEUTRINO //Calculates flux of solar neutrinos and

//the corresponding muon flux

#define DECAYS //Calculates decay widths and branching ratios

#define CROSS_SECTIONS //Calculates cross sections

#define CLEAN // Removes intermediate files.

#define SHOWPLOTS //Displays graphical plots on the screen

Other modules which require a link to external programs can also be defined, in this
case the path to the required code must be specified, for example

#define HIGGSBOUNDS "../Packages/HiggsBounds-4.0.0"

All these modules are completely independent. The user can comment or uncomment
any set of define instructions to suit his/her need.

2.4 Compilation of codes for specific models.

After the compilation of micrOMEGAs one has to compile the executable to compute DM
related observables in a specific model. To do this, go to the model directory, say MSSM,
and launch

[g]make main=main.c

It should generate the executable main. In the same manner
gmake main=filename.ext

generates the executable filename based on the source file filename.ext. For ext we sup-
port 3 options: ’c’ , ’F’, ’cpp’ which correspond to C, FORTRAN and C++ sources. [g]make
called in the model directory automatically launches [g]make in subdirectories lib and
work to compile

lib/aLib.a - library of auxiliary model functions, e.g. constraints,
work/work_aux.a - library of model particles, free and dependent parameters.

2.5 Command line parameters of main programs.

The default versions of main.c/F programs need some arguments which have to be spec-
ified in command lines. If launched without arguments main explains which parameter
are needed. As a rule main needs the name of a file containing the numerical values of
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the free parameters of the model. The structure of a file record should be
Name Value # comment ( optional)

For instance, an Inert Doublet model (IDM) input file contains

Mh 125 # mass of SM Higgs

MHC 200 # mass of charged Higgs ~H+

MH3 200 # mass of odd Higgs ~H3

MHX 63.2 # mass of ~X particle

la2 0.01 # \lambda_2 coupling

laL 0.01 # 0.5*(\lambda_3+\lambda_4+\lambda_5)

In other cases, different inputs can be required. For example, in the MSSM with input
parameters defined at the GUT scale, the parameters have to be provided in a command
line. Launching ./main will return

This program needs 4 parameters:

m0 common scalar mass at GUT scale

mhf common gaugino mass at GUT scale

a0 trilinear soft breaking parameter at GUT scale

tb tan(beta)

Auxiliary parameters are:

sgn +/-1, sign of Higgsino mass term (default 1)

Mtp top quark pole mass

MbMb Mb(Mb) scale independent b-quark mass

alfSMZ strong coupling at MZ

Example: ./main 120 500 -350 10 1 173.1

3 Global Parameters

The list of the global parameters and their default values are given in Tables 1, 2. The
numerical value for any of these parameters can be simply reset anywhere in the code.

4 Setting of parameters, spectrum calculation, pa-

rameter display.

The independent parameters that characterize a given model are listed in the file
work/models/vars1.mdl. Three functions can be used to set the value of these parame-
ters:

• assignVal(name,val)

• assignValW(name,val)

assign value val to parameter name. The function assignVal returns a non-zero value if
it cannot recognize a parameter name while assignValW writes an error message.
• readVar(fileName)

reads parameters from a file. The file should contain two columns with the following
format (see also )
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Table 1: Global parameters of micrOMEGAs

Name default value units comments
Mcdm GeV Mass of the Dark Matter particle
deltaY 0 Difference between DM/anti-DM abundances
dmAsymm 0 Asymmetry between relic density of DM- anti-DM
K dif 0.0112 kpc2/Myr The normalized diffusion coefficient
L dif 4 kpc Vertical size of the Galaxy diffusive halo
Delta dif 0.7 Slope of the diffusion coefficient
Tau dif 1016 s Electron energy loss time
Vc dif 0 km/s Convective Galactic vind
Fermi a 0.52 fm nuclei surface thickness
Fermi b -0.6 fm parameters to set the nuclei radius with
Fermi c 1.23 fm RA = cA1/3 + b
Rsun 8.5 kpc Distance from the Sun to the center of the Galaxy
Rdisk 20 kpc Radius of the galactic diffusion disk
rhoDM 0.3 GeV/cm3 Dark Matter density at Rsun
Vearth 225.2 km/s Galaxy velocity of the Earth
Vrot 220 km/s Galaxy rotation velocity at Rsun
Vesc 600 km/s Escape velocity at Rsun

Table 2: Global parameters of micrOMEGAs: nucleon quark form factors

Proton Neutron
Name value Name value comments
ScalarFFPd 0.0191 ScalarFFNd 0.0273
ScalarFFPu 0.0153 ScalarFFNu 0.011 Scalar form factor
ScalarFFPs 0.0447 ScalarFFNs 0.0447
pVectorFFPd -0.427 pVectorFFNd 0.842
pVectorFFPu 0.842 pVectorFFNu -0.427 Axial-vector form factor
pVectorFFPs -0.085 pVectorFFNs -0.085
SigmaFFPd -0.23 SigmaFFNd 0.84
SigmaFFPu 0.84 SigmaFFNu -0.23 Tensor form factor
SigmaFFPs -0.046 SigmaFFNs -0.046
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name value

readVar returns zero when the file has been read successfully, a negative value when the
file cannot be opened for reading and a positive value corresponding to the line where a
wrong file record was found.

Note that in Fortran, numerical constants should be specified as Real*8, for example

call assignValW(’SW’, 0.473D0)

A common mistake is to use Real*4.
The constrained parameters of the model are stored in work/models/func1.mdl.

Some of these parameters are treated as public parameters. The public parameters in-
clude by default all particle masses and all parameters whose calculation requires external
functions (except simple mathematical functions like sin, cos .. ). The parameters listed
above any public parameters in work/models/func1.mdl are also treated as public. It
is possible to enlarge the list of public parameters. There are two ways to do this. One
can type * before a parameter name to make it public or one can add a special record in
work/models/func1.mdl

%Local! |

Then all parameters listed above this record become public. See example in

MSSM/work/models/func1.mdl

The calculation of the particle spectrum and of all public model constraints is done
with:
• sortOddParticles(txt)

which also sorts the odd particles with increasing masses, writes the name of the lightest
odd particle in txt and assigns the value of the mass of the lightest odd particle to the
global parameter Mcdm. This routine returns a non zero error code for a wrong set of
parameters, for example parameters for which some constraint cannot be calculated. The
name of the corresponding constraint is written in txt. This routine has to be called after
a reassignment of any input parameter.
• qNumbers(pName, &spin2,&charge3,&cdim)

returns the quantum numbers for the particle pName. Here spin2 is twice the spin of
the particle; charge3 is three times the electric charge; cdim is the dimension of the
representation of SU(3)c, it can be 1, 3,−3 or 8. The parameters spin2, charge3, cdim

are variables of type int. The value returned is the PDG code. If pName does not correspond
to any particle of the model then qNumbers returns zero.
• nextOdd(n, &pMass)

returns the name and mass of the nth odd particle assuming that particles are sorted ac-
cording to increasing masses. For n = 0 the output specifies the name and the mass of the
CDM candidate. In the FORTRAN version this function is Subroutine nextOdd(n,pName,pMass)

• pdg2name(nPDG)

returns the name of the particle which PDG code is nPDG. If this particle does not
exist in the model the return value is NULL. In the FORTRAN version this function is
Subroutine pdg2name(nPDG, pName) and the character variable pName consists of white
spaces if the particle does not exist in the model.
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• pMass(pName)

returns the numerical value of the particle mass.
• findVal(name,&val)

finds the value of variable name and assigns it to parameter val. It returns a non-zero
value if it cannot recognize a parameter name.
• findValW(name) just returns the value of variable name and writes an error message if
it cannot recognize a parameter name. The variables accessible by these commands are all
free parameters and the constrained parameters of the model (in file model/func1.mdl)
treated as public.

The following routines are used to display the value of the independent and the con-
strained public parameters:
• printVar(FD)

prints the numerical values of all independent and public constrained parameters into FD

• printMasses(FD, sort)

prints the masses of ’odd’ particles (those whose names started with ~). If sort 6= 0 the
masses are sorted so the mass of the CDM is given first.
• printHiggsMasses(FD, sort)

prints the masses and widths of ’even’ scalars.

5 Relic density calculation.

• vSigma(T,Beps,fast)

calculates the thermally averaged cross section for DM annihilation times velocity at a
temperature T [GeV], see formula (2.6) in [1]. The value for σv is expressed in [pb]. The
parameter Beps defines the criteria for including coannihilation channels as for darkOmega
described below. The fast = 1/0 option switches between the fast/accurate calculation.
The global array vSigmaTCh contains the contribution of different channels to vSigma.
vSigmaTCh[i].weight specifies the relative weight of the ith channel
vSigmaTCh[i].prtcl[j] (j=0, 4) defines the particles names for the ith channel.
The last record in vSigmaTCh array has zero weight and NULL particle names. In the For-
tran version, the function vSigmaTCh(i,weight,pdg,process)serves the same purpose.
This function returns 0 if i exceeds the number of annihilation channels and 1 otherwise,
i ≥ 1. real*8 weight gives the relative contribution of each annihilation channel. integer
pdg(4) contains the codes of incoming and outgoing particles in the annihilation process.
character*40 process contains a textual description of annihilation processes.
The cross sections for semi - annihilation processes contribute to vSigma with a factor 1

2

as described in [9]. Furthermore if an outgoing particle has a non-zero decay branching
ratio to odd particles, then the annihilation cross section is reduced correspondingly.
• darkOmega(&Xf,fast,Beps)

calculates the dark matter relic density Ωh2. This routine solves the differential evolution
equation using the Runge-Kutta method. Xf = Mcdm/Tf characterizes the freeze-out
temperature. The value of Xf is given for information and is also used as an input for the
routine that gives the relative contribution of each channel to Ωh2, see printChannels

below. The fast = 1 flag forces the fast calculation (for more details see Ref. [2]). This is
the recommended option and gives an accuracy around 1%. The parameter Beps defines
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the criteria for including a given coannihilation channel in the computation of the ther-
mally averaged cross-section, [2]. The recommended value is Beps = 10−4−10−6 whereas
if Beps = 1 only annihilation of the lightest odd particle is computed.
• darkOmegaFO(&Xf, fast, Beps)

calculates the dark matter relic density Ωh2 using the freeze-out approximation.
• printChannels(Xf,cut,Beps,prcnt,FD)

writes into FD the contributions of different channels to (Ωh2)−1. Here Xf is an input
parameter which should be evaluated first in darkOmega[FO]. Only the channels whose
relative contribution is larger than cut will be displayed. Beps plays the same role as the
darkOmega[FO] routine. If prcnt 6= 0 the contributions are given in percent. Note that
for this specific purpose we use the freeze-out approximation.
• oneChannel(Xf,Beps,p1,p2,p3,p4)

calculates the relative contribution of the channel p1, p2 → p3, p4 to (Ωh2)−1. p1,...,p4
are particle names. To sum over several channels one can write "*" instead of a particle
name, e.g "*" in place of p1.
• omegaCh is an array that contains the relative contribution and particle names for each
annihilation channel. In the Fortran version one uses instead the function
omegaCh(i,weight,pdg,process). These array and function are similar to vSigmaTCh

described above. The array omegaCh if filled after calling either darkOmegaFO or printChannels.
•improveCrossSection( p1,p2,p3,p4, Pcm, &address)

allows to substitute a new cross-section for a given process. Here p1,p2 are the names of
particles in the initial state and p3,p4 those in the final state. Pcm is the center of mass
momentum and address ... This function is useful if for example the user wants to include
her/his one-loop improved cross-section calculation in the relic density computation.
•VWdecay,VZdecay
Switches to turn on/off processes with off-shell gauge bosons in the final state for DM an-
nihilation and particle decays. If VW/VZdecay=1, the 3-body final states will be computed
for annihilation processes only while if VW/VZdecay=2 they will be included in coannihi-
lation processes as well. By default the switches are set to (VW/VZdecay=0). 2 Note that
micrOMEGAs calculates the width of each particle only once. A second call to the function
pWidth (whether an explicit call or within the computation of a cross section) will return
the same result even if the user has changed the VW/VZdecay switch. To clean the decay
table and re-activate the VW/VZdecay switches, one has to call
•clearDecayTable()
to force micrOMEGAs to recalculate particle widths according to the new value of VW/VZdecay.
The sortOddParticles command which must be used to recompute the particle spectrum
after changing the model parameters also cleans the decay table.

If particle widths were stored in the SLHA file (Susy Les Houches Accord [18]) down-
loaded by micrOMEGAs, then the SLHA value will be used by micrOMEGAsinstead of the
internal value calculated within micrOMEGAs, which is the default value. To bypass this
default value, one can download the SLHA file using slhaRead(fileName,mode=4), see
the description in Section 12.5.

Two new global parameters are available to set the DM asymmetry:
•deltaY
describes the difference between the DM and anti-DM abundances for the models where

2Including the 3-body final states can significantly increase the execution time for the relic density.
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number of DM paricles minus number of anti-DM ones is conserved in reactions of decay
and collisions. In such models deltaY is a constant during thermal evolution of Univerce.
See Ref. [6].
•dmAsymm
is defined by equation

Ω± =
Ω

1 + e∓dmAsymm

and evaluated by micrOMEGAs while calculating the relic density with an initial asymmetry
deltaY. See [6]. This parameter can also be reset after the relic density computation and
will be taken into account for direct and indirect detection rates.

The temperature dependence of the effective number of degrees of freedom can be set
with
• loadHeffGeff(char*fname)

allows to modify the temperature dependence of the effective number of degrees of freedom
by loading the file fname which contains a table of heff (T ), geff (T ) . A positive return
value corresponds to the number of lines in the table. A negative return value indicates
the line which creates a problem (e.g. wrong format), the routine returns zero when
the file fname cannot be opened. The default file is std_thg.tab and is downloaded
automatically if loadHeffGeff is not called is user’s main program. Five other files are
provided in the sources/data directory: HP_A_thg.tab, HP_B_thg.tab, HP_B2_thg.tab,
HP_B3_thg.tab, and HP_C_thg.tab. They correspond to sets A, B, B2, B3, C in [10].
The user can substitute his/her own table as well, if so, the file must contain three columns
containing the numerical values for T , heff , geff , the data file can also contain comments
for lines starting with #.

6 Direct detection.

6.1 Amplitudes for elastic scattering

• nucleonAmplitudes(qBOX,pAsi,pAsd,nAsi,nAsd)

calculates the amplitudes for WIMP-nucleon elastic scattering at zero momentum. pAsi(nAsi)
are spin independent amplitudes for protons(neutrons) whereas pAsd(nAsd) are the cor-
responding spin dependent amplitudes. Each of these four parameters is an array of
dimension 2. The zeroth (first) element of these arrays gives the χ-nucleon amplitudes
whereas the second element gives χ-nucleon amplitudes. Amplitudes are normalized such
that the total cross section for either χ or χ cross sections is3

σtot =
4M2

χM2
N

π(Mχ + MN)2
(|ASI |2 + 3|ASD|2) (1)

If qBOX=NULL (qBOX=NoLoop in Fortran) tree level amplitudes are computed. In MSSM-
type models with a spin 1/2 WIMP and scalar ”squarks”, qBOX=FeScLoop uses an im-
proved tree-level calculation. nucleonAmplitudes returns a value different from zero only
when there is an internal problem in the calculation.

3All parameters are in GeV.
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nucleonAmplitudes depends implicitly on form factors which describe the quark con-
tents in the nucleon. These form factors are global parameters (see Table 1 for default
values)

TypeFFPq TypeFFNq

where Type is either ”Scalar”, ”pVector”, or ”Sigma”, FFP and FFN denote proton and
neutron and q specifies the quark, d, u or s. Heavy quark coefficients are calculated
automatically.
• calcScalarQuarkFF(mu/md,ms/md,σπN ,σs)
computes the scalar coefficients for the quark content in the nucleon from the quark mass
ratios mu/md,ms/md as well as from σπN and σs. The default values given in Table 2
are obtained for σs = 42MeV, σπN = 34MeV, mu/md = 0.56,ms/md = 20.2 [11]. The
function calcScalarQuarkFF(0.553,18.9,55.,243.5) will reproduce the default values of the
scalar quark form factors used in micrOMEGAs2.4 and earlier versions.

6.2 Scattering on nuclei

• nucleusRecoil(f,A,Z,J,Sxx,qBOX,dNdE)

This is the main routine of the direct detection module. The input parameters are:

⋄ f - the DM velocity distribution normalized such that

∫ ∞

0

vf(v)dv = 1

The units are km/s for v and s2/km2 for f(v).

⋄ A - atomic number of nucleus;

⋄ Z - number of protons in the nucleus, predefined values for a wide set of isotopes
are called with Z {Name};

⋄ J - nucleus spin, predefined values for a wide set of isotopes are called with
J {Name}{atomic number}.

⋄ Sxx - is a routine which calculates nucleus form factors for spin-dependent interac-
tions (S00,S01,S11), it depends on the momentum transfer in fm−1. The available
form factors are

SxxF19 SxxNa23 SxxNa23A SxxAl27 SxxSi29 SxxSi29A

SxxK39 SxxGe73 SxxGe73A SxxNb92 SxxTe125 SxxTe125A

SxxI127 SxxI127A SxxXe129 SxxXe129A

SxxXe131 SxxXe131A SxxXe131B

The last character is used to distinguish different implementations of the form factor
for the same isotope, see details in [4].

⋄ qBOX - a parameter needed by nucleonAmplitudes, see the description above.
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The form factors for the spin independent (SI) cross section are defined by a Fermi dis-
tribution and depend on the global parameters Fermi_a, Fermi_b, Fermi_c.

The returned value gives the number of events per day and per kilogram of detector
material. The result depends implicitly on the global parameter rhoDM, the density of DM
near the Earth. The distribution over recoil energy is stored in the array dNdE which by
default has Nstep = 200 elements. The value in the ith element corresponds to

dNdE[i] =
dN

dE
|E=i∗keV ∗step

in units of (1/keV/kg/day). By default step is set to 1.
For a complex WIMP, nucleusRecoil averages over χ and χ. For example for 73Ge,

a call to this routine will be:

nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,SxxGe73,FeScLoop,dNdE);

• setRecoilEnergyGrid(step,Nstep)

changes the values of step and Nstep for the computation of dNdE.
• Maxwell(v)

returns

f(v) =
cnorm

v

∫

|~v|<vmax

d3~v exp

(

−(~v − VEarth)
2

∆v2

)

δ(v − |~v|)

which corresponds to the isothermal model. Default values for the global parameters
∆v = Vrot, vmax = Vesc, Vearth are listed in Table 1. cnorm is the normalization factor.
This function is an argument of the nucleusRecoil function described above.
• nucleusRecoil0(f,A,Z,J,Sp,Sn,qBOX,dNdE)

is similar to the function nucleusRecoil except that the spin dependent nuclei form
factors are described by Gauss functions whose values at zero momentum transfer are
defined by the coefficients Sp,Sn [4]. Predefined values for the coefficients Sp,Sn are
included for the nuclei listed in nucleusrecoil as well as 3He, 133Cs. Their names are

Sp {Nucleus Name}{Atomic Number}
Sn {Nucleus Name}{Atomic Number}

One can use this routine for nuclei whose form factors are not known.

6.3 Auxiliary routines

Two auxiliary routines are provided to work with the energy spectrum computed with
nucleusRecoil and nucleusRecoil0.
• cutRecoilResult(dNdE,E1,E2)

calculates the number of events in an energy interval defined by the values E1,E2 in keV
.
• displayRecoilPlot(dNdE,title,E1,E2)

plots the generated energy distribution dNdE. Here title is a character string specifying
the title of the plot and E1,E2 are minimal and maximal values for the displayed energy
in keV.
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7 Indirect detection

7.1 Interpolation and display of spectra

Various spectra and fluxes of particles relevant for indirect detection are stored in arrays
with NZ=250 elements. To decode and interpolate the spectrum array one can use the
following functions:
• SpectdNdE(E,spectTab)

interpolates the tabulated spectra and returns the particle distribution dN/dE where E is
the energy in GeV. For a particle number distribution the returned value is given in GeV−1

units while a particle flux is expressed in (sec cm2 sr GeV )−1.
• zInterp(z,spectTab)

works as SpectdNdE(E,spectTab) but returns dN/dz where z = log(E/Mcdm).
To display the spectra one can use
• displaySpectrum(Spectrum,message,Emin,Emax,Units)

where message is a text string which gives a title to the plot and Emin and Emax define
energy cuts. If Units=0 the spectrum is written as a function of z10 = log10(E/Mcdm),
otherwise the spectrum is a function of the energy in GeV.

The ith element (0 ≤ i < NZ − 1) of the spectrum array contains the value of

dN/dzi where zi = log
(

(10−7)(i/NZ)1.5
)

. That is the array points cover the energy interval

Mcdm ≥ E > 10−7Mcdm. The function Zi(i) returns the zi grid points.

7.2 Annihilation spectra

• calcSpectrum(key,Sg,Se,Sp,Sne,Snm,Snl,&err)

calculates the spectra of DM annihilation at rest and returns σv in cm3/s . The calculated
spectra for γ, e+, p̄, νe, νµ, ντ are stored in arrays of dimension NZ as described above:
Sg, Se, Sp, Sne, Snm, Snl. To remove the calculation of a given spectra, substitute NULL

for the corresponding argument. key is a switch to include the polarisation of the W,Z
bosons (key=1) or photon radiation (key=2). Note that final state photon radiation (FSR)
is always included. When key=2 the 3-body process χχ′ → XX +γ is computed for those
subprocesses which either contain a light particle in the t-channel (of mass less than 1.2
Mcdm) or an outgoing W when Mcdm>500GeV. The FSR is then subtracted to avoid double
counting. Only the electron/positron spectrum is modified with this switch. When key=4

the cross sections for each annihilation channel are written on the screen. More than one
option can be switched on simultaneously by adding the corresponding values for key.
For example both the W polarization and photon radiation effects are included if key=3.
A problem in the spectrum calculation will produce a non zero error code, err 6= 0.
calcSpectrum interpolates and sums spectra obtained by Pythia. The spectra tables are
provided only for Mcdm> 2GeV. The results for a dark matter mass below 2 GeV will
therefore be wrong, for example an antiproton spectrum with kinematically forbidden
energies will be produced. A warning is issued for Mcdm< 2GeV.
• spectrInfo(Xmin,spectrTab,&Ntot,&Xtot)

provides information on the spectra generated. Here Xmin defines the minimum cut for
the energy fraction x=E/Mcdm, Ntot and Xtot are calculated parameters which give
on average the total number and the energy fraction of the final particles produced per
collision. Note that the upper limit is Xtot=2.
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• vSigmaCh is an array that contains the relative contribution and particle names for each
annihilation channel. In the Fortran version one uses instead the function
vSigmaCh(i,weight,pdg,process). These array and function are similar to vSigmaTCh

described above. The array vSigmaCh if filled by calcSpectrum.

7.3 Distribution of Dark Matter in Galaxy.

The indirect DM detection signals depend on the DM density in our Galaxy. The DM
density is given as the product of the local density at the Sun with the halo profile function

ρ(r) = ρ⊙Fhalo(r) (2)

In micrOMEGAs ρ⊙ is a global parameter rhoDM and the Zhao profile [12]

Fhalo(r) =

(

R⊙

r

)γ (

rα
c + Rα

⊙

rα
c + rα

)
β−γ

α

(3)

with α = 1, β = 3, γ = 1, rc = 20[kpc] is used by default. R⊙, the distance from the
Sun to the galactic center, is also a global parameter, Rsun. The parameters of the Zhao
profile can be reset by
• setProfileZhao(α,β,γ,rc)
The function to set another density profile is
• setHaloProfile(Fhalo(r))
where Fhalo(r) is any function which depends on the distance from the galactic center,
r, defined in [kpc] units. For instance, setHaloProfile(hProfileEinasto) sets Einasto
profile

Fhalo(r) = exp

[

− 2

α

((

r

R⊙

)α

− 1

)]

where by default α = 0.17, but can be changed by
• setProfileEinasto(α)
The command setHaloProfile(hProfileZhao) sets back the Zhao profile. Note that
both setProfileZhao and setProfileEinasto call setHaloProfile to define the cor-
responding profile.

Dark matter annihilation in the Galaxy depends on the average of the square of the
DM density, < ρ2 >. This quantity can be significantly larger than < ρ >2 when clumps
of DM are present [13]. In micrOMEGAs , we use a simple model where fcl is a constant
that characterizes the fraction of the total density due to clumps and where all clumps
occupy the same volume Vcl and have a constant density ρcl. Assuming clumps do not
overlap, we get

< ρ2 >= ρ2 + fclρclρ. (4)

This simple description allows to demonstrate the main effect of clumps: far from the
Galactic center the rate of DM annihilation falls as ρ(r) rather than as ρ(r)2. The pa-
rameters ρcl and fcl have zero default values. The routine to change these values is
• setClumpConst(fcl,ρcl)

To be more general, one could assume that ρcl and fcl depend on the distance from the
galactic center. The effect of clumping is then described by the equation

< ρ2 > (r) = ρ(r)(ρ(r) + ρeff
clump(r)), (5)
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and the function
• setRhoClumps(ρeff

clump)

allows to implement a more sophisticated clump structure. To return to the default
treatment of clumps call setRhoClumps(rhoClumpsConst) or setClumpConst.

7.4 Photon signal

The photon flux does not depend on the diffusion model parameters but on the angle
φ between the line of sight and the center of the galaxy as well as on the annihilation
spectrum into photons
• gammaFluxTab(fi,dfi,sigmav,Sg,Sobs)

multiplies the annihilation photon spectrum with the integral over the line of sight and
over the opening angle to give the photon flux. fi is the angle between the line of sight
and the center of the galaxy, dfi is half the cone angle which characterizes the detector
resolution (the solid angle is 2π(1 − cos(dfi)) , sigmav is the annihilation cross section,
Sg is the DM annihilation spectra. Sobs is the spectra observed.

The function gammaFluxTab can be used for the neutrino spectra as well.
• gammaFlux(fi,dfi,vcs)

is the same function as gammaFluxTab above but corresponds to a discrete photon spec-
trum. vcs is the annihilation cross section, for instance in the ⁀MSSM it is calculated with
the loopGamma function. The function returns the number of photons per cm2 of detector
surface per second. Note that for χχ → γγ the result should be multiplied by a factor 2
as each annihilation leads to the production of two photons.

7.5 Propagation of charged particles.

The observed spectrum of charged particles strongly depends on their propagation in the
Galactic Halo. The propagation depends on the global parameters

K_dif, Delta_dif, L_dif, Rsun, Rdisk

as well as

Tau_dif (positrons), Vc_dif (antiprotons)

• posiFluxTab(Emin,sigmav, Se, Sobs)

computes the positron flux at the Earth. Here sigmav and Se are values obtained by
calcSpectrum. Sobs is the positron spectrum after propagation. Emin is the energy cut
to be defined by the user. Note that a low value for Emin increases the computation time.
The format is the same as for the initial spectrum. The function SpectrdNdE(E,Sobs)

described above can also be used for the interpolation, in this case the flux is returned in
(GeV s cm2sr)−1.
• pbarFlux(E,dSigmavdE)

computes the antiproton flux for a given energy E and a differential cross section for
antiproton production, dSigmavdE. For example, one can substitute
dSigmavdE=σvSpectdNdE(E,SpP)
where σv and SpP are obtained by calcSpectrum. This function does not depend on
the details of the particle physics model and allows to analyse the dependence on the
parameters of the propagation model.
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• pbarFluxTab(Emin,sigmav, Sp, Sobs)

computes the antiproton flux, this function works like posiFluxTab,
• solarModulation(Phi, mass, stellarTab, earthTab)

takes into account modification of the interstellar positron/antiproton flux caused by the
electro-magnetic fields in the solar system. Here Phi is the effective Fisk potential in
MeV, mass is the particle mass, stellarTab describes the interstellar flux, earthTab is
the calculated particle flux in the Earth orbit.

Note that for solarModulation and for all *FluxTab routines one can use the same
array for the spectrum before and after propagation.

8 Neutrino signal from the Sun and the Earth

After being captured, DM particles concentrate in the center of the Sun/Earth and then
annihilate into Standard Model particles. These SM particles further decay producing
neutrinos that can be observed at the Earth.
• neutrinoFlux(f,forSun,nu, nu_bar)

calculates muon neutrino/anti-neutrino fluxes near the surface of the Earth. Here f is the
DM velocity distribution normalized such that

∫ ∞

0
vf(v)dv = 1. The units are km/s for

v and s2/km2 for f(v). At first approximation, one can use the same Maxwell function
introduced for direct detection.

If forSun==0 then the flux of neutrinos from the Earth is calculated, otherwise this
function computes the flux of neutrinos from the Sun. The calculated fluxes are stored
in nu and nu bar arrays of dimension NZ=250. The neutrino fluxes are expressed in
[1/Year/km2]. The function SpectdNdE(E,nu) returns the differential flux of neutrinos
in [1/Year/km2/GeV], and

displaySpectrum(nu,"nu from Sun [1/Year/km^2/GeV]",Emin,Emax,1)

allows to display the corresponding spectrum on the screen.
• muonUpward(nu,Nu,rho, muon)

calculates the muon flux which results from interactions of neutrinos with rocks below the
detector. Here nu and Nu are input arrays containing the neutrino/anti-neutrino fluxes
calculated by neutrinoFlux. rho is the Earth density ≈ 2.6g/cm3. muon is an array which
stores the resulting sum of µ+, µ− fluxes. SpectdNdE(E,muon) gives the differential muon
flux in [1/Year/km2/GeV] units.
• muonContained(nu,Nu,rho, muon) calculates the flux of muons produced in a given
detector volume.This function has the same parameters as muonUpward except that the
outgoing array gives the differential muon flux resulting from neutrinos converted to muons
in a km3 volume given in [1/Year/km3/GeV] units. rho is the density of the detector in
g/cm3.

Two functions allow to estimate the background from atmospheric neutrinos creating
muons after interaction with rocks below the detector or with water inside the detector.
• ATMmuonUpward(cosFi,E) calculates the sum of muon and anti-muon fluxes resulting
from the interaction of atmospheric neutrinos with rocks in units of [1/Year/km2/GeV/Sr].
cosFi is the energy between the direction of observation and the direction to the center
of Earth. E is the muon energy in GeV.
• ATMmuonContained(cosFi, E, rho) calculates the muon flux caused by atmospheric
neutrinos produced in a given (detector) volume. The returned value for the flux is given
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in 1/Year/km3/GeV. rho is the density of the detector in g/cm3 units. cosFi and E are
the same as above.

9 Cross sections and decays.

The calculation of particle widths, decay channels and branching fractions can be done
by the function

• pWidth(particleName,&address)

returns directly the particle width. If the 1->2 decay channels are kinematically accessible
then only these channels are included in the width when VWdecay,VZdecay= 0. If not,
pWidth compiles all open 1->3 channels and use these for computing the width. If all
1->3 channels are kinematically forbidden, micrOMEGAs compiles 1->4 channels. If
VWdecay(VZdecay)6= 0, then micrOMEGAs also computes the processes with virtual
W (Z) which are closed kinematically and adds these to the 1->2 decay channels. Note
that 1->3 decay channels with a virtual W will be computed even if the mass of the
decaying particle exceeds the threshold for 1->2 decays by several GeV’s. This is done
to ensure a proper matching of 1->2 and 1->3 processes. For particles other than gauge
bosons, an improved routine with 3-body processes and a matching between the 1->2

and 1->3 calculations is kept for the future. The returned parameter address gives an
address where information about the decay channels is stored. In C, the address should
be of type txtList. For models which read a SLHA parameter file, the values of the
widths and branchings are taken from the SLHA file unless the user chooses not to read
this data, see (Section 12.5) for details.
• printTxtList(address,FD)

lists the decays and their branching fractions and writes them in a file. address is the
address returned by pWidth.
• findBr(address,pattern)

finds the branching fraction for a specific decay channel specified in pattern, a string
containing the particle names in the CalcHEP notation. The names are separated by
commas or spaces and can be specified in any order.
• slhaDecayPrint(pname,FD)

uses pWidth described above to calculate the width and branching ratios of particle pname
and writes down the result in SLHA format. The return value is the PDG particles code.
In case of problem, for instance wrong particle names, this function returns zero. This
function first tries to calculate 1 → 2 decays. If such decays are kinematically forbidden
then 1 → 3 decay channels are computed.
• newProcess(procName)

compiles the codes for any 2 → 2 or 1 → 2 reaction. The result of the compilation
is stored in the shared library in the directory work/so-generated/. The name of the
library is generated automatically.

The newProcess routine returns the address of the compiled code for further usage. If
the process can not be compiled, then a NULL address is returned4. Note that it is also
possible to compute processes with polarized massless beams, for example for a polarized
electron beam use e% to designate the initial particle.

4In Fortran the format is call newProcess(procName, address)
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• procInfo1(address,&ntot,&nin,&nout)

provides information about the total number of subprocesses (ntot) stored in the library
specified by address as well as the number of incoming (nin) and outgoing (nout) parti-
cles for these subprocesses. Typically, for collisions (decays), nin = 2(1) and nout = 2, 3.
NULL can be substitute if this information is not needed.
• procInfo2(address,nsub,N,M)

fills an array of particle names N and an array of particle masses M for the subprocess nsub
(1 ≤ nsub ≤ ntot) . These arrays have size nin + nout and the elements are listed in the
same order as in CalcHEP starting with the initial state, see the example in MSSM/main.c.

• cs22(address,nsub,P,c1,c2,&err)

calculates the cross-section for a given 2 → 2 process, nsub, with center of mass momen-
tum P (GeV). The differential cross-section is integrated within the range c1 < cos θ < c2.
θ is the angle between ~p1 and ~p3 in the center-of-mass frame. Here ~p1 (~p3) denote respec-
tively the momentum of the first initial(final) particle. err contains a non zero error code
if nsub exceeds the maximum value for the number of subprocesses (given by the argu-
ment ntot in the routine procInfo1). To set the polarization of the initial massless beam,
define Helicity[i] where i = 0, 1 for the 1th and 2nd particles respectively. The helicity
is defined as the projection of the particle spin on the direction of motion. It ranges from
[-1,1] for spin 1 particles and from [-0.5,0.5] for spin 1/2 particles. By definition a left
handed particle has a positive helicity.
• hCollider(Pcm,pp,pName1,pName2) calculates the cross section for particle production
at hadron colliders. Here Pcm is the beam energy in the center-of-mass frame. pp is 1(−1)
for pp(pp̄) collisions. pName1 and pName2 are the names of outgoing particles. The value
returned is the cross section in [pb]. The QCD scale is fixed to Q ≈ (m(pName1) +
m(pName2)/2.

10 Tools for model independent analysis

A model independent calculation of the DM observables is also available. After specifying
the DM mass, the cross sections for DM spin dependent and spin independent scatter-
ing on proton and neutron, the DM annihilation cross section times velocity at rest and
the relative contribution of each annihilation channel to the total DM annihilation cross
section, one can compute the direct detection rate on various nuclei, the fluxes for pho-
tons, neutrinos and antimatter resulting from DM annihilation in the galaxy and the
neutrino/muon fluxes in neutrino telescopes.
• nucleusRecoilAux(f,A,Z,J,Sxx,csIp,csIn,csDp,csDn,dNdE)

This function is similar to nucleusRecoil. The additional input parameters include
csIp(csIn) the SI cross sections for WIMP scattering on protons(neutrons) and csDp(csDn)

the SD cross sections on protons(neutrons). A negative value for one of these cross sections
is interpreted as a destructive interference between the proton and neutron amplitudes.
Note that the rate of recoil depends implicitly on the WIMP mass, the global parameter
Mcdm. The numerical value for the global parameter has to be set before calling this func-
tion.
• nucleusRecoil0Aux(f,A,Z,J,Sp,Sn,csIp,csIn,csDp,csDn,dNdE) is the correspond-
ing modification of nucleusRecoil0.
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For indirect detection, we also provide a tool for model independent studies
• basicSpectra(pdgN, outN,Spectr)

computes the spectra of outgoing particles and writes the result in an array of dimension
250, Spectr, pdgN is the PDG code of the particles produced in the annihilation of a pair
of WIMPs. To get the spectra generated by transverse and longitudinal W’s substitute
pdgN = 24 +′ T ′ and 24 +′ L′ correspondingly. In the same manner pdgN = 23 +′ T ′

and 23 +′ L′ provides the spectra produced by a polarized Z boson. outN specifies the
outgoing particle,

outN = {0, 1, 2, 3, 4, 5} for {γ, e+, p−, νe, νµ, ντ}

This function depends implicitly on the global variable Mcdm. Note that the propaga-
tion routines for e+, p−, γ can be used after this routine as usual. Note that the result
of basicSpectra are not valid for Mcdm < 2GeV as explained in the description of
calcSpectrum.
• captureAux(f,forSun,csIp,csIn,csDp,csDn)

calculates the number of DM particles captured per second assuming the cross sections
for spin-independent and spin-dependent interactions with protons and neutrons csIp,

csIn, csDp, csDn are given as input parameters (in [pb]). A negative value for one of
the cross sections is interpreted as a destructive interference between the proton and neu-
tron amplitudes. The first two parameters have the same meaning as in the neutrinoFlux
routine Section 8. The result depends implicitly on the global parameters rhoDM and Mcdm

in Table 1.
• basicNuSpectra(forSun,pdgN, outN,nu)

calculates the νµ and ν̄µ spectra corresponding to DM annihilating into particles specified
by the PDG code pdgN. Effects of interaction with Sun/Earth medium as well as neutrino
oscillation are taken into account [39]. outN should be chosen 1 for muon neutrino and -1
for anti-neutrino. The resulting spectrum is stored in the array nu with NZ=250 elements
which can be checked by the SpectdNdE(E,nu) function.

The files main.c/F in the directory mdlIndep contain an example of the calculation of
the direct detection, indirect detection and neutrino telescope signals using the routines
described in this section. The numerical input data in this sample file corresponds to
’MSSM/mssmh.dat’.

11 Additional routines for specific models

The models included in micrOMEGAs contain some specific routines which we describe
here for the sake of completeness. The current distribution includes the following models:
MSSM, NMSSM, CPVMSSM, IDM (inert doublet model), LHM(little Higgs model), RHNM (a
Right-handed Neutrino model), SM4 (toy model with 4th generation lepton), and Z3M

(doublet and singlet model with Z3 symmetry).
Some of these models contain a special routine for reading the input parameters:

• readVarMSSM, readVarNMSSM, readVarCPVMSSM, readVarlHiggs, readVarRHNM.
These routines are similar to the general readVar routine described in Section 4 but they
write a warning when a parameter is not found in the input file and display the default
values for these parameters.
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The supersymmetric models contain several additional routines to calculate the spec-
trum and compute various constraints on the parameter space of the models. Some
functions are common to the MSSM,NMSSM,CPVMSSM models:
• o1Contents(FD)

prints the neutralino LSP components as the B̃, W̃ , h̃1, h̃2 fractions. For the NMSSM the
fifth component is the singlino fraction S̃. The sum of the squares of the LSP components
should add up to 1.

11.1 MSSM

The MSSM has a long list of low scale independent model parameters, those are specified
in the SLHA file [18, 14]. They are directly implemented as parameters of the model.
For EWSB scenarios the input parameters are the soft parameters, the names of these
parameters are given in the MSSM/mssm[1/2].par files. The user can assign new values
to these parameters by means of assignVal or readVarMSSM.
• spectEwsbMSSM()
calculates the masses of Higgs and supersymmetric particles in the MSSM including one-
loop corrections starting from weak scale input parameters.
In these functions spect stands for one of the spectrum calculators suspect, isajet,
spheno, or softSusy. The default spectrum calculator package is SuSpect. To work with
another package one has to specify the appropriate path in MSSM/lib/Makefile. For this,
the environment variables ISAJET, SPHENO or SOFTSUSY must be redefined accordingly.
Note that we also provide a special interface for ISAJET to read a SLHA file. This means
that the user must first compile the executable isajet_slha which sets up the SLHA
interface in ISAJET. Specific instructions are provided in the README file.

For other MSSM scenarios, the parameters at the electroweak symmetry breaking scale
are derived from an input at high scale. The same codes suspect, isajet, spheno, or
softSusy are used for this.The corresponding routines are:
• spectSUGRA(tb,MG1,MG2,MG3,Al,At,Ab,signMu,MHu,MHd,Ml1,Ml3,Mr1,Mr3,Mq1,Mq3,

Mu1,Mu3,Md1,Md3)

assumes that all input parameters except tb and signMu are defined at the GUT scale.
The SUGRA/CMSSM scenario is a special case of this general routine.
• spectSUGRAnuh(tb,MG1,MG2,MG3,Al,At,Ab,Ml1,Ml3,Mr1,Mr3,Mq1,Mq3,

Mu1,Mu3,Md1,Md3,mu,MA)

realizes a SUGRA scenario with non universal Higgs parameters. Here the Mhu, MHd

parameters in the Higgs potential are replaced with the mu parameter defined at the
EWSB scale and MA, the pole mass of the CP-odd Higgs. The signMu parameter is
omitted because mu is defined explicitly.
•spectAMSB(am0,m32,tb,sng).
does the same as above within the AMSB model.

We have an option to directly read a SLHA input file, this uses the function
• lesHinput(file_name)

which returns a non-zero number in case of problem.
The routines for computing constraints are (see details in [2]).

• deltarho()
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calculates the ∆ρ parameter in the MSSM. It contains for example the stop/sbottom
contributions, as well as the two-loop QCD corrections due to gluon exchange and the
correction due to gluino exchange in the heavy gluino limit.
• bsgnlo(&SMbsg)

returns the value of the branching ratio for b → sγ, see Appendix A. We have included
some new contributions beyond the leading order that are especially important for high
tan β. SMbsg gives the SM contribution.
• bsmumu()

returns the value of the branching ratio Bs → µ+µ− in the MSSM. It includes the loop
contributions due to chargino, sneutrino, stop and Higgs exchange. The ∆mb effect rele-
vant for high tanβ is taken into account.
• btaunu()

computes the ratio between the MSSM and SM branching fractions for B̄+ → τ+ντ .
• gmuon()

returns the value of the supersymmetric contribution to the anomalous magnetic moment
of the muon.
• Rl23()

computes the ratio of the MSSM to SM value for Rl23 in K+ → µν due to a charged higgs
contribution, see Eq.70 in [6].
• dtaunu(&dmunu)

computes the branching ratio for D+
s → τ+ντ . dmunu gives the branching ratio for D+

s →
µ+νµ

• masslimits()

returns a positive value and prints a WARNING when the choice of parameters conflicts
with a direct accelerator limits on sparticle masses from LEP. The constraint on the light
Higgs mass from the LHC is included.

We have added a routine for an interface with superIso [32]. This code is not included
in micrOMEGAs so one has first to define the global environment variable superIso to
specify the path to the package.
• callSuperIsoSLHA()

launches superIso and downloads the SLHA file which contains the results. The return
value is zero when the program was executed successfully. Results for specific observ-
ables can be obtained by the command slhaValFormat described in section (12.5). Both
superIso and callSuperIsoSLHA use a file interface to exchange data. The delFiles

flag specifies whether to save or delete the intermediate files.
• loopGamma(&vcs_gz,&vcs_gg)

calculates σv for loop induced processes of neutralino annihilation into γZ and into γγ.
The result is given in cm3

s
. In case of a problem the function returns a non-zero value.

11.2 The NMSSM

As in the MSSM there are specific routines to compute the parameters of the model as
specified in SLHA. The spectrum calculator is NMSPEC [23] in the NMSSMTools_4.0 pack-
age [29].
• nmssmEWSB(void)

calculates the masses of Higgs and supersymmetric particles in the NMSSM starting from
the weak scale input parameters. These can be downloaded by the readVarNMSSM rou-
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tine. [24]
• nmssmSUGRA(m0,mhf,a0,tb,sgn,Lambda,aLambda,aKappa)

calculates the parameters of the NMSSM starting from the input parameters of the
CNMSSM.

The routines for computing constraints are taken from NMSSMTools (see details
in [3]).
• bsgnlo(&M,&P), bsmumu(&M,&P), btaunu(&M,&P), gmuon(&M,&P)

are the same as in the MSSM case. Here the output parameters M and P give information
on the lower/upper experimental limits [25]
• deltaMd(),deltaMs()

compute the supersymmetric contribution to the B0
d,s −B0

d,s mass differences, ∆Md and
∆Ms.
• NMHwarn(FD)

is similar to masslimits except that it also checks the constraints on the Higgs masses,
returns the number of warnings and writes down warnings in the file FD.
• loopGamma(&vcs_gz,&vcs_gg)

calculates σv for loop induced processes of neutralino annihilation into γZ and into γγ.
The result is given in cm3

s
. In case of a problem the function returns a non-zero value.

11.3 The CPVMSSM

The independent parameters of the model include, in addition to some standard model
parameters, only the weak scale soft SUSY parameters. The independent parameters are
listed in CPVMSSM/work/models/vars1.mdl. Masses, mixing matrices and parameters
of the effective Higgs potential are read directly from CPsuperH [26, 27], together with
the masses and the mixing matrices of the neutralinos, charginos and third generation
sfermions. Masses of the first two generations of sfermions are evaluated (at tree-level)
within micrOMEGAs in terms of the independent parameters of the model.

The routines for computing constraints are taken from CPsuperH, [28]
• bsgnlo(), bsmumu(), btaunu(), gmuon()

are the same as in the MSSM case.

• deltaMd(),deltaMs()

are the same as in the NMSSM case.

• Bdll()

computes the supersymmetric contribution to the branching fractions for Bd → τ+τ− in
the CPVMSSM.

• ABsg()

computes the supersymmetric contribution to the asymmetry for B → Xsγ.

• EDMel(),EDMmu(),EDMTl()

return the value of the electric dipole moment of the electron, de, the muon,dµ, and of
Thallium, dT l in units of ecm.

22



12 Tools for new model implementation.

It is possible to implement a new particle physics model in micrOMEGAs. For this the
model must be specified in the CalcHEP format. micrOMEGAs then relies on CalcHEP to
generate the libraries for all matrix elements entering DM calculations. Below we describe
the main steps and tools for implementing a new model.

12.1 Main steps

• The command ./newProject MODEL
launched from the root micrOMEGAs directory creates the directory MODEL. This
directory and the subdirectories contain all files needed to run micrOMEGAs with
the exception of the new model files.

• The new model files in the CalcHEP format should then be included in the sub-
directory MODEL/work/models. The files needed are vars1.mdl, func1.mdl,
prtcls1.mdl, lgrng1.mdl, extlib1.mdl. For more details on the format and con-
tent of model files see [19].

• For odd particles and for the Higgs sector it is recommended to use the widths that
are (automatically) calculated internally by CalcHEP/micrOMEGAs. For this one
has to add the ’ !’ symbol before the definition of the particle’s width in the file
prtcls1.mdl, for example

Full name | P | aP|PDG |2*spin| mass |width |color|

Higgs 1 |h1 |h1 |25 |0 |Mh1 |!wh1 |1 |

• Some models contain external functions, if this is the case they have to be com-
piled and stored in the MODEL/lib/aLib.a library. These functions should be
written in C and both functions and their arguments have to be of type double.
The library aLib.a can also contain some functions which are called directly from
the main program. The MODEL/Makefile automatically launches make in the lib
directory and compiles the external functions provided the prototypes of these ex-
ternal functions are specified in MODEL/lib/pmodel.h. The user can of course
rewrite his own —lib/Makefile if need be.

If the new aLib.a library needs some other libraries, their names should be added
to the SSS variable defined in MODEL/Makefile.

The MODEL directory contains both C and FORTRAN samples of main routines.
In these sample main programs it is assumed that input parameters are provided in a
separate file. In this case the program can be launched with the command:

./main data1.par

Note that for the direct detection module all quarks must be massive. However the cross
sections do not depend significantly on the exact numerical values for the masses of light
quarks.
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12.2 Automatic width calculation

Automatic width calculation can be implemented by inserting the ’ !’ symbol before the
name of the particle width in the CalcHEP particle table (file prtcls1.mdl). In this case
the width parameter should not be defined as a free or constrained parameter. Actually
the pWidth function described in section 9 is used for width calculation in this case. We
recommend to use the automatic width calculation for all particles from the ’odd’ sector
and for Higgs particles. For models which use SLHA parameter transfer (Section 12.5),
the automatic width option will use the widths contained in the SLHA file unless the user
chooses the option to ignore this data in the SLHA file, see section 12.5.

12.3 Using LanHEP for model file generation.

For models with a large number of parameters and various types of fields/particles such
as the MSSM, it is more convenient to use an automatic tool to implement the model.
LanHEP is a tool for Feynman rules generation. A few minor modifications to the de-
fault format of LanHEP have to be taken into account to get the model files into the
micrOMEGAs format.

• The lhep command has to be launched with the -evl 2 flag

lhep source_file -evl 2

Such a flag provides the correct level of optimization for the model’s Feynman rules.

• The default format for the file prtcls1.mdl which specifies the particle content has
to be modified to include a column containing the PDG code of particles. For this,
first add the following command in the LanHEP source code, before specifying the
particles

prtcformat fullname:

’Full Name ’, name:’ P ’, aname:’ aP’, pdg:’ number ’,

spin2,mass,width, color, aux, texname: ’> LaTeX(A) <’,

atexname:’> LateX(A+) <’ .

Then for each particle define the PDG code. For instance:
vector ’W+’/’W-’: (’W boson’, pdg 24, mass MW, width wW).

• LanHEP does not generate the file extlib1.mdl. micrOMEGAs works without this
file but it is required for a CalcHEP interactive session. The role of this file is to
provide the linker with the paths to all user’s libraries needed at compilation. For
example for the lib/aLib.a library define

$CALCHEP/../MODEL/lib/aLib.a

For examples see the extlib1.mdl files in the directory of the models provided.
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12.4 QCD functions

Here we describe some QCD functions which can be useful for the implementation of a
new model.
• initQCD(alfsMZ,McMc,MbMb,Mtp)

This function initializes the parameters needed for the functions listed below. It has to
be called before any of these functions. The input parameters are the QCD coupling at
the Z scale, αs(MZ), the quark masses, mc(mc),mb(mb) and mt(pole).
• alphaQCD(Q)

calculates the running αs at the scale Q in the MS scheme. The calculation is done using
the NNLO formula in [22]. Thresholds for the b-quark and t-quark are included in nf at
the scales mb(mb) and mt(mt) respectively.
• MtRun(Q), MbRun(Q), McRun(Q)

calculates top, bottom and charm quarks running masses evaluated at NNLO.
• MtEff(Q), MbEff(Q), McEff(Q),

calculates effective top, bottom and charm quark masses using [22]

M2
eff (Q) = M(Q)2

[

1 + 5.67a + (35.94 − 1.36nf )a
2

+ (164.14 − nf (25.77 − 0.259nf ))a
3
]

(6)

where a = αs(Q)/π, M(Q) and αs(Q) are the quark masses and running strong coupling
in the MS-scheme. In micrOMEGAs, we use the effective quark masses calculated at the
scale Q = 2Mcdm. In some special cases one needs a precise treatment of the light quarks
masses. The function
• MqRun(M2GeV, Q)

returns the running quark mass defined at a scale of 2 GeV. The corresponding effective
mass needed for the Higgs decay width is given by
• Mqeff(M2GeV, Q)

12.5 SLHA reader

Very often the calculation of the particle spectra for specific models is done by some
external program which writes down the particle masses, mixing angles and other model
parameters in a file with the so-called SLHA format [18, 14]. The micrOMEGAs program
contains routines for reading files in the SLHA format. Such routines can be very useful
for the implementation of new models.

In general a SLHA file contains several pieces of information which are called blocks. A
block is characterized by its name and, sometimes, by its energy scale. Each block contains
the values of several physical parameters characterized by a key. The key consists in a
sequence of integer numbers. For example:

BLOCK MASS # Mass spectrum

# PDG Code mass particle

25 1.15137179E+02 # lightest neutral scalar

37 1.48428409E+03 # charged Higgs

BLOCK NMIX # Neutralino Mixing Matrix

1 1 9.98499129E-01 # Zn11

1 2 -1.54392008E-02 # Zn12
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BLOCK Au Q= 4.42653237E+02 # The trilinear couplings

1 1 -8.22783075E+02 # A_u(Q) DRbar

2 2 -8.22783075E+02 # A_c(Q) DRbar

• slhaRead(filename,mode)

downloads all or part of the data from the file filename. mode is an integer which
determines which part of the data should be read form the file, mode= 1*m1+2*m2+4*m4

where

m1 = 0/1 - overwrites all/keeps old data

m2 = 0/1 - reads DECAY /does not read DECAY

m4 = 0/1 - reads BLOCK/does not read BLOCK

For example mode=2 (m1=0,m2=1) is an instruction to overwrite all previous data and read
only the information stored in the BLOCK sections of filename. In the same manner
mode=3 is an instruction to add information from DECAY to the data obtained previously.
slhaRead returns the values:

0 - successful reading

-1 - can not open the file

-2 - error in spectrum calculator

-3 - no data

n>0 - wrong file format at line n

• slhaValExists(BlockName, keylength, key1, key2,...)

checks the existence of specific data in a given block. BlockName can be substituted
with any case spelling. The keylength parameter defines the length of the key set
{key1,key2,...}. For example slhaValExists("Nmix",2,1,2) will return 1 if the neu-
tralino mass mixing element Zn12 is given in the file and 0 otherwise.
• slhaVal(BlockName,Q, keylength, key1, key2,......)

is the main routine which allows to extract the numerical values of parameters. BlockName
and keylength are defined above. The parameter Q defines the scale dependence. This
parameter is relevant only for the blocks that contain scale dependent parameters, it will
be ignored for other blocks, for example those that give the particle pole masses. In
general a SLHA file can contain several blocks with the same name but different scales
(the scale is specified after the name of the block). slhaVal uses the following algorithm
to read the scale dependent parameters. If Q is less(greater) than all the scales used in
the different blocks for a given parameter slhaVal returns the value corresponding to
the minimum(maximum) scale contained in the file. Otherwise slhaVal reads the values
corresponding to the two scales Q1 and Q2 just below and above Q and performs a linear
interpolation with respect to log(Q) to evaluate the returned values.

Recently it was proposed to use an extension of the SLHA interface to transfer Flavour
Physics data [31]. Unfortunately the structure of the new blocks is such that they cannot
be read with the slhaVal routine. We have added two new routines for reading such data
• slhaValFormat(BlockName, Q, format)

where the format string allows to specify data which one would like to extract from the
given block BlockName. For instance, to get the b → sγ branching ratio from the block
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Block FOBS # Flavour observables

# ParentPDG type value q NDA ID1 ID2 ID3 ... comment

5 1 2.95061156e-04 0 2 3 22 # BR(b->s gamma)

521 4 8.35442304e-02 0 2 313 22 # Delta0(B->K* gamma)

531 1 3.24270419e-09 0 2 13 -13 # BR(B_s->mu+ mu-)

...

one has to use the command slhaValFormat("FOBS", 0., "5 1 %E 0 2 3 22"). In
this command the format string is specified in C-style. The same routine can be used to
read HiggsBound SLHA output.

A block can also contain a textual information. For example, in HIGGSBOUNDS a block
contains the following records,

Block HiggsBoundsResults

#CHANNELTYPE 1: channel with the highest statistical sensitivity

1 1 328 # channel id number

1 2 1 # HBresult

1 3 0.72692779334500290 # obsratio

1 4 1 # ncombined

1 5 ||(p p)->h+..., h=1 where h is SM-like (CMS-PAS-HIG-12-008)|| # text description of channel

In particular, the last record contains the name of the channel which gives the strongest
constraint on the Higgs. To extract the name of this channel one can use the new function

• slhaSTRFormat("HiggsBoundsResults","1 5 || %[^|]||",channel);

which will write the channel name in the text parameter channel.
• slhaWarnings(fileName)

writes into the file the warnings or error message stored in the SPINFO block and returns
the number of warnings. If FD=NULL the warnings are not written in a file.
• slhaWrite(fileName)

writes down the information stored by readSLHA into the file. This function can be used
for testing purposes.

SLHA also describes the format of the information about particle decay widths. Even
though micrOMEGAs also performs the width calculation, one might choose to read the
information from the SLHA file.
• slhaDecayExists(pNum)

checks whether information about the decay of particle pNum exists in the SLHA file.
pNum is the particle PDG code. This function returns the number of decay channels. In
particular zero means that the SLHA file contains information only about the total width,
not on branching ratios while -1 means that even the total width is not given.
• slhaWidth(pNum)

returns the value of particle width.
• slhaBranch(pNum,N, nCh)

returns the branching ratio of particle pNum into the N-th decay channel. Here
0<N<=slhaDecayExists(pNum). The array nCh is an output which specifies the PDG
numbers of the decay products, the list is terminated by zero.

The functions slhaValExists, slhaVal, slhaDecayExists, slhaWidth can be used
directly in CalcHEP model files, see an example in
MSSM/calchep/models/func2.mdl. Note that in this example the call to slhaRead is
done within the function suspectSUGRAc.
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12.5.1 Writing an SLHA input file

We have included in the micrOMEGAs package some routines which allow to write an
SLHA input file and launch the spectrum generator via the CalcHEP constraints menu.
This way a new model can be implemented without the use of external libraries. The
routines are called from func1.mdl, see example below.
• openAppend(fileName)

deletes the input file fileName and stores its name. This file will then be filled with the
function aPrintF.
• aPrintF(format,...)

opens the file fileName and writes at the end of the file the input parameters needed in
the SLHA format or in any other format understood by the spectrum calculator. The
arguments of aPrintF are similar to the arguments of the standard printf function.
• System(command, ...) generates a command line which is launched by the standard
system C-function. The parameter command works here like a format string and can
contain %s, %d elements. These are replaced by the next parameters of the System call.

For example to write directly the SLHA model file needed by SuSpect to compute
the spectrum in a CMSSM(SUGRA) model, one needs to add the following sequence in
the func1.mdl model file.

open |openAppend("suspect2_lha.in")

input1|aPrintF("Block MODSEL # Select model\n 1 1 # SUGRA\n")

input2|aPrintF("Block SMINPUTS\n 5 %E#mb(mb)\n 6 %E#mt(pole)\n",MbMb,Mtp)

input3|aPrintF("BLOCK MINPAR\n 1 %E #m0\n 2 %E #m1/2\n ",Mzero,Mhalf)

input4|aPrintF("3 %E #tb\n 4 %E #sign(mu)\n 5 %E #A0\n",tb,sgn,A0)

sys |System("./suspect2.exe")

rd |slhaRead("suspect2_lha.out",0)

It is possible to cancel the execution of a program launched with System if it runs
for too long. For this we have introduced two global parameters sysTimeLim and
sysTimeQuant. sysTimeLim sets a time limit in milliseconds for System execution, if
sysTimeLim==0 (the default value) the execution time is not checked. The time interval
between checks of the status of the program launched with System is specified by the
parameter sysTimeQuant, the default value is set to 10. Note that it is preferable not too
use too large a value for sysTimeQuant as it defines the lower time limit for a system call.
In Fortran use call setSysTimeLim(sysTimeLim,sysTimeQuant) to reset the default
time control parameters.

The function prototypes are available in
CalcHEP_src/c_source/SLHAplus/include/SLHAplus.h

12.6 Routines for diagonalisation.

Very often in a new model one has to diagonalize mass matrices. Here we present some
numerical routines for diagonalizing matrices. Our code is based on the jacobi routine
provided in [30]. To use the same routine for a matrix of arbitrary size, we use a C option
that allows to write routines with an arbitrary number of arguments.
• initDiagonal() should be called once before any other rDiagonal(A) routine described
below. initDiagonal() assigns zero value to the internal counter of eigenvalues and
rotation matrices. Returns zero.
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• rDiagonal(d,M11,M12,..M1d,M22,M23...Mdd)

diagonalizes a symmetric matrix of dimension d. The d(d + 1)/2 matrix elements, Mij
(i ≤ j), are given as arguments. The function returns an integer number id which serves
as an identifier of eigenvalues vector and rotation matrix.
• MassArray(id, i)

returns the eigenvalues mi ordered according to their absolute values.
• MixMatrix(id,i,j)

returns the rotation matrix Rij where

Mij =
∑

k

RkimkRkj

A non-symmetric matrix, for example the chargino mass matrix in the MSSM, is
diagonalized by two rotation matrices,

Mij =
∑

k

UkimkVkj.

• rDiagonalA(d,M11,M12..M1d,M21,M22...Mdd)

diagonalizes a non-symmetric matrix, the d2 matrix elements, Mij, are given as arguments.
The eigenvalues and the V rotation matrix are calculated as above with MassArray and
MixMatrix.
• MixMatrixU(id,i,j)

returns the rotation matrix Uij.
The function prototypes can be found in

CalcHEP_src/c_source/SLHAplus/include/SLHAplus.h

13 Mathematical tools.

Some mathematical tools used by micrOMEGAs are available only in C format. Prototypes
of these functions can be found in

sources/micromegas_aux.h

• simpson(F, x1, x2, eps)

numerical integration of the function F (x) in the interval [x1, x2] with relative precision
eps. simpson uses an adaptive algorithm for integrand evaluation and increases the
number of function calls in the regions where the integrand has peaks.
• gauss(F,x1,x2,N)

performs Gauss N-point integration for N < 8.
• odeint(Y, Dim, x1, x2, eps,h1, deriv)

solves a system of Dim differential equations in the interval [x1, x2]. The array Y contains
the starting variables at x1 as an input and is replaced by the resulting values at x2 as an
output. eps determines the precision of the calculation and h1 gives an estimation of step
of calculation. The function deriv calculates Y ′

i = dYi/dx with the call deriv(x, Y, Y ′).
The Runge-Kutta method is used, see details in [30].
• buildInterpolation(F,x1,x2,eps,&Dim,&X,&Y)

constructs a cubic interpolation of the function F in the interval [x1, x2]. eps controls the
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precision of interpolation. If eps < 0 the absolute precision is fixed, otherwise a relative
precision is required. The function checks that after removing any grid point, the function
at that point can be reproduced with a precision eps using only the other points. It means
that the expected precision of interpolation is about eps/16. Dim gives the number of
points in the constructed grid. X and Y are variables of the double* type. The function
allocates memory for Dim array for each of these parameters. X[i] contains the x-grid
while Y [i] = F (X[i]).
• polint4(x,Dim,X,Y)

performs cubic interpolation for Dim-dimension arrays X,Y. A similar function, polint3,
performs quadratic interpolation.
• bessk0(x)

The Bessel function of zero order of the second kind.
• displayFunc(F,x1,x2, title)

displays a plot of function F (x) in the [x1, x2] interval. title is a text which appears as
the title of the plot.
• displayFunc10(F,x1,x2, title)

displays F (10x) in the [x1, x2] interval.

A An updated routine for b → sγ in the MSSM

The calculation of b → sγ was described in micromegas1.3 [2]. The branching fraction
reads

B(B̄ → Xsγ) = B(B̄ → Xceν̄)

∣

∣

∣

∣

V ∗
tsVtb

Vcb

∣

∣

∣

∣

2
6αem

πf(z0)
KNLO(δ) (7)

where αem = 1./137.036, the factor KNLO involves the photon energy cut-off parameter
δ and f(z0) = 0.542 − 2.23(

√
z0 − 0.29) depends on z0 = (mc/mb)

2 defined in terms
of pole masses. In the code the standard model and Higgs contribution at NLO were
included as well as the leading order SUSY contributions. However in the last few years
the NNLO standard model contribution has been computed [33] and shown to lead to
large corrections, shifting the standard model value by over 10%. It was also argued that
the NNLO SM result could be reproduced from the NLO calculation by appropriately
choosing the scale for the c-quark mass [34, 35].

In this improved version of the bsgnlo routine, we have changed the default value for
the parameter z1 = (mc/mb)

2 where mc is the MS running charm mass mc(mb). Taking
z1 = 0.29 allows to reproduce the NNLO result. It is therefore no longer necessary to
apply a shift to the micromegas output of b → sγ to reproduce the SM value.

We have also updated the default values for the experimentally determined quantities
in Eq. 7, see Table A, and we have replaced the factor f(z0) by Csl where

Csl =

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

2
Γ(B̄ → Xceν̄)

Γ(B̄ → Xueν̄)
(8)

accounts for the mc dependence in B̄ → Xceν̄.
The CKM matrix elements in the Wolfenstein parametrisation given in Table A are

used to compute the central value of ckmf at order λ4,

ckmf =

∣

∣

∣

∣

V ∗
tsVtb

Vcb

∣

∣

∣

∣

2

= 1 + λ2(2ρ̄ − 1) + λ4(ρ̄2 + η̄2 − A2) (9)
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B(B̄ → Xceν̄) 0.1064 [37]
Csl 0.546 [35]

|V ∗
tsVtb/Vcb|2 0.9613 [37]

A 0.808
λ 0.2253
ρ̄ 0.132
η̄ 0.341

mb/ms 50
λ2 ≈ 1

4
(m2

B∗ − m2
B) 0.12GeV2 [36]

αs(MZ) 0.1189

Table 3: Default values in micrOMEGAs

With these default values the NLO- improved SM contribution is B(B̄ → Xsγ)|SM =
3.27×10−4 which corresponds to the result of Gambino and Giordano [35] after correcting
for the slightly different CKM parameter used (ckmf = 0.963).

We have performed a comparison with superIso3.1 which includes the NNLO SM
calculation for 105 randomly generated MSSM scenarios. The results are presented in
Fig. A after applying a correction factor in superISO to account for the different value

for the overall factor F = B(B̄ → Xceν̄)
∣

∣

∣

V ∗

tsVtb

Vcb

∣

∣

∣

2

/Csl. The ratio of Fmicro/FISO = 0.942.

The two codes agree within 5% most of the time.

Figure 1: Relative difference for B(B̄ → sγ) between micromegas2.4 and superIso3.1. the
vertical lines show the 3σ experimentally measured value.
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