The Role of Incoherent microRNA-mediated Feedforward Loops in Noise Buffering

Matteo Osella(✉), Carla Bosia(✉), Davide Corà(✉), Michele Caselle(✉)
Department of Theoretical Physics, University of Torino and INFN, Italy
Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Italy
Systems Biology Lab, IRCC and School of Medicine, University of Torino, Italy

Introduction:

Gene expression is a stochastic process: isogenic cells can show very different levels of the same protein.

The fine-tuning is effective only if coupled with a control of fluctuations. Can incoherent microRNA-mediated FFLs function as noise buffers?

Methods:

- Analytical solutions of master equations describing the regulatory circuits in analysis, taking into account the essential features of transcription, translation, degradation and interactions between genes,
- Gillespie stochastic simulations.

Master Equation for the FFL

\[\frac{dp_{\text{FFL}}}{dt} = \sum_{i} \left(k_{i} \left(p_{i} - p_{\text{FFL}} \right) + \delta_{i} \right) \]

Results:

(1) miRNA-mediated FFLs can couple the fine tuning of target protein level with noise reduction. Adding a miRNA regulative pathway to the simple activation of a gene by a transcription factor reduces the target protein mean level together with fluctuations.

(2) The fine-tuning function does not require a FFL topology as it can be implemented using an independent microRNA (open circuit), but the FFL structure is mandatory to control the target fluctuations.

(3) Incoherent FFL are particularly effective in filtering fluctuations of upstream regulators, conferring robustness to the gene expression program even in the presence of noisy signals.

(4) Our model predicts that there is an optimal repression strength for noise attenuation. The optimal noise buffering requires only a weak suppression of the mean target expression, coherently with the fine-tuning function and with experimental observations that many miRNAs reduce the output of their protein targets of less than 50%. The U-shaped profile of the target noise can be tested in different ways (varying miRNA concentration, TF concentration, miRNA efficiency).

References

1) Yu et al. 2008 Nucl Acids Res
2) Re et al. 2009 Mol Biosyst
3) Kaires et al. 2007 Cell
4) Tsang et al. 2001 Molecular Cell
5) Karres et al. 2007 Cell
6) Bartel 2004 Cell