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The DNA double helix
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The DNA double helix
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Molecular Dynamics

= Equations of motion solved in time for a set of atoms

° M?jTZ:ZF(-F): NU )

+ 2 R3N: cartesian coordinates of atoms, N: number of atoms,
M 2 R3N 3N: (diagonal) mass matrix,

U:RN1 R: potential energy function.

= Numerical approximation to deterministic Hamilton eqoas of motion
@ g=M1'p (g;p) = INH(q; p)

p=NU(q) J=

(a;p) 2 RN 3N: generalized coordinates and momenta.

H(g;p) = % "™ 1p+ U(g) isthe Hamiltonian (total energy R®N! R).
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Molecular Dynamics

= Integration scheme of Newton equations using Taylor esioaof position coordinates

@ r(t+dt) = r(t) + v(t)dt + (1=2)a(t)dt® + (1=6)b(t)dt® + O(dt*) (1)
rit dt) = r(t)  vtdt + (1=2)a(t)dt®? (1=6)b(t)dt> + O(dt*)  (2)

(D+(2) , r(t+d) = 2r(t) r(t di) + a(t)dtz + O(dt?)

rtedy)  r(t db)

at) = (1=m) Nu(r(t) v(t) = ot

(Verlet integration scheme)

Interactions between the atoms, i(r), which are in principle given by the Schrodinger equatiae, a
approximated by mainly pairwise potentials ("force eld”)

@ U= § Ko(b bo)?+ § Kq(g @)+ & (Va=2)(1+codnf d])

bonds angles dihedrals

+ & (N (B +(aigry)

nonbij
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Molecular Dynamics

t + 2dt

t+dt
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Molecular Dynamics

Assuming a stable integration scheme, Molecular Dynarsiessimlated to a
pure conservative (NVE) Hamiltonian simulation of manytjgare system. And
by coupling the system to a heat bath to a canonical ensetbi€)( The state
probability in the ] 3N phase space becomes:

e H(@p)=eT
r(g; p) e H(@P=*sTdqdp
Uses: R
o Ensembl Erodicng S P*eTdgdp 1R, o
nsemble averages,  Ergodicityft H@P%Tdgdp ~  tor v

@ Time evolution of chemical events.
@ Reasonable solutions in the multi-minima energy surface.

Limits:
@ Time and length scales.
@ Accuracy of forces.
@ Classical nuclei (Born-Oppenheimer approximation).
@ Stability of the integration scheme.
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MD simulations of DNA oligomers with a bending restraint
Bend-angle/step vs. bending regime (in degrees)

[cq]
5'CGCGCGCGCGCGGLS

[AT]
5'CATATATATATAT AC3'

[Atractl]
5'CGCGCAAAAACGCGC3!

[Atract?]
5'CGCGCGCGCAAAAACS!

read from top to bottom (please)

Curuksu, Zacharias, Lavery, Zakrzewska, (2088¥leic Acids Res.
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MD simulations of DNA oligomers with a bending restraint
Bending free energy

Curuksu, Zacharias, Lavery, Zakrzewska, (20R8leic Acids Res. _ - e
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MD simulations of DNA oligomers with a bending restraint
Base pair kink (type II)

(Curuksu, Zakrzewska, Lavery, Zacharias 2009)

@ Occurence of DNA kink motifs homologous to the kinks foundgimall
minicircles[ MD simulations, Lankas, Lavery, Maddocks (20@&jucture].
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Base pair kink (type I1)

MD simulations of DNA oligomers with a bending restraint

Curves+DNA schematic
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Linking number Lk: de nition and application

De nition:

+
Lk= nl n22n3 n4

Application:

Lk= Wr+ Q

-1 H
(Q= % ct(9ds)
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Material and methods

© 6 6 66 066 ¢ ¢

MD simulations

Circular double-stranded DNA 94 bp
sequence:

GGCCGGGTCG TAGCAAGCTC TAGCACCGCT
TAAACGCACG TACGCGCTGT CTACCGCGTT
TTAACCGCCAATAGGATTACTTACTAGTCTCTAC

Parm-bscO force eld(Perez et al 2007)
Periodic truncated octahedral cell.

PME electrostatics interactions QA).
Lennard-Jones interactions QA).

Equil. / heating (OKI  300K) in NVT.
Production in NPT (Berendsen th/ba).
Time step = 2 fs (SHAKE constraints).
Conformational frame saved every 1 ps.
Simulation time = 100 ns.

Name convention of the simulates

@ SPC/E water, 150mM KCI (i.e.
physiological concentratiorjpang 1995)
I SKCI10: Lk = 10, bp twist = 38.3
I SKCI9: Lk=9, bp twist=34.5
I SKCI8: Lk=8, bp twist=30.6

@ TIP3P water, minimal K+ (i.e. screen
DNA phosphate negative charges).

I TKC10: Lk = 10, bp twist = 38.3
I TKC9: Lk=9, bptwist=234.5
I TKC8: Lk=8, bp twist=230.6

@ SPC/E water, minimal K+ (i.e. screen
DNA phosphate negative charges).
I SKC9: Lk =9, bp twist = 34.5
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Kink and twist
Time evolution of roll at Lk = 10 and twist at Lk = 8 (spc/e wataodel)

Overwound minicircle Underwound minicircle

Simulation time increases upwards along the vertical axis.

Color bars indicates the rotation values in degrees.
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Average roll and propeller between base pairs
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Local unusual conformations observed in each simulation

Simulated bpstep bpstep start-end Type of bp rotation
system index (ns) deformation  angle (deg.)
SKC10 66 CG 10-100 Type I Kink 108 (9)

30/31 TTA  60-100 Type Il Kink 109 (15)
TK10 47/48 CTG  40-100 TypellKink 101 (14)
84/85 CTA  5-100 Type Il Kink 101 (8)
SKC9 - - - - -
SK9 - - - - -
TK9 72/73  TAG  15-100 Type Il Kink 73 (11)
SKC8 14 CA 65 - 100 unwinds 45 (12)
TK8 30 TT 8-100 unwinds 54 (12)
32 AA 10-100 unwinds 47 (14)

Rotation angle average (standard deviation) is given beriveeljacent 10 bp segments.
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Writhe number
Time evolution of writhe in underwound and overwound mirgtgs
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Average shape of the overwound 94bp DNA minicircle
SKCI10 trajectory, averaged coordinates over the last 90 ns
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Curvature and average twist in the overwound minicircle
Analysis of the two segments anking the kinks

Black: Close-to-straight segment.
Blue: Writhed segment.
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Principal component analysis of the overwound trajectory
Projection on the rst 5 eigenvectors (last 90 ns, spc/e)

Left: Most negative eigenvalues,
Middle: Averaged coordinates,

Right: Most positive eigenvalues.
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sr-wrapping

sr-bending
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Fourier analysis of the roll uctuations along the sequence

Amplitude (degrees)

20F 4

30k 4

%0 |
roll
50 1 1 1 1 1 1 1
o

;
10 20 30 40 50 60 70 80 90
Basepairs sequence

Jeremy Curuksu (Maddocks Lab Institute of mMolecular dynamics simulations of short supe October 20, 2010 26/30



Rotational register of the double helix in DNA minicircles
Fourier analysis of the roll uctuations along the sequence

a.- Frequency domain
(SKCI10, polar coord., 5 ns).

b.- Time domain
(SKCI10, 11th bandwidth, 5 ns).

c.- Phase of the dominant
scaled cosine function.

Black: Lk =8
Purple: Lk=9

Blue: Lk = 10
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Summary, conjectures, conclusion

@ DNA kinks are observed in overwound minicircles and localvinding
in underwound minicircles (wrinkles in tip3p) without deagation.

@ The ickering movement of unwound steps could make it eafsiebio-
logically active DNA loops to rotate.

@ Overwound minicircles take-on a standard twist, they bezdnghly
writhed and "then” kinked. Build-up of writhe presumablywéas for-
mation of kinks in DNA.

@ DNA local unusual conformations are more frequent in salvéth high
self-diffusion (tip3p).

@ DNA kinks make it possible to isolate=3"? of the sequence in B-DNA
conformation where the use of linear elasticity is sound.
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