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• Stationary expectation values of local observables are accessible


• Quench paradigm:  
 
 
 
 
local H, H0
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• What are the “few parameters”?  
 
 
 
Minimal info lies in the local 
conserved charges .[Q, H] = 0
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Minimal info lies in the local 
conserved charges .


• Typically we assume also clustering of the (initial) state:  
 
 
 

 “locality” of the theory!

[Q, H] = 0

⇒
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• Intuition: “local” observables  “local” operators


• (Quasi)local rep. of local observables in -symmetric systems
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𝔄ql = 𝔄+
ql ⊕ 𝔄+

qlσ
x
0

𝔄+
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𝔄+
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x
0
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ℓ



Consider a -symmetric system
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Consider a -symmetric system


By symmetry odd operators vanish: 

ℤ2

⟨ψ |O |ψ⟩ = − ⟨ψ |𝒫z[O] |ψ⟩ = − ⟨ψ |O |ψ⟩

Beyond locality

𝔄+
ql

𝔄+
qlσ

x
0 𝔄+

qlT

𝔄+
ql ⊕ 𝔄+

qlT

T = Πz(0) ∼ ∏
n≥0

σz
n

Should we care?

|ψ⟩ = | ↑ ⋯ ↑ ⟩ (H0 = − ∑
ℓ

σz
ℓ), 𝒫z[H] = H (𝒫z ↔ ∏

ℓ

σz
ℓ)

Araki 84 & 90




• Example: -symmetric integrable Hamiltonian and “local” GGE𝒫z

Semilocal charges
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• Example of a semilocal charge:  
 
 
 
 
 
 
 
 

Semilocal charges

H = ∑
ℓ

σx
ℓ−1(Jx − Jyσz

ℓ)σx
ℓ+1, Q = ∑

ℓ
[σx

ℓ−1(Jxσx
ℓσx

ℓ+1 + Jyσ
y
ℓσy

ℓ+1)σx
ℓ+2 − (Jx + Jy)I] Πz(ℓ + 1)

H̃ = ∑
ℓ

Jxσx
ℓσx

ℓ+1 + Jyσ
y
ℓσy

ℓ+1, Q̃ = ∑
ℓ

[Jxσx
ℓσx

ℓ+2 + Jyσ
y
ℓσy

ℓ+2 − (Jx + Jy)I] σz
ℓ+1

the second charge from the boost procedure

duality map



• What are the “few parameters”?  
 
 
 
Minimal info to describe   
is in conserved charges .


• Typically we assume also clustering of the (initial) state:  
 
 
 

 “locality” of the theory!

⟨O⟩t→∞
[Q, H] = 0

⇒

Local relaxation in isolated quantum many-body systems

ρ ∼ e−βH+μQ

Rigol et al. 07/08, and others Bob
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[O(x), O(y)] → 0
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y

⟨O(x)O(y)⟩ → ⟨O(x)⟩⟨O(y)⟩

Murthy & Srednicki 19, Gluza et al. 19 ?
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• Duality map  on the initial state 
 
 
 
 
 
 
 
 
 
 
 
Hidden symmetry breaking enables:


1. Nonzero semilocal operators  string order  

2. Clustering  relaxation to a canonical GGE 

σx
j−1σ

x
j ↦ σx

j , σz
j ↦ σz

j σz
j+1 (Πz( j) ↦ σz

j )

⇒

⇒

Clustering & hidden symmetry breaking

H0 = − ∑
ℓ

σz
ℓ

|GS⟩ = | ↑ ⋯ ↑ ⟩

H̃0 = − ∑
ℓ

σz
ℓσz

ℓ+1, 𝒫x[H̃0] = H̃0

|GS⟩ =
1

2
( | ↑ ⋯ ↑ ⟩ + | ↓ ⋯ ↓ ⟩)

hidden symmetry breaking 

Else et al. 13, Kennedy & Tasaki 92

(𝒫x ↔ ∏
ℓ

σx
ℓ)
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• Landau phases of matter (standard)


• symmetry protected topological order


A. string order

B. edge modes

C. topological entanglement entropy

local operator  suffices to determine the symmetry-broken GS of a ferromagnetσx
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knowledge of  and its symmetries is required to determine the phaseH
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|ψs⟩ = eisW |ψ0⟩, 𝒫z[W ] = W

 translationally invariant localW
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Wen et al. 12, Pollmann et al. 12, Fendley et al. 16, Kitaev 06 & many others

knowledge of  and its symmetries is required to determine the phaseH

|ψs⟩ = eisW |ψ0⟩, 𝒫z[W ] = W

 translationally invariant localW

we can play with semilocal theory

information from the edge of the system 

is carried by the strings extending to ∞ arXiv:2205.02221



1. Nonlocal objects can be relevant for a complete picture of local relaxation


2. Symmetry protected order: new representations of local observables  

A. Relevance of semilocal charges in inhomogeneous states:  
( ) we break transl. invariance 
( ) string order can still be present  (scaling!)  
 

B. Can we obtain semilocal charges from the transfer matrix?  

C. Edge modes — solving the finite-  open boundary chain  

D. Interacting models with -breaking charges

−
+ ⟨Πz(x)Πz(y)⟩ ≠ 0

L

ℤ2

Message & outlook

Fendley et al. 16/17

Prosen 14, Pasquier et al. 14

generalized

hydrodynamics

Fagotti 22

Gombor & Pozsgay 21


