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Asymmetric Avalanche Process on a ring
(Priezzhev, Ivashkevich, Povolotsky, Hu, 2001)

is a one dimensional stochastic process on a ring evolving in continuous
time

p particles, N sites; state x(t) = (1, 2, 5, 9, 11)
Evolution:

▶ all particles occupy different sites: jump randomly and independently
having waited for P(t(xk) < T ) = 1− e−T with probabilities L to the
left or R to the right(R + L = 1)

▶ particle comes to already occupied site the avalanche dynamics starts
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Avalanche dynamics

with probability µn, n particles go to the site x + 1;

with probability 1− µn, n − 1 particles go to the site x + 1 and one
particle stays at the current site x.

occurs instantly

(a) (b)

Figure: Totally asymmertic avalanche hopping with probabilities
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Master equation

Pt(x) := P(x(t) = x) - probability to be at state x at time t.

Given an initial distribution P0(x), Pt(x) satisfies forward Kolmogorov
equation

∂tPt(x) = LPt(x),

LPt(x) =
∑
x ′

(t(x ′ → x)Pt(x ′)− t(x → x ′)Pt(x))

,
t(x ′ → x) - transition rate

Bethe ansatz integrability condition + positivity of rates (Priezzhev,
Ivashkevich, Povolotsky, Hu, 2001)

µn = 1− [n]q = 1− 1− qn

1− q
, −1 < q < 0

A.Trofimova (NRU HSE) Research August 30, 2022 5 / 21



Why this process is interesting ?

Unstable states may appear randomly
specific transition into a totally unstable state, when ρ approaches ρc
and an avalanche never stops in the thermodynamic limit
unusual universal scaling behaviour

Figure: jN for q = −0.5, ρc = 2/3 and q = −0.125, ρc = 8/9.
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Stationary probability measure

is extremely simple
Pst(x) =

1

Cp
N

.

Analysis of discretized AAP stationary measure reveals the structure of
avalanches resulting in

jN =
(1− q)

Cp
N

∮
(1 + z)N

zp

[
Rg ′(zq)− Lg ′(z)

] dz
2πi

=

=
(1− q)

Cp
N

p−1∑
m=0

(m + 1)
(−1)mCp−m−1

N

1− qm+1
(Rqm − L).

in terms of

g(z) = −
∞∑
k=0

(−z)k+1

1− qk+1
=

∞∑
k=0

qiz

1 + qiz
.

(it has poles zi = −qi , i ≥ 0)
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Research Problem

is to investigate the current in the model

to develop a technique which allows to analyse higher cumulants of
the current with attention to transition point ρ = ρc

to use the connection to random growth interface problems (the
common point here is the universal behaviour at large scales, the
important problem is testing the universality, study the scaling
behaviour of the models in the Edwards-Wilkinson and
Kardar-Parisi-Zhang universality classes and beyond).

to find and analyse the scaling exponents and scaling functions for
particle current and diffusion coefficient
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Total distance Yt

Y0 = 0,
Yt : Ω×R → Z≥0 - random variable of total number of jumps made by all
particles

Yt → Yt +∆Yt , ∆Yt ∈ {1,−1, n ≤ p}

The behaviour of moment generating function in the large time limit
t → ∞ is dominated by the largest eigenvalue λ(γ) of the deformed model
generator

λ(γ) = lim
t→∞

lnEeγYt

t
=

∞∑
n=1

cn
γn

n!
,

First and second scaled cumulants:

J := c1 = lim
t→∞

E(Yt)

t
, ∆ := c2 = lim

t→∞

E(Y 2
t )− E(Yt)

2

t
,

(Bethe anzatz, Baxter’s TQ-equation, (Baxter, 1972, Prolhac, Mallick, 2008))
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Mean particle current

Introducing normalized differential

DN,p(t) :=
dz

2πi

1

Cp
N

(1 + t)N

tp+1
.

we reproduce the stationary state result

jN = RjRN − LjLN

jRN = (1− q)

∮
DN,p(z)zg

′(zq), jLN = (1− q)

∮
DN,p(z)zg

′(z).
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The group diffusion coefficient is

∆ = R∆R − L∆L, where both right and left parts are given by the formula

∆I = ϵ(I )pNj IN + 2N2
∞∑
i=0

∮ ∮
DN,p(t)DN,p(y)ty

aI (y)

t − qiy

+2N2
∞∑
i=1

∮ ∮
DN,p(t)DN,p(y)ty

qiaI (qiy)

t − qiy

for I ∈ {R, L}, where function ϵ(R) = 1, ϵ(L) = −1 stands for sign and
functions

aR(y) = (1− q)g ′(qy)−
jRN

ρ(1 + y)
,

aL(y) = (1− q)g ′(y)−
jLN

ρ(1 + y)
.
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Asymptotic analysis in the thermodynamic limit
p,N → ∞, p/N = ρ

The critical density is a point of model phase transition ρc = 1
1−q .

jN(ρ) ≃


ρ(1−ρ)(Rρc+(1−ρc )L)

(ρ−ρc )2
+ j reg∞ (ρ), ρ < ρc ,

N(Rρc + L(1− ρc)), ρ = ρc ,

N3/2eNs(ρ|ρc )
√

2πρ(1−ρ)

ρc (1−ρc )
(ρ− ρc)(ρcR + (1− ρc)L), ρ > ρc ,

where

j reg∞ (ρ) =
ρcR + (1− ρc)L

ρc(1− ρc)

∞∑
k=1

k

[
(ρc−1)2

ρ−1
ρ
ρ2c

]k
1−

[
ρc−1
ρc

]k − Lρ(1− ρ)

ρc

s(ρ|ρc) = (1− ρ) ln

(
1− ρ

1− ρc

)
+ ρ ln

(
ρ

ρc

)
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Crossover function for jN

Result 2: Under the scaling of

β =

√
N(ρc − ρ)√
ρc(1− ρc)

the particle current is described by

jN(ρ) = N(Rρc + L(1− ρc))F(β) + O(N
1
2 ),

where

F(β) = 1−
√

π

2
β erfc

(
β√
2

)
e

β2

2 .

erfc(x) =
2√
π

∫ +∞

x
e−t2dt.
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Asymptotic analysis in the thermodynamic limit
p,N → ∞, p/N = ρ

∆N(ρ) ≃


N3/2

(
f (ρ)

2(ρ−ρc )4
+∆reg

∞ (ρ)
)
, ρ < ρc

N7/2(Rρc + L(1− ρc))
√

πρc(1− ρc), ρ = ρc

N4e2Ns(ρ|ρc )4π(ρ− ρc)(Rρc + L(1− ρc))
ρ(1−ρ)
ρc (1−ρc )

, ρ > ρc

where

f (ρ) =
√
π(Rρc + L(1− ρc))(ρc(1− ρc))

3/2(ρ2c − 2ρc(1− ρ)− ρ)

∆reg
∞ (ρ) ≃

√
π(Rρc + L(1− ρc))

4
√
ρ(1− ρ)ρc(1− ρc)

∞∑
k=1

[
(ρc−1)2

ρ−1
ρ
ρ2c

]k
1−

[
ρc−1
ρc

]k (k2(1− 2ρ)− k3
)
−

√
π(ρ(1− ρ))3/2

4ρc
L.
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Result 3: Under the scaling of

β =

√
N(ρc − ρ)√
ρc(1− ρc)

the group diffusion coefficient is

∆N(ρ) = N
7
2 (Rρc + L(1− ρc))

√
ρc(1− ρc) G(β) + O(N3)

where the crossover function is

G(β) =
√
π(2F(

√
2β)−F (β))
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Current cumulats and statistics of avalanches

Consider particle current as a sum of signed avalanche sizes with the
number of avalanches given by the Poisson process Nt(p) with the arrival
rate p

Yt =

Nt(p)∑
i=1

Si ,

J = lim
t→∞

EYt

t
= lim

t→∞

1

t
E

Nt(p)∑
i=1

E (Si |n(ti );Nτ (p), τ ∈ [0, t]) = pEstS ,

∆ = lim
t→∞

E(Y 2
t )− E(Yt)

2

t
= lim

t→∞

1

t
E

Nt(p)∑
i=1

Nt(p)∑
j=1

Cov(Si ,Sj),

At low densities Cov(Si ,Sj), i ̸= j change the asymptotic behaviour of ∆.
At high densities the avalanches become large and the greatest
contribution comes from Var(Si ).
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From AAP to Ornstein-Uhlenbeck process

Consider AAP with L = 0,R = 1 in the scaling limit the avalanche size

S =
T∑

k=1

χ(k).

where χ(k) is a biased random walk with steps −1, 0, 1 ( Povolotsky,
Priezzhev, Hu, 2003) performed till the first return to the origin with transition
probabilities

Pb|a ≃


(
1−

(
ρ− a

N

))
(1− µa), b = a− 1,(

1−
(
ρ− a

N

))
µa +

(
ρ− a

N

)
(1− µa), b = a,(

ρ− a
N

)
µa, b = a+ 1.

for a, b > 1 and the lima→∞ µa = (1− ρc). Introducing

XN
t = (ρc(1− ρc)N)−1/2χ([tN]).

dXt = −(β + Xt)dt +
√
2dWt ,

where Wt is the standard Wiener process.
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First passage area for Ornstein-Uhlenbeck process
(Kearney, Martin, 2021)

dXt = −(β + Xt)dt +
√
2dWt , X0 = α > 0

with the time of stop τ = inf(t ∈ R≥0 : Xt = 0) is the rescaled avalanche
size. Thus, we are interested in evaluation of the area under the trajectory
of the process Xt

A(α) =

∫ τ

0
Xtdt.

The key idea is to introduce the generating function

P̃(s|α) = Ee−sA(α) =
∞∑
n=0

(−s)nAn(α)

n!

that satisfy the following ODE[
d2

dα2
− (β + α)

d

dα
− sα

]
P̃(s|α) = 0

with P̃(s|0) = 1 and limα→∞ P̃(s|α) = 0.
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Differentiating the last ODE in s and setting s = 0[
d2

dα2
− (β + α)

d

dα

]
An(α) = −nαAn−1(α); A0(α) ≡ 1.

subject to initial conditions An(0) = 0. It is solved by the recursion

An(α) = n

∫ α

0
e

1
2
(z+β)2

∫ ∞

z
z ′e−

1
2
(z ′+β)2An−1(z

′)dz ′dz

that yields the following integral expressions

A1(α) =

∫ α

0
e

1
2
(z+β)2

∫ ∞

z
z ′e−

1
2
(z ′+β)2dz ′dz

A2(α) = 2

∫ α

0
dz1e

1
2
(z1+β)2

∫ ∞

z1

dz2z2e
− 1

2
(z2+β)2

×
∫ z2

0
dz3e

1
2
(z3+β)2

∫ ∞

z3

dz4z4e
− 1

2
(z4+β)2 .
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For the moments of the avalanche size we should rescale
An(α) →

(
N3/2

√
ρc(1− ρc)

)n
An(α) and set α = 1/

√
ρc(1− ρc)N.

Then to the leading order in 1/
√
N we obtain

ES ≃ NF(β)

ES2 ≃ N5/2
√
ρc(1− ρc)

×

(
2(1−F(β))

β
− 4βF(β) + e

β2

2 πβ2

∫ ∞

β
e

x2

2

(
erfc

(
x√
2

))2

dx

)
.

The result for avalanche size agrees exactly with the crossover function
F(β) while the results for dispersion are agreed only in the dominant
terms.
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Thank you!
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