Anisotropic spin generalisation of elliptic Ruijsenaars operators and R-matrix identities
(joint work with Andrei Zotov) arxiv:2201.059442202.01177

Maria Matushko
steklov Mathematical institute of RAS

Recent advances in quantum integrable systems Lyon, France 29.08.2022
congratulations to Nikita

on his birthday!

Outline

- [Ruijenaars 87] Ruísenaars-Macdonald operators (scalar case)
commutativity \Leftrightarrow functional identities degenerations: elliptic \longrightarrow trigonometric \rightarrow rational
- Construction of anisotropic version of Ruíjsenaars-Macdonald operators in terms of elliptic R-matrix commutativity $\Leftrightarrow R$-matrix identities
- Lamers 181. [lamers, Pasquier, serban 201, [uglov 951 trigonometric case "freezing" (applications to long-range spin chains q-deformed Haldane-Shastry spin chain

Macdonald-Ruíjsenaars operators

$$
D_{k}=\sum_{|\mathbb{I}|=k} \prod_{\substack{i \in \mathbb{T} \\
j \& \mathbb{T}}} \Phi\left(z_{j}-z_{i}\right) \prod_{i \in \mathbb{N}} P_{i} c \begin{gathered}
k=1, \ldots, N \\
T \subset\{1,2, \cdots, N\}
\end{gathered}
$$

Here: $\left(p_{i} f\right)\left(z_{1}, \cdots z_{N}\right)=e^{-\frac{p_{2}}{z_{i}}} f\left(z_{1}, \ldots z_{N}\right)=f\left(z_{1}, \ldots z_{1}-\eta_{1}, \ldots z_{N}\right)$ - shift operator Elliptic case

$$
\begin{aligned}
& \text { Elliptic case } \\
& \phi(z)=\phi(z, h)=\frac{\theta^{\prime}(0) \theta(z+h)}{\theta(z) \theta(h)} \xrightarrow{\operatorname{In}(z) \rightarrow \infty} \begin{array}{l}
\text { trigonometric case } \\
\phi(z)=\Pi_{\cot }+\Pi_{z}+\Pi_{\cot } \cot h
\end{array}
\end{aligned}
$$ $\phi(z)=\phi(z, h)=\frac{\theta^{\prime}(0) \theta(z+h)}{\theta(z)(h)} \leadsto \phi(z)=\Pi \cot \eta_{z}+\Pi \cot \pi h$

$$
\begin{aligned}
& \theta(z)= \operatorname{eexp}\left(\frac{n_{i} \tau}{4}\right) \sin \prod_{z} \\
&+O\left(\exp \left(\frac{g n_{i} i}{4}\right)\right) \\
& t=\exp \left(-2 n_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \theta(z) \text { - odd theta function }
\end{aligned}
$$

$[$ Ruijsenaars 87]:
Let $\quad D_{k}=\sum_{|\mathbb{I}|=k} \prod_{\substack{i \in \mathbb{T} \\ j \notin \mathbb{T}}} q\left(z_{j}-z_{i}\right) \prod_{i \in \mathbb{I}} p_{i}$
Theorem $1\left[D_{k}, D_{l}\right]=0 \quad \forall k, l=1, \ldots N$

$$
\text { (*) } \sum_{|\mathbb{I}|=k}\left(\prod_{\substack{i \in \mathbb{T} \\ j \notin \mathbb{U}}} \phi\left(z_{j}-z_{i}\right) \phi\left(z_{i}-z_{j}-\eta\right)-\prod_{\substack{i \in \mathbb{\mathbb { N }} \\ j \in \mathbb{D}}} \phi\left(z_{i}-z_{j}\right) \phi\left(z_{j}-z_{i}-\eta\right)\right)=0
$$

Theorem 2. The Kronecker elliptic function

$$
\phi(z, h)=\frac{\theta^{\prime}(0) \theta(z+h)}{\theta(z) \theta(h)} \xrightarrow{\text { trig. }} \pi \cot \pi z+\pi \cot \pi h \xrightarrow{\text { rat }} \frac{1}{z}+\frac{1}{h}
$$

satisfies (*).

Example $N=2$

$$
\begin{aligned}
& D_{1}=\phi\left(z_{2}-z_{1}\right) p_{1}+\phi\left(z_{1}-z_{2}\right) p_{2} \\
& \mathcal{D}_{2}=p_{1} p_{2} \\
& {\left[D_{1}, D_{2}\right]=0}
\end{aligned}
$$

In trigonometric case $\phi(z)=\Pi \cot \Pi_{z}+\Pi \cot \Pi h$
passing to the exponential variables

$$
\begin{aligned}
& t=\exp \cdot(-2 \Pi i \hbar) \\
& x_{k}=\exp \left(2 \pi i z_{k}\right) \\
& q=\exp (-2 \Pi i \eta)
\end{aligned}
$$

$$
\begin{aligned}
& D_{1}^{\mu \mathrm{MaCd}}=\frac{t_{x_{1}}-x_{2}}{x_{1}-x_{2}} \cdot q^{x_{1} \frac{\partial}{\partial x_{1}}}+\frac{t_{x_{2}-x_{1}}}{x_{2}-x_{1}} \cdot q^{x_{2} \frac{\partial}{\partial x_{2}}} \\
& D_{2}^{M a c d}=q^{x_{1} \frac{\partial}{1 x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}}
\end{aligned}
$$

Example $\mathrm{N}=3$:

$$
\begin{aligned}
& D_{1}=\phi\left(z_{2}-z_{1}\right) \phi\left(z_{3}-z_{1}\right) p_{1}+\varphi\left(z_{1}-z_{2}\right) \varphi\left(z_{3}-z_{2}\right) p_{2}+ \\
& +\phi\left(z_{1}-z_{3}\right) \phi\left(z_{2}-z_{3}\right) p_{3} \\
& D_{2}=\phi\left(z_{3}-z_{1}\right) \phi\left(z_{3}-z_{2}\right) p_{1} p_{2}+\varphi\left(z_{2}-z_{1}\right) \phi\left(z_{2}-z_{3}\right) p_{1} p_{3}+ \\
& +p\left(z_{1}-z_{2}\right) p\left(z_{1}-z_{3}\right) p_{2} p_{3} \\
& \omega_{3}=p_{1} p_{2} p_{3} \\
& {\left[D_{1}, D_{2}\right]=0 \quad \Leftrightarrow(*) \text { with } N=3 \quad k=1} \\
& \text { coefficient at } P_{1} P_{2} P_{3}
\end{aligned}
$$

Notations: Let $I, J \subset\{1, \ldots, N\} ; I \cap J=\varnothing$
$(I, J)=\prod_{\substack{i \in \mathcal{J} \\ j \in J}} \phi\left(z_{i}-z_{j}\right) \quad$ and $\quad P_{I}=\prod_{i \in \mathbb{I}} P_{i}$

$$
\begin{aligned}
& \left(I_{-} J\right)=p_{I}(I, J) p_{I}^{-1}=\prod_{\substack{i \in J \\
k J J}} \phi\left(z_{i}-z_{j}-\eta\right) \mid I^{c} \text {-complement } \\
& D_{k}=\sum_{|\mathbb{T}|=k}\left(\Psi^{c}, T\right) p_{I}=\sum_{|T|=k} \prod_{\substack{i \in T \\
j \notin \mathbb{T}}} \phi\left(z_{j}-z_{i}\right) \prod_{i \in \mathbb{I}} p_{i}
\end{aligned}
$$

Theorem 1. $\quad\left[D_{k}, D_{e}\right]=0 \quad \forall k, l=1, \ldots N$
齿

$$
\begin{aligned}
& \text { (*) } \sum_{|\mathbb{T}|=k}\left(\left(\mathbb{T}^{c}, \mathbb{T}\right)\left(\mathbb{W}_{-}, \mathbb{T}^{c}\right)-\left(\mathbb{T}, \mathbb{T}^{c}\right)\left(\mathbb{T}_{-}^{c}, \mathbb{T}\right)\right)=0 \\
& \sum_{|\mathbb{I}|=k}^{|\mathbb{E}|=k}\left(\prod_{\substack{i \in \mathbb{T} \\
j \notin \mathbb{U}}} \phi\left(z_{j}-z_{i}\right) \phi\left(z_{i}-z_{j}-\eta\right)-\prod_{\substack{i \in \mathbb{T} \\
j \in \mathbb{N}}}\left(z_{i}-z_{j}\right) \phi\left(z_{j}-z_{i}-\eta\right)\right)=0
\end{aligned}
$$

Elliptic Baxter-Belavin R-matrix
$G L_{2}$ case 8 -vertex R-matrix

$$
\begin{aligned}
& R_{a}^{\hbar}(z)=\frac{1}{2}\left(\varphi_{00} \sigma_{0} \otimes \sigma_{0}+\varphi_{01} \sigma_{\theta} \sigma_{1}+\varphi_{11} \sigma_{2} \otimes \sigma_{2}+\varphi_{10} \sigma_{3} \otimes \sigma_{3}\right) \in E n d\left(\sigma_{0}^{\hat{\alpha}} C^{2}\right) \\
& \varphi_{00}=\phi\left(z, \frac{\hbar}{2}\right) \quad \varphi_{10}=\phi\left(z, \frac{1}{2}+\frac{t}{2}\right) \quad \varphi_{01}=e_{\phi}^{n / z}\left(z, \frac{\tau}{2}+\frac{t}{2}\right) \quad \varphi_{11}=e^{n \pi} \phi\left(z, \frac{1+\tau}{2}+\frac{\hbar}{2}\right)
\end{aligned}
$$

$\phi(z, t)=\frac{\theta^{\prime} \% \theta(z+\hbar)}{\theta(z) \theta(t)} \left\lvert\, \begin{gathered}\sigma_{a}-\text { Pauli matrices } \quad a=0,1,2,3 \\ \sigma_{0}=\binom{10}{0} \quad \sigma_{1}=\binom{01}{1} \sigma_{2}=\binom{0-1}{i} \quad \sigma_{3}=\binom{10}{0}\end{gathered}\right.$
$\begin{gathered}\theta(z) \theta(t) \\ \begin{array}{c}\text { Kronecker elliptic } \\ \text { function }\end{array}\end{gathered} \sigma_{0}=\left(\begin{array}{l}10 \\ 0 \\ 0\end{array}\right) \quad \sigma_{3}=\binom{0}{10} \quad \sigma_{\alpha}=\left(\begin{array}{cc}0 & -1 \\ i & 0\end{array}\right) \quad \sigma_{3}=\binom{10}{0-1}$

$$
R_{12}^{h}(z)=\frac{1}{2}\left(\begin{array}{cccc}
\varphi_{00}+\varphi_{10} & 0 & 0 & \varphi_{01}-\varphi_{11} \\
0 & \varphi_{00}-\varphi_{10} & \varphi_{01}+\varphi_{11} & 0 \\
0 & \varphi_{01}+\varphi_{11} & \varphi_{00}-\varphi_{10} & 0 \\
\varphi_{01}-\varphi_{11} & 0 & 0 & \varphi_{00}+\varphi_{10}
\end{array}\right)
$$

$R_{i j}^{\hbar}(z)$ satisfies
Yang-Baxter equation

$$
R_{12}^{\hbar}(u) R_{B 3}^{k}(u+\sigma) R_{23}^{\hbar}(v)=R_{23}^{\hbar}(v) R_{13}^{\hbar}(u+0) R_{12}^{\hbar}(u) \in E_{n d}\left(C^{\alpha} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)
$$

unitarity property

$$
R_{j}^{*}(z) R_{j i}^{k}(-z)=I d \phi(z, \hbar) \phi(-z, \hbar)=I d(p(\hbar)-p(z))
$$

We use $\bar{R}_{i j}^{k}(z)=\frac{1}{\phi(z, t)} \mathcal{R}_{i j}^{k}(z)$, then $\bar{R}_{i j}^{k}(z) \bar{R}_{j i}^{k}(-z)=I d$
Degenerations

Anisotropic version of quantum spin Ruijsenaars operators

$$
P_{\mathbb{T}}=\bigcap_{i \in \mathbb{I}} P_{i}
$$

Spin operators:

$$
R_{i j}(z)=\phi(z) \bar{R}_{i j}(z)
$$

$$
D_{k}^{\sin }=\sum_{|T|=k}\left(\mathbb{T}^{c}, \mathbb{T}\right) \bar{R}_{T^{c} T} P_{\mathbb{T}} \bar{R}_{T T^{c}}^{\prime} \quad k=1, \ldots, N
$$

Theorem 1 $\quad\left[D_{k}^{\sin }, D_{e}^{\text {spin }}\right]=0 \quad k, l=1, \ldots, N$

$$
\text { (**) } \sum_{|I|=k}\left(R_{T^{c} \Psi} R_{I-I^{c}}^{\prime} R_{I I T^{c}}^{V} R_{I^{c} I}^{\prime}-R_{I I^{c}} R_{I_{-}{ }^{c} T}^{\prime} R_{I_{-}^{c} T} R_{I I^{c}}^{\prime}\right)=0
$$

$\frac{\text { Theorem 2 }}{\text { satisfies }}$ Elliptic Baxter-Belavin R-matrix

Operators:
Example $N=3$ Identity:

$$
=\mathcal{R}_{12}\left(z_{1}-z_{2}\right) R_{13}\left(z_{1}-z_{3}\right) R_{31}\left(z_{3}-z_{1}-\eta\right) R_{21}\left(z_{2}-z_{1}-\eta\right) R_{i j}(z)=\phi(z) \bar{R}_{j} \cdot(z)
$$

$$
-R_{12}\left(z_{1}-z_{2}-\eta\right) R_{13}\left(z_{1}-z_{3}-\eta\right) R_{31}\left(z_{3}-z_{1}\right) R_{21}\left(z_{2}-z_{1}\right)
$$

$$
+R_{23}\left(z_{a}-z_{3}\right) R_{32}\left(z_{3}-z_{a}-\eta\right) R_{12}\left(z_{1}-z_{a}-\eta\right) R_{21}\left(z_{2}-z_{1}\right)
$$

$$
-R_{12}\left(z_{1}-z_{a}\right) R_{\alpha_{1}}\left(z_{a}-z_{1}-\eta\right) R_{\alpha_{3}}\left(z_{a}-z_{3}-\eta\right) R_{3 a}\left(z_{3}-z_{a}\right)
$$

$$
+R_{23}\left(z_{-}-z_{3}-\eta\right) R_{13}\left(z_{1}-z_{3}-\eta\right) R_{31}\left(z_{3}-z_{1}\right) R_{32}\left(z_{3}-z_{a}\right)
$$

$$
-R_{33}\left(z_{2}-z_{3}\right) R_{13}\left(z_{1}-z_{3}\right) R_{31}\left(z_{3}-z_{1}-\eta\right) R_{32}\left(z_{5}-z_{4}-\eta\right)=0
$$

$$
\begin{aligned}
& D_{1} \stackrel{\text { pin }}{=} \phi\left(z_{z}-z_{i}\right) \phi\left(z_{z}-z_{1}\right) p_{1}+\phi\left(z_{i}-z_{z}\right) \phi\left(z_{z}-z_{2}\right) \bar{R}_{12}\left(z_{i}-z_{z}\right) p_{a} \bar{R}_{z_{1}}\left(z_{z}-z_{z}\right)+ \\
& +\phi\left(z_{1}-z_{3}\right) \phi\left(z_{3}-z_{3}\right) \bar{R}_{\alpha_{3}}\left(z_{z}-z_{3}\right) \bar{R}_{B}\left(z_{1}-z_{3}\right) p_{3} \bar{R}_{3}\left(z_{3}-z_{1}\right) \bar{R}_{s 9}\left(z_{3}-z_{2}\right) \\
& D_{2}^{\sin }=\phi\left(z_{3}-z_{1}\right) \phi\left(z_{3}-z_{2}\right) p, p_{2}+\phi\left(z_{z}-z_{1}\right) \phi\left(z_{2}-z_{3}\right) \bar{R}_{x_{3}}\left(z_{i}-z_{3}\right) p p_{3} \bar{P}_{3 z_{2}}\left(z_{3}-z_{2}\right) \\
& D_{3}^{\sin }=p_{1} p_{2} p_{3}+\phi\left(z_{1}-z_{2}\right) \phi\left(z_{1}-z_{3}\right) \overline{R_{13}}\left(z_{1}-z_{2}\right) \bar{R}_{13}\left(z_{1}-z_{3}\right) p_{1} p_{3} \bar{R}_{3}\left(z_{3}-z_{1}\right) \bar{R}_{2}\left(z_{2}-z_{1}\right)
\end{aligned}
$$

Construction of spin operators
Notations

$$
\text { Fix } J=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\} \quad j \pm<j_{2}<\ldots<j k
$$

Example $\quad N=5 \quad J=\{2,5\} \quad I=\{1,3\}$

$$
\begin{aligned}
& R_{I J}=R_{12}\left(z_{3}-z_{2}\right) R_{35}\left(z_{3}-z_{5}\right) R_{15}\left(z_{5}-z_{5}\right) \\
& R_{I J}^{\prime}=R_{32}\left(z_{3}-z_{2}\right)
\end{aligned}
$$

In scalar case operators $D_{k}=\sum_{|I|=k}\left(I^{c}, T\right) P_{ \pm}$are symmetric: $\sigma D_{k} \sigma^{-1}=D_{k} \quad \forall \sigma \in S_{N}$ (Acting as Permutation of variables $z_{1} z_{2} \ldots z_{N}$; for example

$$
\sigma_{i, i+1} f\left(z_{1, \ldots}, z_{i}, z_{i+1}, \ldots z_{\pi}\right)=f\left(z_{i}, \ldots z_{i+1}, z_{i} \ldots z_{i}\right)
$$

Thus \mathcal{D}_{k} can be written as

$$
D_{k}=\frac{1}{k!} \sum_{\sigma \in S_{N}} \sigma\left(I_{0}^{c}, I_{0}\right) p_{1} p_{2} \ldots p_{k} \sigma^{-1},
$$

where $I_{0}=\{1,2, \ldots k\}$
in spin case we use another representation of S_{N} :

$$
S_{i, i+1}=\bar{R}_{i, i+1}\left(z_{i}-z_{i+1}\right) P_{i, i+1} \sigma_{i, i+1} \quad P_{12}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Construction of spin operators

$$
\begin{gathered}
S_{i, i+1}=\bar{R}_{i, i+1}\left(z_{i}-z_{i+1}\right) P_{i, i+1} \sigma_{i, i+1} \\
S_{(12 \ldots j)}=S_{i 2} S_{23} \ldots S_{j-1, j} \\
D_{k}^{s p i n}=\sum_{i_{1}<i_{2<}<\ldots<i_{k}} S_{\left\{_{13,}, i_{2} \ldots i_{k}\right\}}^{-s}\left(I_{0}^{c}, T_{0}\right) p_{s} p_{2} \ldots p_{k} S_{\left\{i_{2}, \ldots i_{k}\right\}} \\
S_{\left\{i_{1,}, i_{2}, \ldots i_{k}\right\}}: i_{m} \rightarrow m \\
S_{\left\{i_{s}, i_{2} \ldots i_{k}\right\}}=S_{\left(k \ldots i_{k}\right)} S\left(k-1, \ldots i_{k-1}\right) \ldots S\left(2 \ldots i_{2}\right) S_{\left(1 \ldots i_{1}\right)}
\end{gathered}
$$

Example $\mathrm{N}=3$

$$
\begin{aligned}
& D_{1}^{\text {spin }}=\phi\left(z_{2}-z_{1}\right) \phi\left(z_{3}-z_{1}\right) p_{1}+s_{12} \phi\left(z_{1}-z_{3}\right) \phi\left(z_{3}-z_{1}\right) p_{1} s_{12}+ \\
& +S_{23} s_{12} \phi\left(z_{2}-z_{1}\right) \phi\left(z_{3}-z_{1}\right) p_{1} s_{12} s_{23} \\
& s_{12}=\bar{R}_{12} P_{12} \sigma_{12} ; s_{23}=\bar{R}_{23} P_{23} \sigma_{23} \quad \bar{R}_{i j}:=\bar{R}_{i j}\left(z_{i}-z_{j}\right) \\
& D_{1}^{\text {spin }}=\phi\left(z_{2}-z_{1}\right) \phi\left(z_{3}-z_{1}\right) p_{1}+\bar{R}_{12} P_{12} \sigma_{12} \varphi\left(z_{2}-z_{1}\right) \phi\left(z_{3}-z_{1}\right) P_{12} P_{12} \sigma_{12} \cdot \overline{R_{21}}+ \\
& +\bar{R}_{23} P_{23} \sigma_{23} \bar{R}_{12} P_{12} \sigma_{12} \cdot \phi\left(z_{2}-z_{1}\right) \Phi\left(z_{3}-z_{1}\right) P_{13} P_{12} \sigma_{12} \bar{R}_{21} P_{23} \sigma_{23} \bar{R}_{32}= \\
& =\phi\left(z_{2}-z_{1}\right) \phi\left(z_{3}-z_{1}\right) \rho_{1}+\phi\left(z_{1}-z_{2}\right) \phi\left(z_{3}-z_{2}\right) \bar{R}_{12}\left(z_{1}-z_{2}\right) p_{2} \bar{R}_{2_{1}}\left(z_{z}-z_{1}\right)+ \\
& +\phi\left(z_{1}-z_{3}\right) \phi\left(z_{4}-z_{3}\right) \bar{R}_{23}\left(z_{i}-z_{3}\right) \bar{R}_{13}\left(z_{1}-z_{3}\right) p_{3} \bar{R}_{31}\left(z_{3}-z_{1}\right) \bar{R}_{39}\left(z_{3}-z_{2}\right)
\end{aligned}
$$

Anisotropic version of quantum spin Ruijsenaars operators

$$
(T, J)=\prod_{\substack{i \in T}} \phi\left(z_{i}-z_{j}\right) \quad R_{T J}=\prod_{\substack{i \in T T_{j}, j J \\ i \in j}} R_{i j}\left(z_{i}-z_{j}\right) \quad R_{I J}^{\prime}=\prod_{\substack{i=T_{j} \in J}} R_{i j}\left(z_{i}-z_{j}\right)
$$

$$
P_{\mathbb{T}}=\bigcap_{i \in \mathbb{I}} P_{i}
$$

Spin operators:

$$
R_{i j}(z)=\phi(z) \bar{R}_{i j}(z)
$$

$$
D_{k}^{\operatorname{spin}}=\sum_{|T|=k}\left(\mathbb{T}^{c}, \mathbb{T}\right) \bar{R}_{T^{c} T} P_{\mathbb{T}} \bar{R}_{T T^{c}}^{\prime} \quad k=1, \ldots, N
$$

Theorem 1 $\left[D_{k}, D_{l}\right]=0 \quad k, l=1, \ldots, N$

$$
\text { (**) } \sum_{|T|=k}\left(R_{T^{c} \Psi} R_{I-I^{c}}^{\prime} R_{I I T^{c}}^{V} R_{I^{c} I}^{\prime}-R_{I I^{c}} R_{I_{-T}, T}^{\prime} R_{I_{-}^{c} T} R_{I I^{c}}^{\prime}\right)=0
$$

$\frac{\text { Theorem 2 }}{\text { satisfies }}$ Elliptic Baxter-Belavin R-matrix

Application: Long Range Spin Chains equilibrium
Polychronakos freezing trick $z_{k}=\frac{k}{N}$ - equesition $\begin{gathered}\text { of classical }\end{gathered}$ Hamiltonians of spin chain model

trigonometric
case
Spin
Lamers - q-deformed Haldanecase of $\left.D_{k}^{\text {sin }} \underset{\substack{\text { Lamers- } \\ \text { Tasquier-Sersan; } \\ \text { Ugover }}}{\text { Shastry }}\right|_{\hbar \rightarrow 0} ^{\text {spin chain }}$ spin Calogero-Sutherland $\xrightarrow{\text { Id }}$ Haldane-Shastry spin chain model

$$
H^{H s}=\frac{1}{4} \sum_{j \neq k}^{N} \frac{1-P_{j k}}{\sin ^{2}\left(\frac{\pi}{N}(j-k)\right)}
$$

Thank you for your attention!

