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Motivation:

find new methods to compute correlators in integrable models
from spin chains to AdS/CFT

Should exist a basis where wavefunctions factorize (az\@) ~ Q(Il)Q(ng) - Q(:EN)

Separation of Variables (SoV)

Expected to be very powerful
But for a long time almost undeveloped beyond GL(2)

Would shed light on many open problems:
correlators, form factors,
3pt functions in N=4 super Yang-Mills, ...

Need to understand and develop SoV



For scalar products we need measure

In GL(2)-type models:

N ()

L
(WplWy) = J dhx [ []@W (@) [M(x) | [ ] QP (x:)
1=1

1 e’

= measure 2P
N N
state A ) \ state B )

(I

GL(N) models are much harder
Only recently understood how to factorise wavefunctions

e.g. for SL(2)

Hk(€2wmj o eZm:k)(:L,j o xk—)

M(X) 1—[(1 i 6271'($j—9k))
7.k
[Sklyanin 90-92]
[Derkachov Korchemsky Manashov 02]

[Sklyanin 92] [Smirnov 2000]
[Gromov FLM Sizov 16]
[Maillet Niccoli 18]

[Ryan Volin 18]

Measure was not known at all [cf Smirnov Zeitlin 02]

Focus of this talk — the measure and correlators



Plan

* Compact SU(N) spin chains [Gromov, FLM, Ryan, Volin 19]

* Noncompact case, [Cavaglia, Gromov, FLM 19 Gromoy, FLM, Ryan 20]
explicit result for measure, correlators

* Extensions to field TheOl’)’ [Cavaglia, Gromov, FLM 21 + in progress]
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SU(N) spin chains

Full Hilbert space for [, sites is (CN &) CN X - X CN

.

¥

L
H=> (1-—P,n+1) L times
n=1

(+ boundary terms, i.e. twist)

Monodromy matrix:

T(u):Ral(u—ﬂl)...RaL(u—HL)g a

Riz(u) = (u — §) +1iPi
We take generic inhomogeneities 6,, and diagonal twist g = diag(Aq, ..., AN)

L
Transfer matrix  1rq T(U) = Z Thu™ gives commuting integrals of motion
n=0




Wavefunctions for spin chains

N

(2[0) = ] [ @1 (a) Qr=e]]

(v —uy)

k j=1
(x| = eigenstates of operator B(u) = H(u — Tp) [B(u), B(v)] =0
SU(2): T(u) = (égzg g%i;) rp =0k +i/2, k=1,...L [Sklyanin 90-92]

Gives 2 states, basis of the space

SU(N): B is a polynomial in elements of T [Sklyanin 92 for SU(3)]
[Smirnov 2000] [Gromov, FLM, Sizov 16]



Brief summary of results



SU(N) — results summary (1) (x| W) = H Q1(xk)
k

[Gromov, FLM, Sizov 16]
For SU(N) we need to slightly modify Sklyanin’s proposal
T — T = KTK™! B — peood

1) Found spectrum of x
2) Found that we can build states nicely

‘\If> — B(ul)B(’LLQ) o B(UM)‘O> Any SU(N) ! No need for nested BA,

use roots of 1 Baxter polynomial

We proved various special cases
Then part 2 proved for SU(3) [Lyashik, Slavnov 18]

Then full proof for SU(N) [Ryan, Volin 18], who also showed equivalence with another way to build x
[Maillet, Niccoli 18,19,20]

(x| ~ (0|T(01 +i/2)™ ... T(0 +i/2)"

Analog of part 2 found for super SU(1|2) [Gromov, FLM 18]



To compute correlators 1
one inserts the complete basis %; < ) ( ‘

measure My = ((z|z))~1

Overlaps between these states look complicated

Can we find a way around this?



SU(N) — results summary (2) [Cavaglia, Gromov, FLM 19; Gromoyv, FLM, Ryan, Volin 19]

* Constructed ‘dual’ C-operator for SU(N), gives SoV basis |y) for bra states (|
B and C states have simple overlaps (z|y), are natural to pair!

* Found alternative way to compute overlaps (= SoV measure)
Bypasses operator construction, gives measure from simple det of integrals

Yet another way found later: recursion relations of [Maillet, Niccoli, Vignoli 20]

More recently we found completely explicit result for measure [Gromov, FLM, Ryan 20]

* Get simple det expressions for form factors/scalar products
for large class of operators (likely complete)

* Similar statements for SL(N) (infinite-dim rep)



Detailed example: SU(N) measure



SU(2) spin chain

M L
— eu% U —u = u— 6,
|dea: orthogonality of states must imply same for Qs @ kl;[l( k) Qo 7—,,1:[1( )
L—-1
Baxter equation can be written as T =2cospul + )y Iu"
n=>0
. A 1 I T1
o)1 =0 O = —D2 +—D7"— sy f*=fxif2), = flutia/2)
Qy Qy Qy Qg

Df(u) = f(u-+1i/2)

Key property: self-adjointness A i o
o 109) = fau f |2+ - Tyl
(0g) = (40F) 00 ; ;

(1) = § du f(u)




We can introduce L such brackets (f); = fdu wi f

L
(fOg9); = (9Of);  pj=e>"0"D% j=1,...L 7 =2cospu” + > Lu!
k=1
This gives orthogonality! /
. . A 1 1 T . L
B/ AA  ABYNA\ . _ I o VAR o S 1 uniquely identify
<Q (O O )Q >J =0 0= Q;D + QQ_D QZOFQQ_ the state
L _
IA IB uk 1QAQB B
k=1 0 o j
Nontrivial solution means det=0 Sum of residues at u = 0,, + /2
i.e. at x eigenvalues as expected
uk—lQAQB
1<(}e]€t<L 0T0- X 0AB Scalar product in SoV
=JR= 0 %o j

[Sklyanin; Kitanine, Maillet, Niccoli, ...]

Matches known results [Kazama, Komatsu, Nishimura, Serban, Jiang, ...]



SU(3) spin chain

For SU(3) we have 2 types of Bethe roots

L o sofe J\VU : S A\'t' : . Wi
H wj — On +1/2 _ pild1—¢2) Uj — U 1 ¢ uj — v —1/2 momentum-carrying {uj} —1
S uj— O —i/2 by Wi~ Uk — 1 U — U i/2 J
00 g — Vg + 1 o up — /2 N
]_ — (r"((:".?—(-“).'i) n J ’ I_I J .//T- qUXiqury {U -} v
A‘#_j l‘.j — Uk — , =1 l.) — W w I/‘Z J _]:1
i'\'ru Ny
fj)l u __ o - _ o1+o2)1 -
Q = ‘ ‘(IL—I.I,J) Q2 =€ H (u —vj)
j=1 =1

Main new feature: should use Qi in addition to (i to get simple measure

Other Qs give dual roots Q! = Qa3, etc



Baxter equations: Ta(u) = “LX“(G) n Z 1 Toj1.
j=1
- 1 1
O0-—p?-_2_pty_L p___pt
Qg Qo Qo 6 Qo Wy
1 N 3 1
0 QQ QQ QGQQ Qg
o =0 ©00Qu=0 )y = fdup f
These two operators are conjugate!  (fOog); = (gO o f); [y = p2m(I—1)u

(QF (04 = 0P)Q*™"); =0



L
Ta(u) = ?:,LX“(G) + Z w? =1 I i1,
j=1

= 1 . T . hl 1
Qy Qs Qp QyQy @
<QE(OA — OB)Qa’A>j =0 We have freedom which Qs to choose

Linear system:

k a,Al— o]
> (Iﬁ,k—fikx—l)a(“ Qrom > 0

+ —
a={1,2}, k=1,...,L in’ QQ J

We have 2L variables, and two choices of a give 2L equations



6 6

1 k—1 A N3+ 1

<\PB‘\I/A> X

Each bracket is a sum of residues at v =0, +i/2

_ 21 _
<@+1Q— uOI >~” <Q+1Qg uQ

[Gromov, FLM, Ryan, Volin 19]

L
NAéAB—ZMmyHQl Xi1) Q1 (X ,2) H Q% (YVie)Q%(Ye2) — Q5 (Ye2) Q% (Vi)

\

matches spectrum of B(u) !

Can we build the basis where these are the wavefunctions?



Operator realization for SU(3) [Gromoyv, FLM, Ryan, Volin 19]

N1 L (N_l B \ (N_l 8 . A Instead of integrals
(Wp|W,) = J (H Hd) [T\ (@ia) | M (x) [T (z:.) |  we have sums
a=1 4=1 a=1 i=1 a=1 =1
\ sta?crc A / \ st',z:t; B ) (\DB|\I}A> = %MW(‘I/B@) (SC“PA>

Get scalar product from construction of two SoV bases |y> and <Q;"
[Sklyanin 92] [Gromov FLM Sizov 16]

<ZC‘ are eigenstates of familiar operator B(u) = TQB('EL.)[jrgl(if. — 1) — Tlg(-z.r,)[}*g?(u — 1)

|y) are eigenstates of new “dual” operator C(u) =T?3(u— $)Us'(u— 1) — T 5(u — £)Us?(u — 1)

]
]

Mgy .y = ( Y )_1 Measure matches what we got from Baxter!
'Y



To build SoV basis we act on reference state with transfer matrices

B(u) is diqgonqlized by [Maillet, Niccoli 18] [Ryan, Volin 18]

(x| x (0] H O —i/2)]" T2 0 <myy < mype <1

C(U) is diqgonqlized by [Ryan, Volin 18] [Gromov FLM, Ryan, Volin 19]

) X H 7/\'1((9].C — i/2)nk’2_nk’1 ’f‘g(@k o 7;/2)”"”1‘(» 0< Ne1 < Nkga < 1

k=1

Proof is direct generalization of

highly nontrivial methods from [Ryan, Volin 18] %

Based on commutation relations +

u+kh [

identifying Gelfand-Tsetlin patterns e

+ Ry(u,v),



Mgy = ((z]y)) 1 (R W) = X M, (U ply) (z] W)

Notice for SU(2) the overlaps matrix is diagonal

For SU(3) it is not, but the elements are still simple!

[Cavaglia, Gromoy, FLM 19]
[Gromoyv, FLM, Ryan, Volin 19]

1, k—1HA 1 k—1A2—
Y (oo ),
) (G010 )5 (o Q).
< 1, k- 1QA()J‘>3 < 1 _uk—lQ,laxQ;—>j

QQQQ QOQG -

Alternative approach: [Maillet, Niccoli, Vignoli 20]

fix measure indirectly by deriving recursion relations for it
(+ another measure found in different basis)

Result should be same, would be interesting to prove



(W] %

Diagonal form factors of type

CPW)

From self-adjoint property:

0 =(Q(O0 +60) 0 (Q+5Q)) = (QO 0 3Q) + (RSO0 0 Q)

N J
Y =0
k
det -m.g_.)
-~y 1 i‘j J.L ‘}
So (G}Iﬁ‘ — . _.
| 2sin¢ .df't i
[ I
J : \'\

norm

All this generalizes to SU(N)

%|\D> B oI, are computable, give ratios of
0p determinants.

L—1

T = 2coso ut + Z Iu”
k=0

Link §1,, with ¢
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[Cavaglia, Gromov, FLM 19]

General structure in SL(N):

i VO )

N—-1 L N—1 L X N—1 L a
Walwsy = [ ( T[] dwi (TP @ia) | M) | TTTT@® (@ia)
a=1 =1 a=1 1=1 a=1 i1=1
\ stz:t; B )

state-independent operator, contains shifts

J

Fo
"x.){_-'l

similar to conjecture of [Smirnov Zeitlin]

371
M(x) —  Jdet h(l* 27 (& em)J

.I. '-':.:.'1: .j '-':':. L [ o

based on semi-classics
and quantization of alg curve




Representation with weight [s, O, ... 0], including infinite-dim case

I(s —i(u—0,))(s+i(u—06y))

Integral = sum over infinite set of poles in lower half-plane [ =
e (u—0n)
Everything works like before!
1 1000 2000 3000 3616
1 T T T 1
Recently we managed to compute measure for any GL(N)
explicitly and for any spin  [Gromoy, FLM, Ryan 20]
N_1 A/ N-_1 1000 - 1000
. : i\-(xa—lmﬁ) Fang
M, , = sign(o S 2
7 L Z (o) (]_[ A({0a}) U Fee,0
c—=perm,n a=1 a=1 Oo.a—ka.a—Ma.a+a
\ 2000+ - 2000
Tan = __iﬁ{n 1 —ifly +105)2s 1
2T 5 '
+1 _ Lk—lQA(;)é‘* ; +1 _ k—lQA(\J'E’g' j
<\DB‘\I’A>OC <Q91Q91k_1 114 :5-> <Q91Q9 uk_l 114’3> 2000 3000
o v Qs >f <Q:Q;“ Qs >j
3616 43616

1 | 1 |
1 1000 2000 3000 3616



Can also compute many other correlators in det form

E.g. overlaps with different twists (| e — [[Qm:@m Ql]] [Gromov, FLM, Ryan 20]

Use that SoV basis is twist-independent [ryan, Volin]

Also on-shell and off-shell overlaps o o
. . W) off shell = D(v1) ... D(wg)|€2;
involving B and C operators

‘P Cryy (V1) oo o Cype v )bg (wy) ... bg, (wy) O
‘O

Likely this gives a complete set of operators

Further powerful generalization and simplification:

see N. Primi’s talk tomorrow [Gromov, Primi, Ryan 22]
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Integrability in N=4 super Yang-Mills

integrable spin chains

single trace operators

Tr(P1(z)Po(x)Po(x)P1(x) .. .) ——

\Ij ~J Q (ajl ) Q (332) o Q (mn) Q-functions are known at any coupling  [Gromov, Kazakov,

from Quantum Spectral Curve Leurent, Volin 13]

Marboe, Volin 14,16,17] e

Gromoy, FLM, Sizov 13,14]
Gromoy, FLM, Sizov 15 x2] '.
Gromoy, FLM 15, 16] Re S(4) """'.'
Alfimov, Gromov, Kazakov 14] 18]
FLM, Preti 20] ...

Gives exact spectrum very efficiently |
All-loop, numerical, perturbative, ...

Lo I e T e T s B s N s |

Hope to link with exact 3-pt functions
which are much less understood

Re A



Goal: write correlators in terms of Q’s

First .cII-Io<.>p example: e (41 G €—93%)
3 Wilson lines + scalars ‘123 = TN
wf(QL}(QE}

[Cavaglia, Gromoyv, FLM 18]

in ladders limit

Similar structures seen in very different regime via localization
[Komatsu, Giombi 18,19]



Extension to local operators

Gurdogan,
Kazakov 2015

N
s == [d'atr (0"6}0u1 + 0" obouds + 262 ¢ dhe1 o)

Baby version of N=4 SYM, no susy but inherits integrability

“fishnet CFT”

1 ! 1 1
__ A 4 A A

A\ 4

Integrability visible

directly from Feynman graphs

\ 4

\ 4

| » 9 du,
We find very similar O ~ dA _ | u 2mi [Cavaglia, Gromov, FLM 21
structures OOL

de Lﬁz(q+q—— . q—g ) d_u + with A. Sever]

2711




Spin chain picture

Get SO(4,2) spin chain in principal series rep

Wavefunction of spin chain = correlator in CFT

volz1,...,z1) = (Oxg) tr [r:a'}{.n] " c_."?j;l[:.:',,r}]:} -
/ [Gromov, Sever 19]
Tr ($(x0)) ’

Spin chain form factors = more involved correlators

Can compute them via SoV! [Cavaglia, Gromov, FLM 21]

E.g. from 0 I/0p compute 2pt function
with local insertions to all loop orders

OH ., T o i} ) ) i,
6?10.H = 8 [_% 1 -|-;¢;g_ 6-,L'§- + (;L:Q.__Q__Lx:iH + -.L-Q.QH;L:E__Jﬂ
1 1
x O3l —5—
Ia-.a-—l Ia.a-—l

local action of 7

differential operator




Hope to get experience for simpler 1d/2d fishnets [in progress],
then extend to 4d

[recent work on diagrams in 1d: Loebbert et al]



Proposal for g-function [Cavaglia, Gromov, FLM 21]

: Bl (B ¢ oo det [1 — t_’;’_]
Typical structure g= {II* | q;f :lf B) = exp (/ O(u)log(l+ }’l{n]]fir:) % .
for g-function: V (¥w) 1 \\ det [1 — G’_]

boundary-dependent, simple > 4

universal factor, hard

~

Like for GL(N) spin chains we conjecture the scalar product in SoV \ we will guess it
from norm

<‘PA|\PB> ox det Map Ss—___ built from integrals

of Q-functions

My 0

For parity-symmetric states M4 = ( 0 M

) = det M =det M det M_

[M_|  nontrivially satisfies

We propose universal part of g-function (yuniverﬁaﬂ? ¢ — _
M|, selection rules!

inspired by spin chain/sin-Gordon results
[Gombor, Pozsgay 20, 21] [Caetano, Komatsu 20]



N=4 SYM

Still have the key starting point! [Cavaglia, Gromov, FLM 21]

[(QB(OA - 0B)QAa)a =0 ]

Main difference with spin chains /fishnets: . . .
Implies infinitely many integrals of motion

infinitely many degrees of freedom

Determinants of infinite size — should reduce to fixed size at each order in perturbation theory

Hope fo uncover new structures



FUTURE

Finally we know SoV measure for higher-rank spin chains

Extensions: super case [Gromov, FLM 18; Maillet, Niccoli, Vignoli 20],
SO(N) [Ferrando, Frassek, Kazakov; Ekhamar, Shu, Volin 20],
principal series rep for fishnet, Slavnov scalar products, ...

Applications for generalized hydrodynamics?  [Poszgay et al] Long range /Calogero?

[in progress with
Ferrando, Lamers, Serban]

Algebraic meaning of /Q1Q2Q3 G

AdS /CFT: more general correlators, beyond ladders/fishnets, 1d/2d fishnet [in progress]
Many hints of hidden SoV structures!



Happy Birthday, Nikital!

C lHém poxaeHusa!






Algebraic picture

Generating functional for transfer matrices in antisymmetric reps

W = (1 - Ai(u)D?)(1 — As(w)D?)... (1 = Ax(w)D?) = 3 (=1)F 7, (u) DF
k=1

Define left and right action ﬁf(u) = f(u+1/2), fD = flu—1i/2)

Then QGW =0 and WQ“ =0

Using that for any operator fg@f = jgfﬁg we get f@f(WA — WB)Q% =0



We also generalized to any spin s of the representation [Gromov FLM, Ryan 20]

O

(fin = f du fin f [, ! = i = ['(s —i(u—6,)T(s +i(u—6,))

— 1 _l_ezw(u—Qn) o (u—0,)

— 0

For SL(2) we reproduce [Derkachov, Manashov, Korchemsky]

To build SoV basis we need more involved T’s in non-rectangular reps see [Ryan, Volin 20]

- . omy —
1Y) X Ty mo} (9n+zs+z 12 Ml) 10)

Integral = sum over infinite set of poles in lower half-plane

-

The measure we get from Baxters again matches

the one from building the basis!



. . . . . . . [Cavaglia, Gromov, FLM 19]
Infinite-dim highest weight representation of SL(N) on each site

oo

Now we have integrals instead of sums (f); = / du u; f " 1

T 1 1 e2n(u—0;)

— OO
O=Q,D° 71D ' +7D—-QsD"
O=Q D™ -7 D+ D-Q, D*
We would like (gO o f) = (fO o g)

Now when we shift the contour we cross poles of the measure

(900 f) = / w9 |Qp fH = maf ™+ muft — Qf fH| = (fOog) + pole contributions

Qi85 + 5T (85 + %) — Q1(8; + F)Qo(6; + 5) =0
Poles cancel when g = Q1! Then everything works as before



The two Baxter equations are ‘conjugate’ to each other! [Cavaglia, Gromoy, FLM 19]

0Q1=Q QM — O + 5@ —Q, QT =0
0Qa=Q,Q Y — 1Q; + Q7 — QM =0

Qr O

Analog of self-adjointness property: Ql ()c f ;= ()

A +00
(900 = [ e [Q = - nf~ +nf* - Qf 7+ du

+o0o0+120 ‘

B / pi(u+%) | Qs g™ — gt +g” — Qg f(w) du
—DO—'—ZU‘ ™ ' d

! Oog ]

+ residues from poles ,

Poles cancel if g = (J1 | Use nontrivial relations between T's and Q’s



Comment on chronoloqgy:

Such tricks with Baxters were used in [Cavaglia, Gromov, FLM 18] for cusp
Then in [Cavaglia, Gromov, FLM 19] for SL(N) spin chain

And then in [Gromoyv, FLM, Ryan, Volin 19] for SU(N) spin chain



