SEPARATION OF VARIABLES AND CORRELATION FUNCTIONS

Fedor Levkovich-Maslyuk
Institut de Physique Théorique, CEA Saclay
2103.15800 [Cavaglia, Gromov, FLM]
2011.08229 [Gromov, FLM, Ryan]
1910.13442 [Gromov, FLM, Ryan, Volin]
+ work in progress
1907.03788 [Cavaglia, Gromov, FLM]
1805.03927 [Gromov, FLM]
1610.08032 [Gromov, FLM, Sizov]

Motivation:

find new methods to compute correlators in integrable models from spin chains to AdS/CFT

Should exist a basis where wavefunctions factorize $\quad\langle x \mid \Psi\rangle \sim Q\left(x_{1}\right) Q\left(x_{2}\right) \ldots Q\left(x_{N}\right)$
Separation of Variables (SoV)
Expected to be very powerful
But for a long time almost undeveloped beyond GL(2)

Would shed light on many open problems: correlators, form factors, 3 pt functions in $N=4$ super Yang-Mills, ...

Need to understand and develop SoV

For scalar products we need measure
In GL(2)-type models:

$$
\left\langle\Psi_{B} \mid \Psi_{A}\right\rangle=\int d^{L} \mathbf{x}(\underbrace{\prod_{i=1}^{L} Q^{(A)}\left(x_{i}\right)}_{\text {state } A}) \underbrace{M(\mathbf{x})}_{\text {measure }}(\underbrace{\prod_{i=1}^{L} Q^{(B)}\left(x_{i}\right)}_{\text {state } B})
$$

$G L(N)$ models are much harder
Only recently understood how to factorise wavefunctions

$$
\begin{aligned}
& M(\mathbf{x})= \prod_{j<k}\left(e^{2 \pi x_{j}}-e^{2 \pi x_{k}}\right)\left(x_{j}-x_{k}\right) \\
& \prod_{j, k}\left(1+e^{2 \pi\left(x_{j}-\theta_{k}\right)}\right) \\
& \quad \begin{array}{l}
\text { [Sklyanin 90-92] } \\
\\
{[\text { Derkachov Korchemsky Manashov 02] }}
\end{array}
\end{aligned}
$$

[Sklyanin 92] [Smirnov 2000]
[Gromov FLM Sizov 16]
[Maillet Niccoli 18]
[Ryan Volin 18]

Measure was not known at all

Plan

- Compact $\operatorname{SU}(\mathrm{N})$ spin chains
[Gromov, FLM, Ryan, Volin 19]
- Noncompact case, [Cavaglia, Gromov, FLM 19 Gromov, FLM, Ryan 20] explicit result for measure, correlators
- Extensions to field theory [Cavaglia, Gromov, FLM $21+$ in progress]

COMPACT SPIN CHAINS

SU(N) spin chains

Full Hilbert space for L sites is $\mathbb{C}^{N} \otimes \mathbb{C}^{N} \otimes \cdots \otimes \mathbb{C}^{N}$
$H=\sum_{n=1}^{L}\left(1-P_{n, n+1}\right)$
(+ boundary terms, i.e. twist)

Monodromy matrix:

$$
\begin{aligned}
& T(u)=R_{a 1}\left(u-\theta_{1}\right) \ldots R_{a L}\left(u-\theta_{L}\right) g \\
& R_{12}(u)=\left(u-\frac{i}{2}\right)+i P_{12}
\end{aligned}
$$

We take generic inhomogeneities θ_{n} and diagonal twist $g=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{\mathrm{N}}\right)$
Transfer matrix $\quad \operatorname{Tr}_{a} T(u)=\sum_{n=0}^{L} T_{n} u^{n} \quad$ gives commuting integrals of motion

Wavefunctions for spin chains

$$
\langle x \mid \Psi\rangle=\prod_{k} Q_{1}\left(x_{k}\right)
$$

$Q_{1}=e^{\phi_{1} u} \prod_{j=1}^{N_{u}}\left(u-u_{j}\right)$

$$
\langle x|=\text { eigenstates of operator } B(u)=\prod\left(u-x_{k}\right) \quad[B(u), B(v)]=0
$$

$\mathrm{SU}(2): \quad T(u)=\left(\begin{array}{cc}A(u) & B(u) \\ C(u) & D(u)\end{array}\right) \quad x_{k}=\theta_{k} \pm i / 2, \quad k=1, \ldots L$
[Sklyanin 90-92]
Gives 2^{L} states, basis of the space
$S U(N)$: B is a polynomial in elements of T [Sklyanin 92 for $\operatorname{SU}(3)]$

Brief summary of results

SU(N) - results summary (1)

$$
\langle x \mid \Psi\rangle=\prod_{k} Q_{1}\left(x_{k}\right)
$$

[Gromov, FLM, Sizov 16$]$
For $\operatorname{SU}(\mathrm{N})$ we need to slightly modify Sklyanin's proposal

$$
T \rightarrow T^{\mathrm{good}}=K T K^{-1} \quad B \rightarrow B^{\mathrm{good}}
$$

1) Found spectrum of x
2) Found that we can build states nicely

$$
|\Psi\rangle=B\left(u_{1}\right) B\left(u_{2}\right) \ldots B\left(u_{M}\right)|0\rangle \quad \text { Any } \mathrm{SU}(\mathrm{~N})!\quad \begin{aligned}
& \text { No need for nested BA, } \\
& \text { use roots of } 1 \text { Baxter polynomial }
\end{aligned}
$$

We proved various special cases
Then part 2 proved for $\operatorname{SU}(3)$ [Lyashik, Slavnov 18]
Then full proof for $\operatorname{SU}(\mathrm{N})$ [Ryan, Volin 18], who also showed equivalence with another way to build x
[Maillet, Niccoli 18,19,20]

$$
\langle x| \sim\langle 0| \hat{T}\left(\theta_{1}+i / 2\right)^{n_{1}} \ldots \hat{T}\left(\theta_{L}+i / 2\right)^{n_{L}}
$$

Analog of part 2 found for super $\operatorname{SU}(1 \mid 2) \quad$ [Gromov, FLM 18]

To compute correlators one inserts the complete basis

$$
\mathbf{1}=\sum_{x} M_{x}|x\rangle\langle x|
$$

Overlaps between these states look complicated
Can we find a way around this?

SU(N) - results summary (2)

- Constructed 'dual' C-operator for $\operatorname{SU}(\mathrm{N})$, gives SoV basis $|y\rangle$ for bra states $\langle\Psi|$ B and C states have simple overlaps $\langle x \mid y\rangle$, are natural to pair!
- Found alternative way to compute overlaps (= SoV measure) Bypasses operator construction, gives measure from simple det of integrals

Yet another way found later: recursion relations of [Maillet, Niccoli, Vignoli 20]

More recently we found completely explicit result for measure [Gromov, FLM, Ryan 20]

- Get simple det expressions for form factors/scalar products for large class of operators (likely complete)
- Similar statements for $\mathrm{SL}(\mathrm{N})$ (infinite-dim rep)

Detailed example: $\operatorname{SU}(\mathrm{N})$ measure

SU(2) spin chain

Idea: orthogonality of states must imply same for Qs

$$
Q_{1}=e^{u \phi} \prod_{k=1}^{M}\left(u-u_{k}\right) \quad Q_{\theta}=\prod_{n=1}^{L}\left(u-\theta_{n}\right)
$$

Baxter equation can be written as

$$
\hat{O} \circ Q_{1}=0 \quad \hat{O}=\frac{1}{Q_{\theta}^{+}} D^{2}+\frac{1}{Q_{\theta}^{-}} D^{-2}-\frac{\tau_{1}}{Q_{\theta}^{+} Q_{\theta}^{-}}
$$

$$
\begin{aligned}
& \tau_{1}=2 \cos \phi u^{L}+\sum_{n=0}^{L-1} I_{n} u^{n} \\
& f^{ \pm}=f(u \pm i / 2), \quad f^{[a]}=f(u+i a / 2) \\
& D f(u)=f(u+i / 2)
\end{aligned}
$$

Key property: self-adjointness

$$
\begin{aligned}
& \langle f \hat{O} g\rangle=\langle g \hat{O} f\rangle \\
& \langle f\rangle=\oint d u f(u)
\end{aligned}
$$

$$
\langle f \hat{O} g\rangle=\oint d u f\left[\frac{g^{++}}{Q_{\theta}^{+}}+\frac{g^{--}}{Q_{\theta}^{-}}-\frac{\tau_{1}}{Q_{\theta}^{+} Q_{\theta}^{-}} g\right]
$$

$$
\downarrow u \rightarrow u-i
$$

$$
=\oint d u\left[\frac{f^{--}}{Q_{\theta}^{-}}+\frac{f^{++}}{Q_{\theta}^{+}}-\frac{\tau_{1}}{Q_{\theta}^{+} Q_{\theta}^{-}} f\right] g
$$

We can introduce L such brackets $\quad\langle f\rangle_{j}=\oint d u \mu_{j} f$

$$
\langle f \hat{O} g\rangle_{j}=\langle g \hat{O} f\rangle_{j} \quad \mu_{j}=e^{2 \pi(j-1) u} \quad j=1, \ldots, L
$$

This gives orthogonality!

$$
\tau_{1}=2 \cos \phi u^{L}+\sum_{k=1}^{L} I_{k} u^{k-1}
$$

> uniquely identify
$\left\langle Q^{B}\left(\hat{O}^{A}-\hat{O}^{B}\right) Q^{A}\right\rangle_{j}=0 \quad \hat{O}=\frac{1}{Q_{\theta}^{+}} D^{2}+\frac{1}{Q_{\theta}^{-}} D^{-2}-\frac{\tau_{1}}{Q_{\theta}^{+} Q_{\theta}^{-}}$ the state
$\sum_{k=1}^{L}\left(I_{k}^{A}-I_{k}^{B}\right)\left\langle\frac{u^{k-1} Q^{A} Q^{B}}{Q_{\theta}^{+} Q_{\theta}^{-}}\right\rangle_{j}=0$
Nontrivial solution means det $=0$
Sum of residues at $u=\theta_{n} \pm i / 2$

$$
\operatorname{det}_{1 \leq j, k \leq L}\left\langle\frac{u^{k-1} Q^{A} Q^{B}}{Q_{\theta}^{+} Q_{\theta}^{-}}\right\rangle_{j}^{\longleftarrow} \propto \delta_{A B}
$$

i.e. at x eigenvalues as expected

Scalar product in SoV

Matches known results
[Sklyanin; Kitanine, Maillet, Niccoli, ...] [Kazama, Komatsu, Nishimura, Serban, Jiang, ...]

SU(3) spin chain

For $\operatorname{SU}(3)$ we have 2 types of Bethe roots

$$
\begin{array}{rlr}
\prod_{n=1}^{L} \frac{u_{j}-\theta_{n}+i / 2}{u_{j}-\theta_{n}-i / 2}=e^{i\left(\phi_{1}-\phi_{2}\right)} \prod_{k \neq j}^{N_{u}} \frac{u_{j}-u_{k}+i}{u_{j}-u_{k}-i} \prod_{l=1}^{N_{v}} \frac{u_{j}-v_{l}-i / 2}{u_{j}-v_{l}+i / 2} & \text { momentum-carrying }\left\{u_{j}\right\}_{j=1}^{N_{u}} \\
1=e^{i\left(\phi_{2}-\phi_{3}\right)} \prod_{k \neq j}^{N_{v}} \frac{v_{j}-v_{k}+i}{v_{j}-v_{k}-i} \prod_{l=1}^{N_{u}} \frac{v_{j}-u_{l}-i / 2}{v_{j}-u_{l}+i / 2} & \text { auxiliary }\left\{v_{j}\right\}_{j=1}^{N_{v}} \\
Q_{1}=e^{\phi_{1} u} \prod_{j=1}^{N_{u}}\left(u-u_{j}\right) & Q_{12}=e^{\left(\phi_{1}+\phi_{2}\right) u} \prod_{j=1}^{N_{v}}\left(u-v_{j}\right)
\end{array}
$$

Main new feature: should use Q^{i} in addition to Q_{i} to get simple measure

Other Qs give dual roots

$$
Q^{1} \equiv Q_{23}, \text { etc }
$$

Baxter equations:

$$
\tau_{a}(u)=u^{L} \chi_{a}(G)+\sum_{j=1}^{L} u^{j-1} I_{a, j-1}
$$

$$
\begin{aligned}
\bar{O} & =\frac{1}{Q_{\theta}^{-}} D^{-3}-\frac{\tau_{2}}{Q_{\theta}^{+} Q_{\theta}^{-}} D^{-1}+\frac{\tau_{1}}{Q_{\theta}^{+} Q_{\theta}^{-}} D-\frac{1}{Q_{\theta}^{+}} D^{+3} \\
O & =\frac{1}{Q_{\theta}^{++}} D^{+3}-\frac{\tau_{2}^{+}}{Q_{\theta}^{++} Q_{\theta}} D+\frac{\tau_{1}^{-}}{Q_{\theta} Q_{\theta}^{--}} D^{-1}-\frac{1}{Q_{\theta}^{--}} D^{-3}
\end{aligned}
$$

$$
\bar{O} \circ Q^{a}=0 \quad O \circ Q_{a}=0
$$

$$
\langle f\rangle_{j}=\oint d u \mu_{j} f
$$

These two operators are conjugate!

$$
\langle f O \circ g\rangle_{j}=\langle g \bar{O} \circ f\rangle_{j}
$$

$$
\left\langle Q_{b}^{B}\left(\bar{O}^{A}-\bar{O}^{B}\right) Q^{a, A}\right\rangle_{j}=0
$$

$\mu_{j}=e^{2 \pi(j-1) u}$
$j=1, \ldots, L$

$$
\tau_{a}(u)=u^{L} \chi_{a}(G)+\sum_{j=1}^{L} u^{j-1} I_{a, j-1},
$$

$$
\bar{O}=\frac{1}{Q_{\theta}^{-}} D^{-3}-\frac{\tau_{2}}{Q_{\theta}^{+} Q_{\theta}^{-}} D^{-1}+\frac{\tau_{1}}{Q_{\theta}^{+} Q_{\theta}^{-}} D-\frac{1}{Q_{\theta}^{+}} D^{+3}
$$

$$
\left\langle Q_{b}^{B}\left(\bar{O}^{A}-\bar{O}^{B}\right) Q^{a, A}\right\rangle_{j}=0 \quad \text { We have freedom which Qs to choose }
$$

Linear system:

$$
\sum_{\alpha=\{1,2\}, k=1, \ldots, L}\left(I_{\alpha, k}^{A}-I_{\alpha, k}^{B}\right)(-1)^{\alpha}\left\langle\frac{u^{k} Q_{1}^{B} Q^{a, A[-3+2 \alpha]}}{Q_{\theta}^{+} Q_{\theta}^{-}}\right\rangle_{j}=0
$$

We have 2 L variables, and two choices of a give 2 L equations

$$
\begin{aligned}
& \left\langle\Psi_{B} \mid \Psi_{A}\right\rangle \propto\left|\begin{array}{ll}
\left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{2+}\right\rangle_{j} & \left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{2-}\right\rangle_{j} \\
\left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{3+}\right\rangle_{j} & \left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{3-}\right\rangle_{j}
\end{array}\right| \\
& 1 \leq j, k \leq L
\end{aligned}
$$

Each bracket is a sum of residues at $u=\theta_{n} \pm i / 2$

$$
N_{A}^{2} \delta_{A B}=\sum_{x, y} M_{x, y} \prod_{k=1}^{L} Q_{1}^{A}\left(X_{k, 1}\right) Q_{1}^{A}\left(X_{k, 2}\right) \prod_{k=1}^{L}\left[Q_{B}^{2}\left(Y_{k, 1}\right) Q_{B}^{3}\left(Y_{k, 2}\right)-Q_{B}^{2}\left(Y_{k, 2}\right) Q_{B}^{3}\left(Y_{k, 1}\right)\right]
$$

Can we build the basis where these are the wavefunctions?

Operator realization for $\operatorname{SU}(3)$

$$
\begin{aligned}
\left\langle\Psi_{B} \mid \Psi_{A}\right\rangle=\int\left(\prod_{a=1}^{N-1} \prod_{i=1}^{L} d x_{i, a}\right) & (\underbrace{\prod_{a=1}^{N-1} \prod_{i=1}^{L} Q_{1}^{(A)}\left(x_{i, a}\right)}_{\text {state A }}) \hat{M}(\mathrm{x})
\end{aligned}\left(\begin{array}{l}
\underbrace{\prod_{a=1}^{N-1} \prod_{i=1}^{L} Q^{(B)}{ }_{\left(x_{i, a}\right)}^{a}}_{\text {state B }})
\end{array}\right) \begin{aligned}
& \text { Instead of integrals } \\
& \text { we have sums } \\
& \left\langle\Psi_{B} \mid \Psi_{A}\right\rangle=\sum_{x, y} M_{x, y}\left\langle\Psi_{B} \mid y\right\rangle\left\langle x \mid \Psi_{A}\right\rangle \\
& \left\langle x \mid \Psi_{A}\right\rangle
\end{aligned} \quad\left\langle\Psi_{B} \mid y\right\rangle
$$

Get scalar product from construction of two SoV bases $|y\rangle$ and $\langle x|$
[Sklyanin 92] [Gromov FLM Sizov 16]
$\langle x|$ are eigenstates of familiar operator $\quad \hat{\mathbb{B}}(u)=\hat{T}^{2}{ }_{3}(u) \hat{U}_{3}{ }^{1}(u-i)-\hat{T}^{1}{ }_{3}(u) \hat{U}_{3}{ }^{2}(u-i)$
$|y\rangle$ are eigenstates of new "dual" operator $\hat{\mathbb{C}}(u)=\hat{T}^{2}{ }_{3}\left(u-\frac{i}{2}\right) \hat{U}_{3}{ }^{1}\left(u-\frac{i}{2}\right)-\hat{T}^{1}{ }_{3}\left(u-\frac{i}{2}\right) \hat{U}_{3}{ }^{2}\left(u-\frac{i}{2}\right)$ $M_{x, y}=(\langle x \mid y\rangle)^{-1} \quad$ Measure matches what we got from Baxter!

To build SoV basis we act on reference state with transfer matrices
$B(u)$ is diagonalized by
[Maillet, Niccoli 18] [Ryan, Volin 18]

$$
\langle x| \propto\langle 0| \prod_{k=1}^{L}\left[\hat{\tau}_{2}\left(\theta_{k}-i / 2\right)\right]^{m_{k, 1}+m_{k, 2}} \quad 0 \leq m_{k, 1} \leq m_{k, 2} \leq 1
$$

$\mathrm{C}(\mathrm{u})$ is diagonalized by [Ryan, Volin 18] [Gromov FLM, Ryan, Volin 19]

$$
|y\rangle \propto \prod_{k=1}^{L} \hat{\tau}_{1}\left(\theta_{k}-i / 2\right)^{n_{k, 2}-n_{k, 1}} \hat{\tau}_{2}\left(\theta_{k}-i / 2\right)^{n_{k, 1}}|0\rangle \quad 0 \leq n_{k, 1} \leq n_{k, 2} \leq 1
$$

Proof is direct generalization of highly nontrivial methods from [Ryan, Volin 18]

Based on commutation relations + identifying Gelfand-Tsetlin patterns

$$
M_{x, y}=(\langle x \mid y\rangle)^{-1}
$$

$$
\left\langle\Psi_{B} \mid \Psi_{A}\right\rangle=\sum_{x, y} M_{x, y}\left\langle\Psi_{B} \mid y\right\rangle\left\langle x \mid \Psi_{A}\right\rangle
$$

Notice for SU(2) the overlaps matrix is diagonal
For $\operatorname{SU}(3)$ it is not, but the elements are still simple!

$$
\left\langle\Psi_{B} \mid \Psi_{A}\right\rangle \propto\left|\begin{array}{ll}
\left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{2+}\right\rangle_{j} & \left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{2-}\right\rangle_{j} \\
\left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{3+}\right\rangle_{j} & \left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{3-}\right\rangle_{j}
\end{array}\right|
$$

[Cavaglia, Gromov, FLM 19]
[Gromov, FLM, Ryan, Volin 19]

Alternative approach: [Maillet, Niccoli, Vignoli 20]
fix measure indirectly by deriving recursion relations for it (+ another measure found in different basis)

Result should be same, would be interesting to prove

Diagonal form factors of type $\quad \frac{\langle\Psi| \frac{\partial \hat{I}_{n}}{\partial p}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\frac{\partial I_{n}}{\partial p} \quad \begin{aligned} & \text { are computable, give ratios of } \\ & \text { determinants. }\end{aligned}$

From self-adjoint property:

$$
0=\langle Q(\hat{O}+\delta O) \circ(Q+\delta Q)\rangle=\underbrace{\langle Q O \circ \delta Q\rangle}+\langle Q \delta O \circ Q\rangle \quad \tau_{1}=2 \cos \phi u^{L}+\sum_{k=0}^{L-1} I_{k} u^{k}
$$

Link δI_{n} with $\delta \phi$
So $\quad \partial_{\phi} I_{k}=\frac{1}{2 \sin \phi} \frac{\operatorname{det}_{i, j=1, \ldots, L} m_{i j}^{(k)}}{\operatorname{det}_{i, j=1, \ldots, L} m_{i j}}$

All this generalizes to $\operatorname{SU}(\mathrm{N})$

NON-COMPACT SPIN CHAINS

General structure in SL(N):

$$
\begin{aligned}
& \left\langle\Psi_{A} \mid \Psi_{B}\right\rangle=\int\left(\prod_{a=1}^{N-1} \prod_{i=1}^{L} d x_{i, a}\right)(\underbrace{\prod_{a=1}^{N-1} \prod_{i=1}^{L} Q_{1}^{(A)}\left(x_{i, a}\right)}_{\text {state } \mathrm{A}} \hat{M}) \underbrace{\prod_{a=1}^{\prod_{i=1}} \prod_{i=1}^{N-1} Q^{(B)^{a}}\left(x_{i, a}\right)}_{\text {state } \mathrm{B}}) \\
& \text { state-independent operator, contains shifts } \\
& \widehat{M}(x)=\operatorname{det}|\underbrace{\left(\frac{\hat{x}^{j-1}}{1+e^{2 \pi\left(\hat{x}-\theta_{i}\right)}}\right)}_{1 \leqslant i, j \leqslant L} \otimes \underbrace{\left(\begin{array}{cccc}
\mathcal{D}_{x}^{N-2} & \mathcal{D}_{x}^{N-4} & \ldots & \mathcal{D}_{x}^{2-N} \\
\vdots & \vdots & \ddots & \vdots \\
\mathcal{D}_{x}^{N-2} & \mathcal{D}_{x}^{N-4} & \ldots & \mathcal{D}_{x}^{2-N}
\end{array}\right)}_{(N-1) \times(N-1)}| \\
& \text { similar to conjecture of [Smirnov Zeitlin] } \\
& \text { based on semi-classics } \\
& \text { and quantization of alg curve }
\end{aligned}
$$

Representation with weight [s, 0, ... 0], including infinite-dim case

Integral = sum over infinite set of poles in lower half-plane

$$
\mu_{n}=\frac{\Gamma\left(s-i\left(u-\theta_{n}\right)\right) \Gamma\left(s+i\left(u-\theta_{n}\right)\right)}{e^{\pi\left(u-\theta_{n}\right)}}
$$ Everything works like before!

Recently we managed to compute measure for any GL(N) explicitly and for any spin [Gromov, FLM, Ryan 20]

$$
\begin{array}{r}
M_{\mathrm{y}, \mathrm{x}}=\left.\sum_{k=\operatorname{perm}_{\alpha} n} \operatorname{sign}(\sigma)\left(\prod_{a=1}^{N-1} \frac{\Delta\left(\mathrm{x}_{\sigma^{-1}(a)}\right)}{\Delta\left(\left\{\theta_{a}\right\}\right)}\right) \prod_{a=1}^{N-1} \frac{r_{\alpha, n_{\alpha, a}}}{r_{\alpha, 0}}\right|_{\sigma_{\alpha, a}=k_{\alpha, a}-m_{\alpha, a}+a} \\
\varliminf_{\alpha, n}=-\frac{1}{2 \pi} \prod_{\beta=1}^{L}\left(n+1-i \theta_{\alpha}+i \theta_{\beta}\right)_{2 \mathrm{~s}-1}
\end{array}
$$

Can also compute many other correlators in det form
E.g. overlaps with different twists $\left\langle\Psi^{\bar{\lambda}_{a}} \mid \Psi^{\lambda_{a}}\right\rangle=\llbracket \tilde{Q}_{12}, \tilde{Q}_{13} \mid Q_{1} \rrbracket \quad$ [Gromov, FLM, Ryan 20]

Use that SoV basis is twist-independent [Ryan, Volin]

Also on-shell and off-shell overlaps involving B and C operators

$$
|\Psi\rangle_{\text {off shell }} \equiv \mathbf{b}\left(v_{1}\right) \ldots \mathbf{b}\left(v_{k}\right)|\Omega\rangle
$$

$$
\frac{\langle\Phi| \mathbf{c}_{\gamma_{1}}\left(v_{1}\right) \ldots \mathbf{c}_{\gamma_{K}}\left(v_{K}\right) \mathbf{b}_{\beta_{1}}\left(w_{1}\right) \ldots \mathbf{b}_{\beta_{J}}\left(w_{J}\right)|\Theta\rangle}{\langle\Phi \mid \Psi\rangle}
$$

Likely this gives a complete set of operators

Further powerful generalization and simplification: see N. Primi's talk tomorrow

EXTENSIONS TO FIELD THEORY

Integrability in $\mathrm{N}=4$ super Yang-Mills

single trace operators
$\operatorname{Tr}\left(\Phi_{1}(x) \Phi_{2}(x) \Phi_{2}(x) \Phi_{1}(x) \ldots\right)$

$\Psi \sim Q\left(x_{1}\right) Q\left(x_{2}\right) \ldots Q\left(x_{n}\right)$

Gives exact spectrum very efficiently! All-loop, numerical, perturbative, ...

Hope to link with exact 3-pt functions which are much less understood

Q-functions are known at any coupling [Gromov, Kazakov, from Quantum Spectral Curve
[Marboe, Volin 14,16,17]
[Gromov, FLM, Sizov 13,14]
[Gromov, FLM, Sizov 15×2]
[Gromov, FLM 15, 16]
[Alfimov, Gromov, Kazakov 14] [FLM, Preti 20] ...

Goal: write correlators in terms of Q's
First all-loop example:
3 Wilson lines + scalars in ladders limit
$C_{123}^{\bullet \bullet}=\frac{\left\langle q_{1} q_{2} e^{-\phi_{3} u}\right\rangle}{\sqrt{\left\langle q_{1}^{2}\right\rangle\left\langle q_{2}^{2}\right\rangle}}$
[Cavaglia, Gromov, FLM 18]

Similar structures seen in very different regime via localization [Komatsu, Giombi 18,19]

Extension to local operators

"fishnet CFT"

$$
S=\frac{N}{2} \int d^{4} x \operatorname{tr}\left(\partial^{\mu} \phi_{1}^{\dagger} \partial_{\mu} \phi_{1}+\partial^{\mu} \phi_{2}^{\dagger} \partial_{\mu} \phi_{2}+2 \xi^{2} \phi_{1}^{\dagger} \phi_{2}^{\dagger} \phi_{1} \phi_{2}\right)
$$

Baby version of $N=4$ SYM, no susy but inherits integrability

Integrability visible
directly from Feynman graphs

We find very similar structures

$$
C_{\mathcal{O O L}} \propto \frac{d \Delta}{d \xi^{2}}=\frac{\int_{\left\lvert\, \frac{q \bar{q}}{u} \frac{d u}{2 \pi i}\right.}^{\int_{\mid} i\left(q^{+} \bar{q}^{-}-q^{-} \bar{q}^{+}\right) \frac{d u}{2 \pi i}}}{\text { 就 }}
$$

[Cavaglia, Gromov, FLM 21

+ with A. Sever]

Spin chain picture

Get $S O(4,2)$ spin chain in principal series rep
Wavefunction of spin chain $=$ correlator in CFT

$$
\varphi_{\mathcal{O}}\left(x_{1}, \ldots, x_{J}\right)=\left\langle\mathcal{O}\left(x_{0}\right) \operatorname{tr}\left[\phi_{1}^{\dagger}\left(x_{1}\right) \ldots \phi_{J}^{\dagger}\left(x_{J}\right)\right]\right\rangle
$$

$$
\operatorname{Tr}\left(\phi\left(x_{0}\right)\right)^{J}
$$

Spin chain form factors = more involved correlators
Can compute them via SoV! [Cavaglia, Gromov, FLM 21]
E.g. from $\partial I / \partial p$ compute 2 pt function with local insertions to all loop orders

$$
\begin{aligned}
\frac{\partial \hat{H}}{\partial h_{\alpha}} \hat{H}^{-1} & =-8\left[-\frac{x_{\alpha, \alpha-1}^{2}+x_{\alpha, \alpha+1}^{2}}{2}\left(1+x_{\alpha}^{\mu} \frac{\partial}{\partial x_{\alpha}^{\mu}}\right)+\left(x_{\alpha, \alpha-1}^{2} x_{\alpha+1}^{\mu}+x_{\alpha, \alpha+1}^{2} x_{\alpha-1}^{\mu}\right) \frac{\partial}{\partial x_{\alpha}^{\mu}}\right] \\
& \times \square_{\alpha}^{-1} \frac{1}{x_{\alpha, \alpha-1}^{2}} \frac{1}{x_{\alpha, \alpha+1}^{2}} .
\end{aligned}
$$

differential operator

Hope to get experience for simpler 1d/2d fishnets [in progress], then extend to 4 d
[recent work on diagrams in 1d: Loebbert et al]

Proposal for g-function

Typical structure for g-function:

$$
g \equiv \sqrt{\frac{\langle B \mid \Psi\rangle\langle\Psi \mid B\rangle}{\langle\Psi \mid \Psi\rangle}}=\underbrace{\exp \left(\int_{0}^{\infty} \Theta(u) \log (1+Y(u)) d u\right)}_{\text {boundary-dependent, simple }} \times \underbrace{\sqrt{\frac{\operatorname{det}\left[1-\hat{G}_{-}\right]}{\operatorname{det}\left[1-\hat{G}_{+}\right]}}}_{\text {universal factor, hard }}
$$

Like for $\mathrm{GL}(\mathrm{N})$ spin chains we conjecture the scalar product in SoV
we will guess it from norm

$$
\left\langle\Psi_{A} \mid \Psi_{B}\right\rangle \propto \operatorname{det} M_{A B} \longleftarrow \begin{aligned}
& \text { built from integrals } \\
& \text { of } Q \text {-functions }
\end{aligned}
$$

For parity-symmetric states $\quad M_{A A}=\left(\begin{array}{cc}M_{+} & 0 \\ 0 & M_{-}\end{array}\right) \quad \Rightarrow \quad \operatorname{det} M=\operatorname{det} M_{+} \operatorname{det} M_{-}$
We propose universal part of g-function $\quad\left(g_{\text {universal }}\right)^{2} \propto \frac{\left|M_{-}\right|}{\left|M_{+}\right|_{*}} \quad \begin{aligned} & \text { nontrivially satisfies } \\ & \text { selection rules! }\end{aligned}$
inspired by spin chain/sin-Gordon results
[Gombor, Pozsgay 20, 21] [Caetano, Komatsu 20]

$\mathrm{N}=4 \mathrm{SYM}$

Still have the key starting point! [Cavaglia, Gromov, FLM 21]

$$
\left\langle\bar{Q}_{B}\left(\mathcal{O}_{A}-\mathcal{O}_{B}\right) Q_{A}\right\rangle_{\alpha}=0
$$

Main difference with spin chains/fishnets:
infinitely many degrees of freedom

Implies infinitely many integrals of motion

Determinants of infinite size - should reduce to fixed size at each order in perturbation theory

FUTURE

- Finally we know SoV measure for higher-rank spin chains
- Extensions: super case [Gromov, FLM 18; Maillet, Niccoli, Vignoli 20], SO(N) [Ferrando, Frassek, Kazakov; Ekhamar, Shu, Volin 20], principal series rep for fishnet, Slavnov scalar products, ...
- Applications for generalized hydrodynamics? [Poszgay et al] Long range/Calogero?
[in progress with
Ferrando, Lamers, Serban]
- Algebraic meaning of $\int Q_{1} Q_{2} Q_{3}$?
- AdS/CFT: more general correlators, beyond ladders/fishnets, 1d/2d fishnet [in progress] Many hints of hidden SoV structures!

Happy Birthday, Nikita!

С Днём рождения!

Algebraic picture

Generating functional for transfer matrices in antisymmetric reps

$$
W=\left(1-\Lambda_{1}(u) D^{2}\right)\left(1-\Lambda_{2}(u) D^{2}\right) \ldots\left(1-\Lambda_{N}(u) D^{2}\right)=\sum_{k=1}^{N}(-1)^{k} \tau_{k}(u) D^{k}
$$

Define left and right action $\vec{D} f(u)=f(u+i / 2), \quad f \overleftarrow{D}=f(u-i / 2)$
Then $Q_{a} \overleftarrow{W}=0$ and $\vec{W} Q^{a}=0$

Using that for any operator $\oint g \vec{O} f=\oint f \overleftarrow{O} g \quad$ we get $\oint Q_{a}^{A}\left(\vec{W}_{A}-\vec{W}_{B}\right) Q_{B}^{b}=0$

We also generalized to any spin s of the representation

$$
\langle f\rangle_{n}=\int_{-\infty}^{\infty} d u \mu_{n} f \quad \mu_{n}=\frac{1}{1+e^{2 \pi\left(u-\theta_{n}\right)}} \quad \square \mu_{n}=\frac{\Gamma\left(s-i\left(u-\theta_{n}\right)\right) \Gamma\left(s+i\left(u-\theta_{n}\right)\right)}{e^{\pi\left(u-\theta_{n}\right)}}
$$

For $\operatorname{SL}(2)$ we reproduce [Derkachov, Manashov, Korchemsky]
To build SoV basis we need more involved T's in non-rectangular reps see [Ryan, Volin 20]
$|y\rangle \propto \hat{T}_{\left\{m_{1}, m_{2}\right\}}\left(\theta_{n}+i s+i \frac{m_{1}-\mu_{1}^{\prime}}{2}\right)|0\rangle$
Integral = sum over infinite set of poles in lower half-plane

The measure we get from Baxters again matches the one from building the basis!

Infinite-dim highest weight representation of $\operatorname{SL}(\mathrm{N})$ on each site
Now we have integrals instead of sums

$$
\langle f\rangle_{j}=\int_{-\infty}^{\infty} d u \mu_{j} f \quad \mu_{j}=\frac{1}{1+e^{2 \pi\left(u-\theta_{j}\right)}}
$$

$\bar{O} \circ Q^{a}=0 \quad O \circ Q_{a}=0$

$$
\begin{aligned}
& \bar{O}=Q_{\theta}^{-} D^{-3}-\tau_{2} D^{-1}+\tau_{1} D-Q_{\theta}^{+} D^{+3} \\
& O=Q_{\theta}^{++} D^{+3}-\tau_{2}^{+} D+\tau_{1}^{-} D-Q_{\theta}^{--} D^{-3}
\end{aligned}
$$

We would like $\langle g \bar{O} \circ f\rangle=\langle f O \circ g\rangle$

Now when we shift the contour we cross poles of the measure

$$
\begin{array}{r}
\langle g \bar{O} \circ f\rangle=\int \mu g\left[Q_{\theta}^{-} f^{[-3]}-\tau_{2} f^{-}+\tau_{1} f^{+}-Q_{\theta}^{+} f^{[+3]}\right]=\begin{array}{c}
\langle f O \circ g\rangle+\text { pole contributions } \\
Q_{1}\left(\theta_{j}+\frac{i}{2}\right) \tau_{1}\left(\theta_{j}+\frac{i}{2}\right)-Q_{1}\left(\theta_{j}+\frac{3 i}{2}\right) Q_{\theta}\left(\theta_{j}+\frac{i}{2}\right)=0
\end{array}
\end{array}
$$

Poles cancel when $g=Q_{1}$! Then everything works as before

The two Baxter equations are 'conjugate' to each other!

$$
\begin{aligned}
& \hat{O} \circ Q_{1} \equiv Q_{\theta}^{++} Q_{1}^{[+3]}-\tau_{1}^{+} Q_{1}^{+}+\tau_{2}^{-} Q_{1}^{-}-Q_{\theta}^{--} Q_{1}^{[-3]}=0 \\
& \hat{O} \circ Q_{\bar{a}} \equiv Q_{\theta}^{-} Q_{\bar{a}}^{[-3]}-\tau_{1} Q_{\bar{a}}^{-}+\tau_{2} Q_{\bar{a}}^{+}-Q_{\theta}^{+} Q_{\bar{a}}^{[+3]}=0
\end{aligned}
$$

Analog of self-adjointness property: $\left\langle Q_{1} \hat{\bar{O}} \circ f\right\rangle_{j}=0$

$$
\begin{array}{r}
\langle g f\rangle_{j} \equiv \int_{-\infty}^{\infty} \mu_{j}(x) g(x) f(x) \\
\mu_{j}(u)=\frac{1}{1+e^{2 \pi\left(u-\theta_{j}\right)}}
\end{array}
$$

$\langle g \hat{O} \circ f\rangle_{j}=\int_{-\infty}^{+\infty} \mu_{j}(u) g(u)\left[Q_{\theta}^{-} f^{[-3]}-\tau_{1} f^{-}+\tau_{2} f^{+}-Q_{\theta}^{+} f^{[+3]}\right] d u$
$=\int_{-\infty+i 0}^{+\infty+i 0} \mu_{j}\left(u+\frac{i}{2}\right)[\underbrace{Q_{\theta}^{++} g^{[+3]}-\tau_{1}^{+} g^{+}+\tau_{2}^{-} g^{-}-Q_{\theta}^{--} g^{[-3]}}_{\hat{O} \circ g}] f(u) d u$

+ residues from poles,

Poles cancel if $g \equiv Q_{1}$! Use nontrivial relations between T's and Q's

Comment on chronology:

Such tricks with Baxters were used in [Cavaglia, Gromov, FLM 18] for cusp

Then in [Cavaglia, Gromov, FLM 19] for SL(N) spin chain

And then in [Gromov, FLM, Ryan, Volin 19] for $\operatorname{SU}(\mathrm{N})$ spin chain

