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Yang-Baxter integrability:

R12(u1, u2)R23(u2, u3)R13(u1, u3) = R13(u1, u3)R23(u2, u3)R12(u1, u2)

Rationality condition I Let us R(u, v) will be a rational matrix

R(u, v) = I +
P

u − v
, P =

∑
1≤i ,j≤N

Eij ⊗ Eji ,

or

R(u, v) = f (u, v)
∑

1≤i≤N
Eii ⊗ Eii +

∑
1≤i<j≤N

(
Eii ⊗ Ejj + Ejj ⊗ Eii

)
+

∑
1≤i<j≤N

g(u, v)
(
uEij ⊗ Eji + vEji ⊗ Eij

)
where f , g are proper rational functions
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‘’Rational’‘ system

The system is given by Lax operator L satisfying

R12(u, v)L1(u)L2(v) = L2(v)L1(u)R12(u, v)

We assume existance of |0〉. Then Bethe ansatz provides as with a knowledge of
eigenvectors of the system |ū〉 that are numerated by the rapidites ū that are given
solutions of Bethe ansatz equations (BAE)

e iP(uj )L =
∏

1≤i≤N;i 6=j

S(uj , ui ), j = 1, . . . ,N

where p(u) is a (quasi)momentum of the system (defined by the Lax operator), S
scattering amplitude (defined by R-matrix and is rational)
Rationality condition II If Lij |0〉 is rational then eigenvectors become rational objects
If conditions I-II are satisfied then BAE system becomes rational
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Let us consider a finite size system, then for arbitrary operators Q, O(x), O1(x), etc.
we can compute matrix elements

〈ū|O(x)|ū〉, 〈ū|O(x)|v̄〉, 〈ū|O1(x)O2(y)|ū〉, . . . (1.1)

(The simplest case will be averaging of the transfer matrix of the system tK that
provide as with a statistical sum of the system)
If conditions I–III are satisfied then for finite case of Bethe roots obviously (1.1) are
rational functions.
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BAE can be rewritten via QQ-system

vQa+1,s(v)Qa,s+1(v) = Q+
a+1,s+1(v)Q−a,s(v)− Q−a+1,s+1(v)Q+

a,s(v)

where f ±(v) = f
(
v ± c

2

)
and Q-functions Qa,s(v) are even polynomials on v

numerated by nodes of the Young tableau (Volin, Marboe, 2016)

Qa,s(u) = u2Ma,s +

Ma,s−1∑
k=0

c
(k)
a,s u

2k (1.2)

+certain boundary conditions for Q0,0

Requirement for all solutions Qa,s to be polynomials provides us with a set of
algebraic equations we call zero reminder conditions (ZRC)
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Rational functions summation

We consider a set of N-variable algebraic equations

F1(z1, . . . , zN) = F2(z1, . . . , zN) = · · · = FN(z1, . . . , zN) = 0 (1.3)

For a given polynomial P we want to compute the sum over solutions of system (1.3)

S [P] =
∑
sol

P(z1, . . . , zN)

Numeric solution is rather cumbersome and suffers from the numeric errors
For instance: not too much is known about Bethe equation solution beyond the string
hypothesis conjecture. Especially problematic case of quantum transfer matrix (QTM)
BAE
At this moment the fact that we are dealing with exclusively rational functions
can be applied (D. Volin, J. Jacobsen, Y. Jiang)
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Polynomial ring theory

Polynomial ring Q[z ]: set of polynomials of form

q = q0 + q1z + q2z
2 + · · ·+ qNz

N

with the additive and multiplicative operations defined in the usual way. Similarly
polynomial ring on multiple variables can be defined Q[z1, . . . , zn]
Ideal I of Q[z ]
1. f1 + f2 ∈ I if f ∈ I and f2 ∈ I
2. gf ∈ I for f ∈ I and g ∈ Q[z ]
Important: any ideal of polynomial ring Q[z ] is finitely generated i.e. there exist a
finite number of fi ∈ I , such that for any F ∈ I

F =
∑

1≤i≤N
figi , gi ∈ Q[z1, . . . , zN ]
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Polynomial reduction

Important: The choice of generating set of basis is no unique. Even the dimension of
set can be different. The convenient basis can be chosen
Polynomial reduction of F over the set 〈f1, . . . , fn〉. For any F ∈ Q[z1, . . . , zN ]

F =
∑

1≤i≤N
figi + r , gi ∈ Q[z1, . . . , zN ]

where r is called remainder
Important: for a given set 〈f1, . . . , fn〉 reduction is not unique! For instance:
F (x , y) = x2y + xy2 + y2, f1 = y2 − 1 and f2 = xy − 1, then

1. F (x , y) = (x + 1)f1 + x f2 + (2x + 1),

2. F (x , y) = f1 + (x + y)f2 + (x + y + 1)

Hereby the remainder (and a whole expansion) is not well defined in a generic basis.
Even dimensions of different bases can be different. More convenient basis is needed
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Gröbner basis

Monomial ordering:
• us ≺ us+1

• If u ≺ v then for any monomial w we have uw ≺ vw
• For any monomial w holds 1 ≺ w
Leading term of function f ( LT(f )) is defined as a highest monomial of f with respect
to the monomial order ≺
Gröbner basis G (I ) of an ideal I with respect to the monomial order ≺ is a basis of the
ideal 〈g1, . . . , gn〉, such that for any f ∈ I there exists a gi ∈ G (I ) such that LT(f ) is
divisible by LT(gi ).
Minimal reduced Gröbner basis
1. Coefficient in front of LT of each g ∈ G (I ) is equal 1.
2. Neither monomial of any g ∈ G (I ) is not divisible by the LT of any other f ∈ G (I )
Lemma: For a given monomial order ≺ minimal reduced Gröbner basis exists and is
unique
The reminder of arbitrary F is unique for the minimal reduced Gröbner basis
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Properties of the polynomial ring

Quotient ring QI = Q[z1, z2, . . . , zN ]/I where I = 〈f1 . . . fK 〉 is the ideal generated by
f1, . . . , fK , i.e. for a ∈ QI , b ∈ QI a ∼ b if a− b ∈ I
We consider system

f1(z1, . . . , zN) = f2(z1, . . . , zN) = · · · = fK (z1, . . . , zN) = 0 (1.4)

then ideal I can be defined as I = 〈f1, . . . , fK 〉 and the quotient ring is given by QI as
QI = Q[z1, . . . , zN ]/〈f1, . . . , fK 〉.
Important:
The dimension of the quotient ring dimQI is equal to the number of solution of system
(1.4).
If G (I ) is a Gröbner basis of the ideal I the linear space QI is spanned by monomials
which are not divisible by any element in LT[G (I )]
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Companion matrix

Any monomial P ∈ Q[z1, . . . , zN ] can be presented as a matrix in the quotient ring
which is finite dimension linear space. Let (m1, . . . ,mN) be the monomial basis of
QI = Q[z1, . . . , zN ]/I which can be constructed by the Gröbner basis. Then
1. Perform the expansion

[Pmi ]G(I ) =
∑
j

cijmj

where [F ]G(I ) means the reminder of the polynomial reduction of F with respect to the
Gröbner basis G (I )
2. Define a companion matrix of function P

(MP)ij = cij .
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Properties of the companion matrix

For arbitrary functions f and g with companion matrices Mf = Mg if and only if
[f ] = [g ] (i .e. f − g ∈ QI )
1.Mf +g = Mf + Mg

2.Mfg = MfMg = MgMf

3.Mf /g = MfM
−1
g

The last property allows to deal with rational not only polynomial functions
Lemma:

S [P] =
∑
sol

P(z1, . . . , zN) = Tr[MP]
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General algorithm

1. Generate the set of ZRC from rational QQ-system
2. Compute the Gröbner basis G (I ) of ZRC
3. Construct the quotient ring of the ZRC (provide us with a monomial basis
(m1, . . . ,mN))
4. Compute companion matrices MP

5. Compute traces of companion matrices
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Physical observables computation

6V (2020) and Potts (2022) models statistical sums J. Jacobsen et. al.
XXX model was studied by Y. Jiang et al., (2021) with L = 4, . . . , 20 with a magnon
numbers N = L/2
Diagonal Rényi entropy The diagonal ensemble is defined by the density matrix

ρd =
∑
ū

Oū|ū〉〈ū|, Oū = |〈ψ0|ū〉|2,

then diagonal Rényi entropy is given by

S
(α)
d =

1

1− α
logTrρ

(α)
d =

1

1− α
log
∑

ū

Oα
ū
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Loschmidt echo amplitude

ML(it) = 〈ψ|e−itH |ψ〉 =
∑
ū

|〈ψ|ū〉|2e−itE(ū) (1.5)

summation is taken over all solutions of Bethe equation, |ψ〉 is an initial state.
Integrable initial state |ψ〉 was considered

|ψ〉 =
1

2

(
| ↑↓〉⊗L/2 + | ↓↑〉⊗L/2

)
Remark: the similar approach can be done for XXZ
Remark: (1.5) contains factor exp(itE ), that is not a rational function!
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In case we are dealing with non-rational functions the following trick can be used: let
us consider sum

∑
sol p(u)F (q(u)), where p(u), q(u) are rational functions and F (z)

any function that does not have singularities at z = q. Then∑
sol

p(u)F (q(u)) =

∮
C

dz

2πi
F (z)

∑
sol

p(u)

z − q(u)

where C encircles all possible values of q
Hereby we proceed to the rational function by a cost of adding a single contour
integral (could be computed straightforwardly)

A. Hutsalyuk, Y. Jiang, B. Pozsgay Polynomial rings theory and integrable systems



Conclusions

• Polynomial ring theory can be applied for any rational model
• Loschmidt echo, Rényi entropy could be calculated for relatively long chain
Possible future ideas
• Correlation functions?
• Summation over solutions of the QTM?
• Nested Bethe ansatz?
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