Polynomial rings theory and integrable systems

A. Hutsalyuk, Y. Jiang, B. Pozsgay

August 30, 2022

Yang-Baxter integrability:

$$
R_{12}\left(u_{1}, u_{2}\right) R_{23}\left(u_{2}, u_{3}\right) R_{13}\left(u_{1}, u_{3}\right)=R_{13}\left(u_{1}, u_{3}\right) R_{23}\left(u_{2}, u_{3}\right) R_{12}\left(u_{1}, u_{2}\right)
$$

Rationality condition I Let $u s R(u, v)$ will be a rational matrix

$$
R(u, v)=\mathbb{I}+\frac{\mathbb{P}}{u-v}, \quad \mathbb{P}=\sum_{1 \leq i, j \leq N} E_{i j} \otimes E_{j i}
$$

or

$$
\begin{aligned}
R(u, v)=f(u, v) \sum_{1 \leq i \leq N} E_{i i} \otimes E_{i i}+ & \sum_{1 \leq i<j \leq N}\left(E_{i i} \otimes E_{j j}+E_{j j} \otimes E_{i i}\right) \\
& +\sum_{1 \leq i<j \leq N} g(u, v)\left(u E_{i j} \otimes E_{j i}+v E_{j i} \otimes E_{i j}\right)
\end{aligned}
$$

where f, g are proper rational functions

''Rational'" system

The system is given by Lax operator L satisfying

$$
R_{12}(u, v) L_{1}(u) L_{2}(v)=L_{2}(v) L_{1}(u) R_{12}(u, v)
$$

We assume existance of $|0\rangle$. Then Bethe ansatz provides as with a knowledge of eigenvectors of the system $|\bar{u}\rangle$ that are numerated by the rapidites \bar{u} that are given solutions of Bethe ansatz equations (BAE)

$$
e^{i P\left(u_{j}\right) L}=\prod_{1 \leq i \leq N ; i \neq j} S\left(u_{j}, u_{i}\right), \quad j=1, \ldots, N
$$

where $p(u)$ is a (quasi)momentum of the system (defined by the Lax operator), S scattering amplitude (defined by R-matrix and is rational)
Rationality condition II If $L_{i j}|0\rangle$ is rational then eigenvectors become rational objects If conditions I-II are satisfied then BAE system becomes rational

Let us consider a finite size system, then for arbitrary operators $Q, O(x), O_{1}(x)$, etc. we can compute matrix elements

$$
\begin{equation*}
\langle\bar{u}| O(x)|\bar{u}\rangle, \quad\langle\bar{u}| O(x)|\bar{v}\rangle, \quad\langle\bar{u}| O_{1}(x) O_{2}(y)|\bar{u}\rangle, \quad \ldots \tag{1.1}
\end{equation*}
$$

(The simplest case will be averaging of the transfer matrix of the system t^{K} that provide as with a statistical sum of the system)
If conditions I-III are satisfied then for finite case of Bethe roots obviously (1.1) are rational functions.
$B A E$ can be rewritten via $Q Q$-system

$$
v Q_{a+1, s}(v) Q_{a, s+1}(v)=Q_{a+1, s+1}^{+}(v) Q_{a, s}^{-}(v)-Q_{a+1, s+1}^{-}(v) Q_{a, s}^{+}(v)
$$

where $f^{ \pm}(v)=f\left(v \pm \frac{c}{2}\right)$ and Q-functions $Q_{a, s}(v)$ are even polynomials on v numerated by nodes of the Young tableau (Volin, Marboe, 2016)

$$
\begin{equation*}
Q_{a, s}(u)=u^{2 M_{a, s}}+\sum_{k=0}^{M_{a, s}-1} c_{a, s}^{(k)} u^{2 k} \tag{1.2}
\end{equation*}
$$

+certain boundary conditions for $Q_{0,0}$
Requirement for all solutions $Q_{a, s}$ to be polynomials provides us with a set of algebraic equations we call zero reminder conditions (ZRC)

Rational functions summation

We consider a set of N-variable algebraic equations

$$
\begin{equation*}
F_{1}\left(z_{1}, \ldots, z_{N}\right)=F_{2}\left(z_{1}, \ldots, z_{N}\right)=\cdots=F_{N}\left(z_{1}, \ldots, z_{N}\right)=0 \tag{1.3}
\end{equation*}
$$

For a given polynomial P we want to compute the sum over solutions of system (1.3)

$$
S[P]=\sum_{\text {sol }} P\left(z_{1}, \ldots, z_{N}\right)
$$

Numeric solution is rather cumbersome and suffers from the numeric errors For instance: not too much is known about Bethe equation solution beyond the string hypothesis conjecture. Especially problematic case of quantum transfer matrix (QTM) BAE
At this moment the fact that we are dealing with exclusively rational functions can be applied (D. Volin, J. Jacobsen, Y. Jiang)

Polynomial ring theory

Polynomial ring $Q[z]$: set of polynomials of form

$$
q=q_{0}+q_{1} z+q_{2} z^{2}+\cdots+q_{N} z^{N}
$$

with the additive and multiplicative operations defined in the usual way. Similarly polynomial ring on multiple variables can be defined $Q\left[z_{1}, \ldots, z_{n}\right]$
Ideal / of $Q[z]$

1. $f_{1}+f_{2} \in I$ if $f \in I$ and $f_{2} \in I$
2. $g f \in I$ for $f \in I$ and $g \in Q[z]$

Important: any ideal of polynomial ring $Q[z]$ is finitely generated i.e. there exist a finite number of $f_{i} \in I$, such that for any $F \in I$

$$
F=\sum_{1 \leq i \leq N} f_{i} g_{i}, \quad g_{i} \in Q\left[z_{1}, \ldots, z_{N}\right]
$$

Polynomial reduction

Important: The choice of generating set of basis is no unique. Even the dimension of set can be different. The convenient basis can be chosen
Polynomial reduction of F over the set $\left\langle f_{1}, \ldots, f_{n}\right\rangle$. For any $F \in Q\left[z_{1}, \ldots, z_{N}\right]$

$$
F=\sum_{1 \leq i \leq N} f_{i} g_{i}+r, \quad g_{i} \in Q\left[z_{1}, \ldots, z_{N}\right]
$$

where r is called remainder
Important: for a given set $\left\langle f_{1}, \ldots, f_{n}\right\rangle$ reduction is not unique! For instance: $F(x, y)=x^{2} y+x y^{2}+y^{2}, f_{1}=y^{2}-1$ and $f_{2}=x y-1$, then

1. $F(x, y)=(x+1) f_{1}+x f_{2}+(2 x+1)$,
2. $F(x, y)=f_{1}+(x+y) f_{2}+(x+y+1)$

Hereby the remainder (and a whole expansion) is not well defined in a generic basis. Even dimensions of different bases can be different. More convenient basis is needed

Gröbner basis

Monomial ordering:

- $u^{s} \prec u^{s+1}$
- If $u \prec v$ then for any monomial w we have $u w \prec v w$
- For any monomial w holds $1 \prec w$

Leading term of function $f(\operatorname{LT}(f))$ is defined as a highest monomial of f with respect to the monomial order \prec
Gröbner basis $G(I)$ of an ideal I with respect to the monomial order \prec is a basis of the ideal $\left\langle g_{1}, \ldots, g_{n}\right\rangle$, such that for any $f \in I$ there exists a $g_{i} \in G(I)$ such that $\operatorname{LT}(f)$ is divisible by LT $\left(g_{i}\right)$.
Minimal reduced Gröbner basis

1. Coefficient in front of LT of each $g \in G(I)$ is equal 1 .
2. Neither monomial of any $g \in G(I)$ is not divisible by the LT of any other $f \in G(I)$

Lemma: For a given monomial order \prec minimal reduced Gröbner basis exists and is unique
The reminder of arbitrary F is unique for the minimal reduced Gröbner basis

Properties of the polynomial ring

Quotient ring $Q_{I}=Q\left[z_{1}, z_{2}, \ldots, z_{N}\right] / I$ where $I=\left\langle f_{1} \ldots f_{K}\right\rangle$ is the ideal generated by f_{1}, \ldots, f_{K}, i.e. for $a \in Q_{I}, b \in Q_{I} a \sim b$ if $a-b \in I$
We consider system

$$
\begin{equation*}
f_{1}\left(z_{1}, \ldots, z_{N}\right)=f_{2}\left(z_{1}, \ldots, z_{N}\right)=\cdots=f_{K}\left(z_{1}, \ldots, z_{N}\right)=0 \tag{1.4}
\end{equation*}
$$

then ideal I can be defined as $I=\left\langle f_{1}, \ldots, f_{K}\right\rangle$ and the quotient ring is given by Q_{I} as $Q_{I}=Q\left[z_{1}, \ldots, z_{N}\right] /\left\langle f_{1}, \ldots, f_{K}\right\rangle$.

Important:

The dimension of the quotient ring $\operatorname{dim} Q_{I}$ is equal to the number of solution of system (1.4).

If $G(I)$ is a Gröbner basis of the ideal I the linear space Q_{I} is spanned by monomials which are not divisible by any element in $\operatorname{LT}[G(I)]$

Companion matrix

Any monomial $P \in Q\left[z_{1}, \ldots, z_{N}\right]$ can be presented as a matrix in the quotient ring which is finite dimension linear space. Let $\left(m_{1}, \ldots, m_{N}\right)$ be the monomial basis of $Q_{I}=Q\left[z_{1}, \ldots, z_{N}\right] / I$ which can be constructed by the Gröbner basis. Then 1. Perform the expansion

$$
\left[P m_{i}\right]_{G(I)}=\sum_{j} c_{i j} m_{j}
$$

where $[F]_{G(I)}$ means the reminder of the polynomial reduction of F with respect to the Gröbner basis $G(I)$
2. Define a companion matrix of function P

$$
\left(M_{P}\right)_{i j}=c_{i j} .
$$

Properties of the companion matrix

For arbitrary functions f and g with companion matrices $M_{f}=M_{g}$ if and only if
$[f]=[g]\left(\mathrm{i} . \mathrm{e} . f-g \in Q_{I}\right)$

1. $M_{f+g}=M_{f}+M_{g}$
2. $M_{f g}=M_{f} M_{g}=M_{g} M_{f}$
3. $M_{f / g}=M_{f} M_{g}^{-1}$

The last property allows to deal with rational not only polynomial functions Lemma:

$$
S[P]=\sum_{\text {sol }} P\left(z_{1}, \ldots, z_{N}\right)=\operatorname{Tr}\left[\mathrm{M}_{\mathrm{P}}\right]
$$

General algorithm

1. Generate the set of $Z R C$ from rational $Q Q$-system
2. Compute the Gröbner basis $G(I)$ of ZRC
3. Construct the quotient ring of the ZRC (provide us with a monomial basis $\left.\left(m_{1}, \ldots, m_{N}\right)\right)$
4. Compute companion matrices M_{P}
5. Compute traces of companion matrices

Physical observables computation

6V (2020) and Potts (2022) models statistical sums J. Jacobsen et. al. XXX model was studied by Y. Jiang et al., (2021) with $L=4, \ldots, 20$ with a magnon numbers $N=L / 2$
Diagonal Rényi entropy The diagonal ensemble is defined by the density matrix

$$
\rho_{d}=\sum_{\bar{u}} O_{\bar{u}}|\bar{u}\rangle\langle\bar{u}|, \quad O_{\bar{u}}=\left|\left\langle\psi_{0} \mid \bar{u}\right\rangle\right|^{2},
$$

then diagonal Rényi entropy is given by

$$
S_{d}^{(\alpha)}=\frac{1}{1-\alpha} \log \operatorname{Tr} \rho_{\mathrm{d}}^{(\alpha)}=\frac{1}{1-\alpha} \log \sum_{\overline{\mathrm{u}}} \mathrm{O}_{\overline{\mathrm{u}}}^{\alpha}
$$

Loschmidt echo amplitude

$$
\begin{equation*}
M_{L}(i t)=\langle\psi| e^{-i t H}|\psi\rangle=\sum_{\bar{u}}|\langle\psi \mid \bar{u}\rangle|^{2} e^{-i t E(\bar{u})} \tag{1.5}
\end{equation*}
$$

summation is taken over all solutions of Bethe equation, $|\psi\rangle$ is an initial state. Integrable initial state $|\psi\rangle$ was considered

$$
|\psi\rangle=\frac{1}{2}\left(|\uparrow \downarrow\rangle^{\otimes L / 2}+|\downarrow \uparrow\rangle^{\otimes L / 2}\right)
$$

Remark: the similar approach can be done for XXZ
Remark: (1.5) contains factor $\exp (i t E)$, that is not a rational function!

In case we are dealing with non-rational functions the following trick can be used: let us consider sum $\sum_{\text {sol }} p(u) F(q(u))$, where $p(u), q(u)$ are rational functions and $F(z)$ any function that does not have singularities at $z=q$. Then

$$
\sum_{\text {sol }} p(u) F(q(u))=\oint_{\mathcal{C}} \frac{d z}{2 \pi i} F(z) \sum_{\text {sol }} \frac{p(u)}{z-q(u)}
$$

where \mathcal{C} encircles all possible values of q
Hereby we proceed to the rational function by a cost of adding a single contour integral (could be computed straightforwardly)

Conclusions

- Polynomial ring theory can be applied for any rational model
- Loschmidt echo, Rényi entropy could be calculated for relatively long chain

Possible future ideas

- Correlation functions?
- Summation over solutions of the QTM?
- Nested Bethe ansatz?

