

BERGISCHE UNIVERSITÄT WUPPERTAL

Absence of string excitations in the low-T spectrum of the quantum transfer matrix of the XXZ chain

S. Faulmann

Recent Advances in Quantum Integrable Systems Laboratoire de Physique de l'ENS Lyon

30.08.2022

SF (Lyon)

LOW-T SPECTRUM QTM OF XXZ

30.08.2022 1/13

The Hamiltonian of the XXZ-chain

2 The dressed energy in the complex plane

Types of solutions for excited states of the quantum transfer matrix

Summary and Outlook

ヘロン ヘロン ヘビン ヘビン

The Hamiltonian of the XXZ-chain

Hamiltonian of the spin 1/2 XXZ-chain with magnetic field

$$H_{XXZ}=J\sum_{j=1}^L(\sigma_{j-1}^x\sigma_j^x+\sigma_{j-1}^y\sigma_j^y+\Delta(\sigma_{j-1}^z\sigma_j^z-1))+\frac{h}{2}\sum_{j=1}^L\sigma_j^z$$

Eigenvalues of the quantum transfer matrix:

$$\Lambda_0 > |\Lambda_1| \ge |\Lambda_2| \ge ..$$

Free energy

$$f(T,h) = -T \lim_{N \to \infty} \ln \Lambda_0$$

Static correlation functions:

$$\langle x_1 y_{m+1} \rangle_{T,h} \sim \sum_n A_n^{xy} \left(\frac{\Lambda_n}{\Lambda_0} \right)^m$$

ヘロト ヘアト ヘビト ヘビト

The Hamiltonian of the XXZ-chain

Hamiltonian of the spin 1/2 XXZ-chain with magnetic field

$$H_{XXZ} = J \sum_{j=1}^{L} (\sigma_{j-1}^{x} \sigma_{j}^{x} + \sigma_{j-1}^{y} \sigma_{j}^{y} + \Delta(\sigma_{j-1}^{z} \sigma_{j}^{z} - 1)) + \frac{h}{2} \sum_{j=1}^{L} \sigma_{j}^{z}$$

Eigenvalues of the quantum transfer matrix:

$$\Lambda_0 > |\Lambda_1| \ge |\Lambda_2| \ge \dots$$

Free energy

$$f(T,h) = -T \lim_{N \to \infty} \ln \Lambda_0$$

Static correlation functions:

$$\langle x_1 y_{m+1} \rangle_{T,h} \sim \sum_n A_n^{xy} \left(\frac{\Lambda_n}{\Lambda_0} \right)^m$$

Upper critical magnetic field

$$h_c = 4J(1 + \Delta)$$

In the following: Set $\Delta \in (0, 1), 0 < h < h_c$

イロン イボン イヨン イヨン

The auxiliary function for low temperatures

- Using the algebraic Bethe ansatz, we find the Bethe roots {λ_j⁽ⁿ⁾}, which determine Λ_n
- Bethe ansatz equations \Rightarrow

$$\mathfrak{a}(\lambda_j|\{\lambda_j^{(n)}\}) = -1 \quad \forall j$$

with "auxiliary function" a

The auxiliary function for low temperatures

- Using the algebraic Bethe ansatz, we find the Bethe roots {λ_j⁽ⁿ⁾}, which determine Λ_n
- Bethe ansatz equations \Rightarrow

$$\mathfrak{a}(\lambda_j|\{\lambda_j^{(n)}\}) = -1 \quad \forall j$$

with "auxiliary function" a

• For low temperatures, it is convenient to write

$$\mathfrak{a}(\lambda|\{\lambda_j^{(n)}\}) = e^{-\frac{1}{T}u(\lambda|\mathbb{Y})}$$

 u(λ|¥) can be represented by a non-linear integral equation with integration contour 𝒞

The auxiliary function for low temperatures

- Using the algebraic Bethe ansatz, we find the Bethe roots {λ_j⁽ⁿ⁾}, which determine Λ_n
- Bethe ansatz equations \Rightarrow

$$\mathfrak{a}(\lambda_j|\{\lambda_j^{(n)}\}) = -1 \quad \forall j$$

with "auxiliary function" a

• For low temperatures, it is convenient to write

$$\mathfrak{a}(\lambda|\{\lambda_j^{(n)}\}) = \mathrm{e}^{-\frac{1}{T}u(\lambda|\mathbb{Y})}$$

- *u*(λ|𝔅) can be represented by a non-linear integral equation with integration contour 𝔅
- [♥] denotes the finite set of Bethe roots outside *C* and zeros of 1 + e^{-1/2} u(λ|𝔅) inside *C* that are not Bethe roots

- Each set \mathbb{Y} relative to \mathscr{C} corresponds to a state *n* of the quantum transfer matrix
- The parameters fulfill the "higher level Bethe ansatz equations"

 $-\frac{1}{\pi}u(v_i|\mathbb{Y}) = 1$ $v_i \in \mathbb{Y}$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$PZeros of 1 + e^{-u(\lambda|Y)/T}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} \in \mathbb{I}$$

$$e^{-1} \quad w_{-1} = -1 \quad y_{i} =$$

The dressed energy as low-T-limit of the auxiliary function

Goal: Rigorous mathematical description of the auxiliary function for low temperatures.

Auxiliary function u for low-T

 $u(\lambda | \mathbb{Y}) = \varepsilon_c(\lambda) + O(T)$

The Bethe roots are determined by the solutions of

$$\mathrm{e}^{-\frac{u(\lambda|\mathbb{Y})}{T}} = -1 \Rightarrow u(\lambda|\mathbb{Y}) = \mathrm{i}\pi T(2n-1)$$

and are therefore located on the curve $\operatorname{Re} \varepsilon_c(\lambda) = 0$.

イロン イボン イヨン イヨン

The dressed energy as low-T-limit of the auxiliary function

Goal: Rigorous mathematical description of the auxiliary function for low temperatures.

Auxiliary function u for low-T

 $u(\lambda | \mathbb{Y}) = \varepsilon_c(\lambda) + O(T)$

The Bethe roots are determined by the solutions of

$$e^{-\frac{u(\lambda|\mathbb{Y})}{T}} = -1 \Rightarrow u(\lambda|\mathbb{Y}) = i\pi T(2n-1)$$

and are therefore located on the curve $\operatorname{Re} \varepsilon_c(\lambda) = 0$.

$$D = \{x \in \mathbb{C} : \operatorname{Re} \varepsilon(\lambda) < 0, \operatorname{Im}(\lambda) < 0\}$$

Continuation of $\varepsilon_c(\lambda)$:

$$\varepsilon_{c}(\lambda) = \varepsilon(\lambda) + \varepsilon(\lambda - i\gamma)\mathbf{1}_{\lambda - i\gamma \in D} - \varepsilon(\lambda + i\gamma)\mathbf{1}_{\lambda + i\gamma \in D}$$

Dressed energy

$$\begin{split} \varepsilon_c(\lambda) &= \varepsilon_0(\lambda) - \int_{\mathscr{C}_{\varepsilon}} d\mu K(\lambda - \mu | \gamma) \varepsilon_c(\mu) \\ \varepsilon(\lambda) &= \varepsilon_0(\lambda) - \int_{-Q}^{Q} d\mu K(\lambda - \mu | \gamma) \varepsilon(\mu) \end{split}$$

with $\cos(\gamma) = \Delta$, $\gamma \in (0, \pi/2)$. Kernel:

$$K(\lambda|\gamma) = \frac{1}{2\pi i} (\operatorname{cth}(\lambda - i\gamma) - \operatorname{cth}(\lambda + i\gamma))$$

Bare energy:

$$\varepsilon_0(\lambda) = h - 4\pi J \sin(\gamma) K(\lambda | \gamma/2)$$

The "**Fermi-Point**" Q is the unique positive solution of

$$\varepsilon(Q) = 0$$

Dugave, Göhmann, Kozlowski 2014; SF, Göhmann, Kozlowski 2021

30.08.2022 5/13

The dressed energy in the complex plane I

The dressed energy in the complex plane I

Theorem (SF, Göhmann, Kozlowski 2021)

 $S_{\gamma}(O_F) = \{z \in \mathbb{C} \mid -\pi/2 \le \operatorname{Im} \lambda < \pi/2 \land z \notin [-O, O] \pm i\gamma\}$

- **()** $\forall \lambda \in S_{\gamma}(Q_F)$ with Re $\lambda = x$ and Im $\lambda = y$ the function $\lambda \mapsto \operatorname{Re} \varepsilon(\lambda)$ is even in x and y.
- 2 Within the strip $0 \le y < \gamma/2$ the function $x \mapsto \operatorname{Re} \varepsilon(x + iy)$ is monotonically increasing on \mathbb{R}^+ and, for every y, has a single simple zero x(y).
- Solution Within the strip $|\operatorname{Im} \lambda| < \gamma/2$ the dressed energy is subject to the bounds

$$\operatorname{Re} \varepsilon_0(\lambda) < \operatorname{Re} \varepsilon(\lambda) < \operatorname{Re} \tilde{\varepsilon}(\lambda).$$

Solution Re $\varepsilon(\lambda) > 0$ for all $\lambda \in S_{\gamma}(Q_F)$ with $|\operatorname{Im} \lambda| > \gamma/2$, and we have the lower bounds

$$\begin{aligned} &\operatorname{Re} \varepsilon(\lambda) > \min\left\{\frac{h}{2}, \frac{h\gamma}{\pi - \gamma}\right\} \quad \text{if} \quad \frac{\gamma}{2} < y < \gamma \\ &\operatorname{Re} \varepsilon(\lambda) > \frac{h}{2} \quad \text{if} \quad \gamma < y < \frac{\pi}{2} - \frac{1}{2}\left(\frac{\pi}{2} - \gamma\right) \\ &\operatorname{Re} \varepsilon(\lambda) > h \quad \text{if} \quad \frac{\pi}{2} - \frac{1}{2}\left(\frac{\pi}{2} - \gamma\right) < y < \frac{\pi}{2} \end{aligned}$$

The dressed energy in the complex plane II

(2) Uniqueness of the zero

Im $\lambda \in (0, \gamma/2)$, Re $\lambda \in \mathbb{R}^+$

 $\lim_{\operatorname{Re}\lambda\to\infty}\varepsilon(\lambda)=h$

Monotonicity:

$$\frac{\mathrm{d}\operatorname{Re}\varepsilon(\lambda)}{\mathrm{d}\operatorname{Re}(\lambda)} > 0$$

Lower and upper bound:

$$\operatorname{Re} \varepsilon_0(\lambda) < \operatorname{Re} \varepsilon(\lambda) < \operatorname{Re} \tilde{\varepsilon}(\lambda)$$

where

$$\tilde{\varepsilon}(\lambda) = h - \frac{2\pi J \sin(\gamma)}{\gamma \operatorname{ch}(\pi \lambda / \gamma)}$$

if $\tilde{\varepsilon}(\lambda)$ has a unique, positive zero.

 \rightarrow Note that this is not the case for *h* large enough!

イロン イボン イヨン イヨン

The dressed energy in the complex plane II

(2) Uniqueness of the zero

Im $\lambda \in (0, \gamma/2)$, Re $\lambda \in \mathbb{R}^+$

 $\lim_{\operatorname{Re}\lambda\to\infty}\varepsilon(\lambda)=h$

Monotonicity:

 $\frac{\mathrm{d}\operatorname{Re}\varepsilon(\lambda)}{\mathrm{d}\operatorname{Re}(\lambda)} > 0$

Lower and upper bound:

 $\operatorname{Re} \varepsilon_0(\lambda) < \operatorname{Re} \varepsilon(\lambda) < \operatorname{Re} \tilde{\varepsilon}(\lambda)$

where

$$\tilde{\varepsilon}(\lambda) = h - \frac{2\pi J \sin(\gamma)}{\gamma \mathrm{ch}(\pi \lambda / \gamma)}$$

if $\tilde{\varepsilon}(\lambda)$ has a unique, positive zero.

 \rightarrow Note that this is not the case for *h* large enough!

The proof of the theorem is quite technical and requires different approaches in the respective strips, inter alia:

- Rewriting the equations using the resolvent kernel and Fourier transformations
- Deforming the integration contour of ε(λ)
- Direct estimations of integrals

Note that with the analytic continuation of $\varepsilon_c(\lambda)$,

$$\varepsilon_c(\lambda) = \varepsilon(\lambda) + \varepsilon(\lambda - i\gamma)\mathbf{1}_{\lambda - i\gamma \in D}$$
$$-\varepsilon(\lambda + i\gamma)\mathbf{1}_{\lambda + i\gamma \in D}$$

we can use the Theorem for the analysis of Re $\varepsilon_c(\lambda)$

The dressed energy in the complex plane III

Theorem (SF, Göhmann, Kozlowski 2021)

 Within the strip -γ/2 < y < γ/2, Im ε is monotonically increasing counterclockwise along the curve x(y),

$$\frac{\dim \varepsilon(x(y) + iy)}{dy} > 0$$

⇒ This allows us to enumerate solutions to $\varepsilon(\lambda) = \pi i T(2n-1)$ as well as the Bethe roots and other zeros of $1 + e^{-u(\lambda|\Upsilon)/T}$

イロン イボン イヨン イヨン

Types of solutions for excited states of the quantum transfer matrix

Particle-hole-type solutions

The particle and hole parameters $p_j^{(n)}$, $h_j^{(n)}$ solve the higher level Bethe ansatz equations:

$$\begin{split} 1 + \mathrm{e}^{-u(h_j^{(n)} \mid \mathbb{Y})/T} &= 0, \qquad \forall h_j^{(n)} \in \mathcal{H}_n \\ 1 + \mathrm{e}^{-u(p_j^{(n)} \mid \mathbb{Y})/T} &= 0, \qquad \forall p_j^{(n)} \in \mathcal{P}_n \end{split}$$

- \rightarrow Each particle-hole pattern corresponds to an excited state *n* of the quantum transfer matrix
- → Although in the Trotter limit there are infinitely many Bethe roots, the states are characterized by a finite number of parameters

String-type solutions

For low *T* we can rewrite the equation for $u(\lambda | \mathbb{Y})$

$$\mathrm{e}^{-\frac{1}{T}u(\boldsymbol{\lambda}|\mathbb{Y})} = \mathrm{e}^{-\frac{1}{T}\varepsilon_{\mathrm{c}}(\boldsymbol{\lambda})} \prod_{\boldsymbol{y}\in\mathbb{Y}_{Q}} \frac{\sinh(\mathrm{i}\boldsymbol{\gamma}+\boldsymbol{y}-\boldsymbol{\lambda})}{\sinh(\mathrm{i}\boldsymbol{\gamma}-\boldsymbol{y}+\boldsymbol{\lambda})} \cdot \mathrm{e}^{-\Phi(\boldsymbol{\lambda}|\mathbb{Y})} \cdot \frac{\left(1 + \mathrm{e}^{-\frac{1}{T}u(\boldsymbol{\lambda}-\mathrm{i}\boldsymbol{\gamma}|\mathbb{Y})}\right)^{\mathbf{1}_{\boldsymbol{\lambda}-\mathrm{i}\boldsymbol{\gamma}\in\mathrm{Int}(\mathcal{C})}}}{\left(1 + \mathrm{e}^{-\frac{1}{T}u(\boldsymbol{\lambda}+\mathrm{i}\boldsymbol{\gamma}|\mathbb{Y})}\right)^{\mathbf{1}_{\boldsymbol{\lambda}+\mathrm{i}\boldsymbol{\gamma}\in\mathrm{Int}(\mathcal{C})}}}$$

with $\Phi(\lambda | \mathbb{Y}) = u_{1;reg}(\lambda | \mathbb{Y}) + O(T)$

Let $\mathcal{Y} = \{y_0, y_1, ...\}$ be the finite set of Bethe roots outside \mathscr{C} , therefore fulfilling the higher level Bethe ansatz equations:

$$e^{-\frac{1}{T}u(y_i|\mathbb{Y})} = -1$$

Pick $y_0 \in \mathcal{Y}$ with $\operatorname{Im}(y_0) > \operatorname{Im}(y_i)$. Now, considering $e^{-\frac{1}{T}u(y_0|\mathcal{Y})}$ for $T \to 0^+$ there are two possibilities:

- 1: Re $\varepsilon_c(y_0) = o(1) \Rightarrow$ we get a particle (1-string)
- Re ε(y₀) < 0 but one can find y₁ ∈ 𝔅\{y₀}
 s. th. y₀ = y₁ + iγ + O(T[∞]), to compensate the exponential blowup of e^{-1/2}ε_c(λ).

イロト イロト イヨト イヨト

String-type solutions

For low *T* we can rewrite the equation for $u(\lambda | \mathbb{Y})$

$$\mathrm{e}^{-\frac{1}{T}u(\boldsymbol{\lambda}|\mathbb{Y})} = \mathrm{e}^{-\frac{1}{T}\varepsilon_{c}(\boldsymbol{\lambda})} \prod_{\boldsymbol{y}\in\mathbb{Y}_{Q}} \frac{\sinh(\mathrm{i}\boldsymbol{\gamma}+\boldsymbol{y}-\boldsymbol{\lambda})}{\sinh(\mathrm{i}\boldsymbol{\gamma}-\boldsymbol{y}+\boldsymbol{\lambda})} \cdot \mathrm{e}^{-\Phi(\boldsymbol{\lambda}|\mathbb{Y})} \cdot \frac{\left(1+\mathrm{e}^{-\frac{1}{T}u(\boldsymbol{\lambda}-\mathrm{i}\boldsymbol{\gamma}|\mathbb{Y})}\right)^{\mathbf{1}_{\boldsymbol{\lambda}-\mathrm{i}\boldsymbol{\gamma}\in\mathrm{Int}(\mathscr{C})}}}{\left(1+\mathrm{e}^{-\frac{1}{T}u(\boldsymbol{\lambda}+\mathrm{i}\boldsymbol{\gamma}|\mathbb{Y})}\right)^{\mathbf{1}_{\boldsymbol{\lambda}+\mathrm{i}\boldsymbol{\gamma}\in\mathrm{Int}(\mathscr{C})}}}$$

with $\Phi(\lambda | \mathbb{Y}) = u_{1;reg}(\lambda | \mathbb{Y}) + O(T)$

Let $\mathcal{Y} = \{y_0, y_1, ...\}$ be the finite set of Bethe roots outside \mathscr{C} , therefore fulfilling the higher level Bethe ansatz equations:

$$e^{-\frac{1}{T}u(y_i|\mathbb{Y})} = -1$$

Pick $y_0 \in \mathcal{Y}$ with $\operatorname{Im}(y_0) > \operatorname{Im}(y_i)$. Now, considering $e^{-\frac{1}{T}u(y_0|\mathcal{Y})}$ for $T \to 0^+$ there are two possibilities:

- 1: Re $\varepsilon_c(y_0) = o(1) \Rightarrow$ we get a particle (1-string)
- 2: Re $\varepsilon(y_0) < 0$ but one can find $y_1 \in \mathcal{Y} \setminus \{y_0\}$ s. th. $y_0 = y_1 + i\gamma + O(T^{\infty})$, to compensate the exponential blowup of $e^{-\frac{1}{T}\varepsilon_c(\lambda)}$.

In case 2, we consider the product

$$(-1)^2 = e^{-\frac{1}{T}u(y_0|\mathbb{Y})} e^{-\frac{1}{T}u(y_1|\mathbb{Y})}$$

and again, get:

- 2.1: Re $\varepsilon(y_0)$ + Re $\varepsilon(y_1) = o(1) \Rightarrow$ we get a 2-string.
- 2.2: Re $\varepsilon(y_0)$ + Re $\varepsilon(y_1) < 0$ but one can find $y_2 \in \mathcal{Y} \setminus \{y_1\}$ s. th. $y_1 = y_2 + i\gamma + O(T^{\infty})$

Repeat these steps for the remaining roots in \mathcal{Y} .

ヘロン ヘロン ヘビン ヘビン

Non-existence of string-type solutions

String-type solutions

A point $y \in \mathbb{C}$ is called the top of a thermal *r*-string, $r \in \mathbb{N}$ if

$$\operatorname{Re}(\varepsilon_k^{(-)}(y)) < 0 \text{ for } k = 1, ..., r - 1$$

and

$$\operatorname{Re}\varepsilon_r^{(-)}(y) = 0$$

with

$$\varepsilon_k^{(-)}(\lambda) = \sum_{s=0}^{k-1} \varepsilon_c(\lambda - is\gamma)$$

Non-existence of string-type solutions

String-type solutions

A point $y \in \mathbb{C}$ is called the top of a thermal *r*-string, $r \in \mathbb{N}$ if

$$\operatorname{Re}(\varepsilon_k^{(-)}(y)) < 0 \text{ for } k = 1, ..., r - 1$$

and

$$\operatorname{Re}\varepsilon_r^{(-)}(y) = 0$$

with

$$\varepsilon_k^{(-)}(\lambda) = \sum_{s=0}^{k-1} \varepsilon_c(\lambda - is\gamma)$$

But, using the properties of $\operatorname{Re}(\varepsilon(\lambda))$ we find that if

$$\operatorname{Re} \varepsilon_c(\lambda) < 0 \quad \Rightarrow \quad \operatorname{Re} \varepsilon_2^{(-)}(\lambda) > 0$$

which shows, that the condition for strings cannot be fulfilled for $\Delta \in (0, 1)$

SF, Göhmann, Kozlowski, SF in preparation

Outlook for $\Delta \in (-1, 0)$

The integral equation representations for $\varepsilon(\lambda)$, $\varepsilon_c(\lambda)$

$$\begin{split} \varepsilon(\lambda) &= \varepsilon_0(\lambda) - \int_{-Q}^{Q} \mathrm{d}\mu K(\lambda - \mu | \gamma) \varepsilon(\mu | Q) \\ \varepsilon_c(\lambda) &= \varepsilon_0(\lambda) - \int_{\mathscr{C}_{\varepsilon}} \mathrm{d}\mu K(\lambda - \mu | \gamma) \varepsilon_c(\mu) \end{split}$$

have cuts at $\pm i\gamma \mod i\pi$, $\mathscr{C}_{\varepsilon} \pm i\gamma \mod i\pi$ \Rightarrow If $\gamma > \pi/2$, $\mathscr{C}_{\varepsilon} \pm i\gamma \mod i\pi$ intersects the curve Re $\varepsilon_c(\lambda) = 0$

Outlook for $\Delta \in (-1, 0)$

The integral equation representations for $\varepsilon(\lambda)$, $\varepsilon_c(\lambda)$

$$\begin{split} \varepsilon(\lambda) &= \varepsilon_0(\lambda) - \int_{-Q}^{Q} \mathrm{d}\mu K(\lambda - \mu | \gamma) \varepsilon(\mu | Q) \\ \varepsilon_c(\lambda) &= \varepsilon_0(\lambda) - \int_{\mathscr{C}_{\varepsilon}} \mathrm{d}\mu K(\lambda - \mu | \gamma) \varepsilon_c(\mu) \end{split}$$

have cuts at $\pm i\gamma \mod i\pi$, $\mathscr{C}_{\varepsilon} \pm i\gamma \mod i\pi$ \Rightarrow If $\gamma > \pi/2$, $\mathscr{C}_{\varepsilon} \pm i\gamma \mod i\pi$ intersects the curve Re $\varepsilon_c(\lambda) = 0$

An analysis of the functions $\operatorname{Re} \varepsilon_c(\lambda)$ and $\operatorname{Re} \varepsilon_2^{(-)}(\lambda)$ shows, that the condition for the existence of 2-strings can be fulfilled for $\Delta \in (-1/2, 0)$

イロン イボン イヨン イヨン

For $\Delta \in (-1, -1/2)$, Re $\varepsilon_c(\lambda) = 0$ is intersected by more cuts at $\mathscr{C}_{\varepsilon} \pm i\gamma \mod i\pi$

Summary and Outlook

Summary

- Each Eigenvalue Λ_n of the QTM is connected to a set \mathbb{Y} and an auxiliary function $u(\lambda|\mathbb{Y})$.
- Static correlation functions:

$$\langle x_1 y_{m+1} \rangle_{T,h} \sim \sum_n A_n^{xy} \left(\frac{\Lambda_n}{\Lambda_0} \right)^m$$

- In the low-*T* limit the dressed energy $\varepsilon_c(\lambda)$ describes the behaviour of $u(\lambda|\mathbb{Y})$
- For $\Delta \in (0, 1)$ the dressed energy is rigorously mathematically characterized in the complex plane
- ⇒ String-type solutions for Bethe roots can be excluded for low-T and $h > 0, \Delta \in (0, 1)$

Outlook

- Massive regime: No strings → explicit expression for Form Factor series (Babenko, Göhmann, Kozlowski, Suzuki 2021)
- \rightarrow Is this also possible for the critical regime?
- Consider $\Delta \in (-1, 0)$ (Currently in work)
 - \rightarrow Several technical difficulties, e.g the cuts intersecting with Re $\varepsilon_c(\lambda)$

イロト イポト イヨト イヨト