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Content of the talk

@ The Hamiltonian of the XXZ-chain

© The dressed energy in the complex plane

e Types of solutions for excited states of the quantum transfer matrix

@ Summary and Outlook
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The Hamiltonian of the XXZ-chain
Hamiltonian of the spin 1/2 XXZ-chain with magnetic field

L

Hyxz = JZ:‘(U';_IO'}‘ +07,0) + AT oF = 1) +
i=
Eigenvalues of the quantum transfer matrix:

Ao > A1l = [Ag] > ...
Free energy

AT )= =T lim In Ao

Static correlation functions:

A m
(x T~ ) AT (—n)
1Ym+ 1T, Zn: "\ A

=] = = E A20N &4
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The Hamiltonian of the XXZ-chain

Hamiltonian of the spin 1/2 XXZ-chain with magnetic field

L L
h
Hyxz =1 ) l(o;f_lo;* + o0 + AT T = D)+ 5 2107?
J= -

Eigenvalues of the quantum transfer matrix:

Ao > A1l 2 [Az] > ... 12 - . .
ferromagnetic

Free energy 10 F massive E
f(T,h) =T lim InAp sk E

N—oo . .

antiferromagnetic

. . . ~ critical

Static correlation functions: T or h

z xy An 4
<x ) - n A (1‘0)

Upper critical magnetic field

antiferromagnetic
massive

e =4J(1 +A)
In the following: Set A € (0,1),0 < h < h,
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The auxiliary function for low temperatures

@ Using the algebraic Bethe ansatz, we
find the Bethe roots {/lj(.")}, which
determine A,

o Bethe ansatz equations =
APy =-1vj
alA"Y = -1 V)

with “auxiliary function” a

o = =

A20N &4



The auxiliary function for low temperatures

@ Using the algebraic Bethe ansatz, we
find the Bethe roots {/lj(,")}, which
determine A,

o Bethe ansatz equations =
A"y = 1 Vj

with “auxiliary function” a

o For low temperatures, it is convenient
to write

aAAPY) = e A
@ u(A|Y) can be represented by a

non-linear integral equation with
integration contour ¢’
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The auxiliary function for low temperatures

@ Using the algebraic Bethe ansatz, we o Each set Y relative to % corresponds to a state n of the
find the Bethe roots {/lj(,">}, which quantum transfer matrix
determine A, o The parameters fulfill the “higher level Bethe ansatz
o Bethe ansatz equations = equations”
Loy
A"y = 1 Vj e =1 yey
with “auxiliary function” a A
s : ®Zeros of 1 + e AD/T .
e For lc.)w temperatures, it is convenient Lo , eveseemm———.,, particle
to write . x
x L]
M)y _ o= Fu(AY)
a(Ulfy ")) =e 7 . .
@ u(A|Y) can be represented by a -
non-linear integral equation with Red
integration contour ¢’ x

@ Y denotes the finite set of Betl]le roots
outside ¢ and zeros of 1 + e~ 7*(1Y)
inside % that are not Bethe roots

SFE (Lyon) 30.08.2022 4/13



The dressed energy as low-7-limit of the auxiliary function

Goal: Rigorous mathematical description of the auxiliary function for low temperatures.

Auxiliary function u for low-T'

w(AlY) = e.(1) + O(T)

The Bethe roots are determined by the solutions of

wAlY) .
7T =—-1=uY)=inT2n - 1)

and are therefore located on the curve Re g.(1) = 0.

SE (Lyon)
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The dressed energy as low-7-limit of the auxiliary function

Goal: Rigorous mathematical description of the auxiliary function for low temperatures.

Auxiliary function u for low-T' Dressed energy

&c(A) = eo(A) - f duK (A — ply)ec(w)
u(A[Y) = (1) + O(T) Ee

Q
The Bethe roots are determined by the solutions of &) = &) - [ 0 duK (A = ply)e(u)

u(A[Y)
T

=-1=u]Y)=inT2n - 1) with cos(y) = A, y € (0,7/2).
Kernel:
and are therefore located on the curve Re g.(1) = 0.

1 . .
KQly) = ﬁ(cth(/l —iy) — cth(d + iy))
Bare energy:

eo(d) = h— 4nJ sin())K(Ay/2)

The “Fermi-Point” Q is the unique positive

D=f{xeC:Reed) < 0,Im(A) < 0) solution of
Continuation of &.(A):

Q) =0
&c(D) = &) + &(d — iy)Li—iyep — &(Ad + 1Y) r+iyeD
Dugave, Gohmann, Kozlowski 2014; SF, Gohmann, Kozlowski 2021
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The dressed energy in the complex plane |

Tm(A)
/2
Ree(l) = O0fory = 1.3,/ = 1 !
v
0.6 — h=06h, .
—hmosh e L Lo SRR
—— h=h
0.4
111 R
0.2 i
- 11 /2
I o e e e e s B S
- 1
~02 Re(A)
1
P N N e R /2
11
—06 ]
-0.4 -0.2 0.0 0.2 0.4
Re(A)
v
—n/2

TR G



The dressed energy in the complex plane I

Theorem (SF, Gohmann, Kozlowski 2021)

$y(Qr)={z€Cl-n/2<ImA<n/2 Az ¢[-Q0, 0] +iy}

@ V1€ S, (QF) withRed = x and Im A = y the function
A Ree(d) is even in x and y.

@ Within the strip 0 <y < y/2 the function
x — Re&(x + iy) is monotonically increasing on R*
and, for every y, has a single simple zero x(y).

@ Within the strip | Im 4| < y/2 the dressed energy is
subject to the bounds

Re gp(1) < Ree(1) < Re&(A).

@ Resg(d) > Oforall A € Sy(Qf) with |[Im A| > y/2, and
we have the lower bounds

Regu)>min{ﬁ,h—7} it Yey<y

2 m—vy 2

Res(/l)>h if <y< — — (n_ )
2 y=y=373z77

Ree(d) > h if

Tm(A)
/2
v
..................... 2E-)
I R
!
o W2 L
I
1
[ 72 J
11
it
111
..................... S it I
I\
—n/2

SE (Lyon)
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The dressed energy in the complex plane 11

(2) Uniqueness of the zero

ImA€(0,y/2),Red e R*
li A=h
Re}lToo &)
Monotonicity:

dRe&(d)
dRe(1)

Lower and upper bound:
Re gp(1) < Re&(d) < Re&(1)

where

_ 27J sin(y)
ych(za/y)

if (1) has a unique, positive zero.

D) =h

— Note that this is not the case for / large
enough!

SFE (Lyon)

y=0.55,h=0.75h. = 5.56

3 4
2 4
1 4
0
_1 4
2 :
—— Re(g(a + 0.1i))
—— Re(gp(a + 0.1i))
=31 —— Re(é(a +0.1i))
0.0 01 02 0.3
a
30.08.2022
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The dressed energy in the complex plane II

(2) Uniqueness of the zero

ImA€(0,y/2),Red e R*
li A=h
Re}lToo &)
Monotonicity:

dRe&(d)
dRe(1)

Lower and upper bound:
Re gp(1) < Re&(d) < Re&(1)
where

_ 27J sin(y)
ych(za/y)

if (1) has a unique, positive zero.

D) =h

— Note that this is not the case for / large
enough!

The proof of the theorem is quite technical
and requires different approaches in the re-
spective strips, inter alia:

o Rewriting the equations using the
resolvent kernel and Fourier
transformations

o Deforming the integration contour of
&)
o Direct estimations of integrals

Note that with the analytic continuation of
&),

&c() = &() + &(A - i) a-iyen
= &(d + 1Y)y

we can use the Theorem for the analysis of
Ree (1)
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The dressed energy in the complex plane II1

—— Reg(A)=0 x Solutions to €(A) = niT(2n — 1)

Theorem (SF, Gohmann, Kozlowski
2021)
© Within the strip —y/2 <y < y/2,
Im & is monotonically increasing
counterclockwise along the curve

x(¥),

Im(A)

dImex(y) +1iy) >0
dy

= This allows us to enumerate
solutions to &(1) = niT(2n — 1) as
well as the Bethe roots and other
zeros of 1 + e~ #AN/T

Re(A)
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Types of solutions for excited states of the quantum transfer matrix

. . I = ~uAIIT
Particle-hole-type solutions Reg(A) =0 X Bethe roots ® Zerosof1+e u@l
The particle and hole parameters pj(."), 0.6
h;") solve the higher level Bethe
ansatz equations: 0.4 1

~u(h"1D)/T _ (n) 0.2
1+e ™ =0, th eH, particle
() =
~u(p"1¥)/T =
1+e =0, Vp](.”) €Pn | E 00
hole
—0.2 1
— Each particle-hole pattern
corresponds to an excited state n —0.4
of the quantum transfer matrix
— Although in the Trotter limit ~0.6 1
there are infinitely many Bethe T T T T
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
roots, the states are Re(d)
characterized by a finite number
of parameters y=1.3,h=0.5h.=2.53,/=1.0,T=0.2
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String-type solutions

For low T we can rewrite the equation for u(4|Y)

1,
(1 + ef%u(/lfile)) A-iyelnt(€)

o FUCID) o= Feel) n sinh(iy +y - 1) LU

sinh(iy —y + 1)

1 .
(1 + e—%u(ﬂ‘*iﬂY)) A+iyelnt(€)

with O(AY) = 11564 (AY) + O(T)

Let Y = {y0, 1, ...} be the finite set of Bethe
roots outside ¢, therefore fulfilling the higher
level Bethe ansatz equations:

e THOIY) —

Pick yo € Y with Im(yg) > Im(y;). Now,
considering e~ T400) for T — 0* there are two
possibilities:
1: Reeq(yo) = o(1) = we get a particle
(1-string)
2: Re&(yg) < 0 but one can find y; € Y\{yo}
s. th. yo = y1 + iy + O(T™), to compensate
the exponential blowup of e T o),



String-type solutions

For low T we can rewrite the equation for u(4|Y)

b e [ 2L
Y-y

with QYY) = ;e (AY) + O(T)

Let Y = {y0, 1, ...} be the finite set of Bethe
roots outside ¢, therefore fulfilling the higher
level Bethe ansatz equations:

e THOIY) —

Pick yo € Y with Im(yg) > Im(y;). Now,
considering e~ T400) for T — 0* there are two
possibilities:
1: Reeq(yo) = o(1) = we get a particle
(1-string)
2: Re&(yp) < 0 but one can find y; € Y\{yo}
s. th. yo = y1 + iy + O(T®), to compensate
the exponential blowup of e~ o),

SE (Lyon)

. 1
(1 R }u(/l i |Y)) A-iyelnt(€)

1 .
(1 + e—%u(ﬂ‘*iﬂY)) A+iyelnt(€)

In case 2, we consider the product
(=1)? = e~ THOUD = U1

and again, get:

2.1: Ree(yp) +Ree(yr) =o(1) = we geta
2-string.

2.2: Ree(yg) + Ree(yr) < 0 but one can find
v2 € W\ils. th. y1 = y2 +iy + O(T™)
Repeat these steps for the remaining roots in Y.

30.08.2022 10/13



Non-existence of string-type solutions
String-type solutions
A point y € C is called the top of a thermal
r-string, r € N if
Re(e\’(5) <0 for k=1,.,r-1
and
Ree”(y») =0
with

k=1

g7 =) e~ isy)

5=

=] = = E A20N &4




Non-existence of string-type solutions

String-type solutions

A point y € Cis called the top of a thermal
r-string, r € N if

Re(e\’(5) <0 for k=1,.,r-1

and
Ree?() =0
with
k-1
g7 = ) eA—isy)
s=0

But, using the properties of Re(g(1)) we find that
if

Ree() <0 = Reel’()>0

which shows, that the condition for strings
cannot be fulfilled for A € (0, 1)

SF, Gohmann, Kozlowski, SF in preparation

y

Im(A)

— Re(ef’(A))=0 —— Re(e(A) =0
1.5
1.0
0.5
0.0
-0.5 A
_1'0 -
-1.5 1
-0.4 -0.2 0.0 0.2 0.4
Re(A)

y=1.3,h=0.65h.~3.3,/=1.0

SF (Lyon)
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Outlook for A € (-1, 0)

—— Gexiymodin = —— i(m—-y)/2 e +iy/2
Re(ec(A)) =0 —-= xi(m—y) X Poles of £-(A)
The integral equation representations for £(4), &.(1)

Q0
&) = go() - f 0 duK(A - ply)eulQ)

6 = o) - f QK (L - phy)ee ()

0 ~ sl ? have cuts at +iy modir, %, + iy modir

0.0
H i = If y > n/2, ¢, + iy mod ir intersects the curve
© i Reeg (1) =0

Im(A)

-0.5

-0.6 -04 -02 0.0 0.2 04 06
Re(A)

y=2.04,h=0.65h,=1.41,/=1.0



Outlook for A € (-1, 0)

Re({3(A) =0
Re(ec(A)) =0

—-= zi(m-y)
+iy/2

x
]

Poles of £.(A)
Pole of £{J(A)

154

0.5 A K4 D ‘\.
i 7 B
Z oot i &
£ : s :

—0.51

=1.0 .-

-1.51

-0.6 -04 -0.2

0.0 0.2
Re(A)

0.4

0.6

y=2.04,h=0.65h,=1.41,/=1.0

SFE (Lyon)

The integral equation representations for £(4), &.(1)
Q
&) = go(D) - f 0 duK (A - ply)e(ulQ)

6 = o) - f QK (L - phy)ee ()

&

have cuts at +iy mod ixr, €, + iy mod ix
= If y > n/2, ¢, + iy mod ir intersects the curve

Ree.(1) =0

An analysis of the functions Re &.(1) and Re 8(2_)(/1)
shows, that the condition for the existence of 2-strings
can be fulfilled for A € (—1/2,0)

For A € (—1,-1/2), Re g.(1) = 0 is intersected by
more cuts at %, + iy mod ix

30.08.2022 12/13
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Summary and Outlook

Summary

o Each Eigenvalue A, of the QTM is connected to a set Y and an auxiliary function u(2|Y).

@ Static correlation functions:

A m
S——t
1Ym+1/T.h ; n AO

o In the low-T limit the dressed energy £.(1) describes the behaviour of u(4|Y)
@ For A € (0, 1) the dressed energy is rigorously mathematically characterized in the complex plane
= String-type solutions for Bethe roots can be excluded for low-7 and 4 > 0, A € (0, 1)

Outlook
@ Massive regime: No strings — explicit expression for Form Factor series
(Babenko, Gohmann, Kozlowski, Suzuki 2021)

— Is this also possible for the critical regime?
o Consider A € (-1, 0) (Currently in work)
— Several technical difficulties, e.g the cuts intersecting with Re &.(1)
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