BERGISCHE

 UNIVERSITÄT WUPPERTAL
Absence of string excitations in the low- T spectrum of the quantum transfer matrix of the $\mathbf{X X Z}$ chain

S. Faulmann

Recent Advances in Quantum Integrable Systems
Laboratoire de Physique de l'ENS Lyon
30.08.2022

Content of the talk

(1) The Hamiltonian of the XXZ-chain
(2) The dressed energy in the complex plane
(3) Types of solutions for excited states of the quantum transfer matrix

4 Summary and Outlook

The Hamiltonian of the XXZ-chain

Hamiltonian of the spin $1 / 2$ XXZ-chain with magnetic field

$$
H_{X X Z}=J \sum_{j=1}^{L}\left(\sigma_{j-1}^{x} \sigma_{j}^{x}+\sigma_{j-1}^{y} \sigma_{j}^{y}+\Delta\left(\sigma_{j-1}^{z} \sigma_{j}^{z}-1\right)\right)+\frac{h}{2} \sum_{j=1}^{L} \sigma_{j}^{z}
$$

Eigenvalues of the quantum transfer matrix:

$$
\Lambda_{0}>\left|\Lambda_{1}\right| \geq\left|\Lambda_{2}\right| \geq \ldots
$$

Free energy

$$
f(T, h)=-T \lim _{N \rightarrow \infty} \ln \Lambda_{0}
$$

Static correlation functions:

$$
\left\langle x_{1} y_{m+1}\right\rangle_{T, h} \sim \sum_{n} A_{n}^{x y}\left(\frac{\Lambda_{n}}{\Lambda_{0}}\right)^{m}
$$

The Hamiltonian of the XXZ-chain

Hamiltonian of the spin $1 / 2$ XXZ-chain with magnetic field

$$
H_{X X Z}=J \sum_{j=1}^{L}\left(\sigma_{j-1}^{x} \sigma_{j}^{x}+\sigma_{j-1}^{y} \sigma_{j}^{y}+\Delta\left(\sigma_{j-1}^{z} \sigma_{j}^{z}-1\right)\right)+\frac{h}{2} \sum_{j=1}^{L} \sigma_{j}^{z}
$$

Eigenvalues of the quantum transfer matrix:

$$
\Lambda_{0}>\left|\Lambda_{1}\right| \geq\left|\Lambda_{2}\right| \geq \ldots
$$

Free energy

$$
f(T, h)=-T \lim _{N \rightarrow \infty} \ln \Lambda_{0}
$$

Static correlation functions:

$$
\left\langle x_{1} y_{m+1}\right\rangle_{T, h} \sim \sum_{n} A_{n}^{x y}\left(\frac{\Lambda_{n}}{\Lambda_{0}}\right)^{m}
$$

Upper critical magnetic field

$$
h_{c}=4 J(1+\Delta)
$$

In the following: Set $\Delta \in(0,1), 0<h<h_{c}$

The auxiliary function for low temperatures

- Using the algebraic Bethe ansatz, we find the Bethe roots $\left\{\lambda_{j}^{(n)}\right\}$, which determine Λ_{n}
- Bethe ansatz equations \Rightarrow

$$
\mathfrak{a}\left(\lambda_{j} \mid\left\{\lambda_{j}^{(n)}\right\}\right)=-1 \quad \forall j
$$

with "auxiliary function" a

The auxiliary function for low temperatures

- Using the algebraic Bethe ansatz, we find the Bethe roots $\left\{\lambda_{j}^{(n)}\right\}$, which determine Λ_{n}
- Bethe ansatz equations \Rightarrow

$$
\mathfrak{a}\left(\lambda_{j} \mid\left\{\lambda_{j}^{(n)}\right\}\right)=-1 \quad \forall j
$$

with "auxiliary function" a

- For low temperatures, it is convenient to write

$$
\mathfrak{a}\left(\lambda \mid\left\{\lambda_{j}^{(n)}\right\}\right)=\mathrm{e}^{-\frac{1}{T} u(\lambda \mid \mathbb{Y})}
$$

- $u(\lambda \mid \mathbb{Y})$ can be represented by a non-linear integral equation with integration contour \mathscr{C}

The auxiliary function for low temperatures

- Using the algebraic Bethe ansatz, we find the Bethe roots $\left\{\lambda_{j}^{(n)}\right\}$, which determine Λ_{n}
- Bethe ansatz equations \Rightarrow

$$
\mathfrak{a}\left(\lambda_{j} \mid\left\{\lambda_{j}^{(n)}\right\}\right)=-1 \quad \forall j
$$

with "auxiliary function" a

- For low temperatures, it is convenient to write

$$
\mathfrak{a}\left(\lambda \mid\left\{\lambda_{j}^{(n)}\right\}\right)=\mathrm{e}^{-\frac{1}{T} u(\lambda \mid \mathbb{Y})}
$$

- $u(\lambda \mid \mathbb{Y})$ can be represented by a non-linear integral equation with integration contour \mathscr{C}
- \mathbb{Y} denotes the finite set of Bethe roots outside \mathscr{C} and zeros of $1+\mathrm{e}^{-\frac{1}{T} u(\lambda \mid \mathbb{Y})}$ inside \mathscr{C} that are not Bethe roots
- Each set \mathbb{Y} relative to \mathscr{C} corresponds to a state n of the quantum transfer matrix
- The parameters fulfill the "higher level Bethe ansatz equations"

$$
\mathrm{e}^{-\frac{1}{T} u\left(y_{i} \mid \mathbb{Y}\right)}=-1 \quad y_{i} \in \mathbb{Y}
$$

The dressed energy as low-T-limit of the auxiliary function

Goal: Rigorous mathematical description of the auxiliary function for low temperatures.
Auxiliary function u for low- T

$$
u(\lambda \mid \mathbb{Y})=\varepsilon_{c}(\lambda)+O(T)
$$

The Bethe roots are determined by the solutions of

$$
\mathrm{e}^{-\frac{u(\lambda \mid \mathbb{Y})}{T}}=-1 \Rightarrow u(\lambda \mid \mathbb{Y})=\mathrm{i} \pi T(2 n-1)
$$

and are therefore located on the curve $\operatorname{Re} \varepsilon_{c}(\lambda)=0$.

The dressed energy as low-T-limit of the auxiliary function

Goal: Rigorous mathematical description of the auxiliary function for low temperatures.

Auxiliary function u for low- T

$$
u(\lambda \mid \mathbb{Y})=\varepsilon_{c}(\lambda)+O(T)
$$

The Bethe roots are determined by the solutions of

$$
\mathrm{e}^{-\frac{u(\lambda \mid \mathbb{Y})}{T}}=-1 \Rightarrow u(\lambda \mid \mathbb{Y})=\mathrm{i} \pi T(2 n-1)
$$

and are therefore located on the curve $\operatorname{Re} \varepsilon_{c}(\lambda)=0$.

$D=\{x \in \mathbb{C}: \operatorname{Re} \varepsilon(\lambda)<0, \operatorname{Im}(\lambda)<0\}$
Continuation of $\varepsilon_{c}(\lambda)$:
$\varepsilon_{c}(\lambda)=\varepsilon(\lambda)+\varepsilon(\lambda-\mathrm{i} \gamma) \mathbf{1}_{\lambda-\mathrm{i} \gamma \in D}-\varepsilon(\lambda+\mathrm{i} \gamma) \mathbf{1}_{\lambda+\mathrm{i} \gamma \in D}$

Dressed energy

$$
\begin{aligned}
\varepsilon_{c}(\lambda) & =\varepsilon_{0}(\lambda)-\int_{\mathscr{C}_{\varepsilon}} \mathrm{d} \mu K(\lambda-\mu \mid \gamma) \varepsilon_{c}(\mu) \\
\varepsilon(\lambda) & =\varepsilon_{0}(\lambda)-\int_{-Q}^{Q} \mathrm{~d} \mu K(\lambda-\mu \mid \gamma) \varepsilon(\mu)
\end{aligned}
$$

with $\cos (\gamma)=\Delta, \gamma \in(0, \pi / 2)$.
Kernel:

$$
K(\lambda \mid \gamma)=\frac{1}{2 \pi \mathrm{i}}(\operatorname{cth}(\lambda-\mathrm{i} \gamma)-\operatorname{cth}(\lambda+\mathrm{i} \gamma))
$$

Bare energy:

$$
\varepsilon_{0}(\lambda)=h-4 \pi J \sin (\gamma) K(\lambda \mid \gamma / 2)
$$

The "Fermi-Point" Q is the unique positive solution of

$$
\varepsilon(Q)=0
$$

Dugave, Göhmann, Kozlowski 2014; SF, Göhmann, Kozlowski 2021

The dressed energy in the complex plane I

The dressed energy in the complex plane I

Theorem (SF, Göhmann, Kozlowski 2021)
$S_{\gamma}\left(Q_{F}\right)=\{z \in \mathbb{C} \mid-\pi / 2 \leq \operatorname{Im} \lambda<\pi / 2 \wedge z \notin[-Q, Q] \pm \mathrm{i} \gamma\}$
(1) $\forall \lambda \in S_{\gamma}\left(Q_{F}\right)$ with $\operatorname{Re} \lambda=x$ and $\operatorname{Im} \lambda=y$ the function $\lambda \mapsto \operatorname{Re} \varepsilon(\lambda)$ is even in x and y.
(2) Within the strip $0 \leq y<\gamma / 2$ the function $x \mapsto \operatorname{Re} \varepsilon(x+\mathrm{i} y)$ is monotonically increasing on \mathbb{R}^{+} and, for every y, has a single simple zero $x(y)$.
(3) Within the strip $|\operatorname{Im} \lambda|<\gamma / 2$ the dressed energy is subject to the bounds

$$
\operatorname{Re} \varepsilon_{0}(\lambda)<\operatorname{Re} \varepsilon(\lambda)<\operatorname{Re} \tilde{\varepsilon}(\lambda) .
$$

(9) $\operatorname{Re} \varepsilon(\lambda)>0$ for all $\lambda \in S_{\gamma}\left(Q_{F}\right)$ with $|\operatorname{Im} \lambda|>\gamma / 2$, and we have the lower bounds

$$
\begin{aligned}
& \operatorname{Re} \varepsilon(\lambda)>\min \left\{\frac{h}{2}, \frac{h \gamma}{\pi-\gamma}\right\} \quad \text { if } \quad \frac{\gamma}{2}<y<\gamma \\
& \operatorname{Re} \varepsilon(\lambda)>\frac{h}{2} \quad \text { if } \quad \gamma<y<\frac{\pi}{2}-\frac{1}{2}\left(\frac{\pi}{2}-\gamma\right) \\
& \operatorname{Re} \varepsilon(\lambda)>h \quad \text { if } \quad \frac{\pi}{2}-\frac{1}{2}\left(\frac{\pi}{2}-\gamma\right)<y<\frac{\pi}{2}
\end{aligned}
$$

The dressed energy in the complex plane II

(2) Uniqueness of the zero
$\operatorname{Im} \lambda \in(0, \gamma / 2), \operatorname{Re} \lambda \in \mathbb{R}^{+}$

$$
\lim _{\operatorname{Re} \lambda \rightarrow \infty} \varepsilon(\lambda)=h
$$

Monotonicity:

$$
\frac{\mathrm{d} \operatorname{Re} \varepsilon(\lambda)}{\mathrm{d} \operatorname{Re}(\lambda)}>0
$$

Lower and upper bound:

$$
\operatorname{Re} \varepsilon_{0}(\lambda)<\operatorname{Re} \varepsilon(\lambda)<\operatorname{Re} \tilde{\varepsilon}(\lambda)
$$

where

$$
\tilde{\varepsilon}(\lambda)=h-\frac{2 \pi J \sin (\gamma)}{\gamma \operatorname{ch}(\pi \lambda / \gamma)}
$$

if $\tilde{\varepsilon}(\lambda)$ has a unique, positive zero.
\rightarrow Note that this is not the case for h large enough!

The dressed energy in the complex plane II

(2) Uniqueness of the zero
$\operatorname{Im} \lambda \in(0, \gamma / 2), \operatorname{Re} \lambda \in \mathbb{R}^{+}$

$$
\lim _{\operatorname{Re} \lambda \rightarrow \infty} \varepsilon(\lambda)=h
$$

Monotonicity:

$$
\frac{\mathrm{d} \operatorname{Re} \varepsilon(\lambda)}{\mathrm{d} \operatorname{Re}(\lambda)}>0
$$

Lower and upper bound:

$$
\operatorname{Re} \varepsilon_{0}(\lambda)<\operatorname{Re} \varepsilon(\lambda)<\operatorname{Re} \tilde{\varepsilon}(\lambda)
$$

where

$$
\tilde{\varepsilon}(\lambda)=h-\frac{2 \pi J \sin (\gamma)}{\gamma \operatorname{ch}(\pi \lambda / \gamma)}
$$

if $\tilde{\varepsilon}(\lambda)$ has a unique, positive zero.
\rightarrow Note that this is not the case for h large enough!

The proof of the theorem is quite technical and requires different approaches in the respective strips, inter alia:

- Rewriting the equations using the resolvent kernel and Fourier transformations
- Deforming the integration contour of $\varepsilon(\lambda)$
- Direct estimations of integrals

Note that with the analytic continuation of $\varepsilon_{c}(\lambda)$,

$$
\begin{aligned}
\varepsilon_{c}(\lambda)=\varepsilon(\lambda) & +\varepsilon(\lambda-\mathrm{i} \gamma) \mathbf{1}_{\lambda-\mathrm{i} \gamma \in D} \\
& -\varepsilon(\lambda+\mathrm{i} \gamma) \mathbf{1}_{\lambda+\mathrm{i} \gamma \in D}
\end{aligned}
$$

we can use the Theorem for the analysis of $\operatorname{Re} \varepsilon_{c}(\lambda)$

The dressed energy in the complex plane III

Theorem (SF, Göhmann, Kozlowski 2021)
(0) Within the strip $-\gamma / 2<y<\gamma / 2$, $\operatorname{Im} \varepsilon$ is monotonically increasing counterclockwise along the curve $x(y)$,

$$
\frac{\mathrm{d} \operatorname{Im} \varepsilon(x(y)+\mathrm{i} y)}{\mathrm{d} y}>0
$$

\Rightarrow This allows us to enumerate solutions to $\varepsilon(\lambda)=\pi \mathrm{i} T(2 n-1)$ as well as the Bethe roots and other zeros of $1+\mathrm{e}^{-u(\lambda \mid \mathbb{Y}) / T}$

Types of solutions for excited states of the quantum transfer matrix

Particle-hole-type solutions

The particle and hole parameters $p_{j}^{(n)}$, $h_{j}^{(n)}$ solve the higher level Bethe ansatz equations:

$$
1+\mathrm{e}^{-u\left(h_{j}^{(n)} \mid \mathbb{Y}\right) / T}=0, \quad \forall h_{j}^{(n)} \in \mathcal{H}_{n}
$$

$$
1+\mathrm{e}^{-u\left(p_{j}^{(n)} \mid \mathbb{Y}\right) / T}=0, \quad \forall p_{j}^{(n)} \in \mathcal{P}_{n}
$$

\rightarrow Each particle-hole pattern corresponds to an excited state n of the quantum transfer matrix
\rightarrow Although in the Trotter limit there are infinitely many Bethe roots, the states are characterized by a finite number of parameters
$\square \operatorname{Re} \varepsilon(\lambda)=0 \times$ Bethe roots \quad Zeros of $1+e^{-u(\lambda \mid y / T}$

$$
\gamma=1.3, h=0.5 h_{c} \approx 2.53, J=1.0, T=0.2
$$

String-type solutions

For low T we can rewrite the equation for $u(\lambda \mid \mathbb{Y})$

$$
\mathrm{e}^{-\frac{1}{T} u(\lambda \mid \mathbb{Y})}=\mathrm{e}^{-\frac{1}{T} \varepsilon_{c}(\lambda)} \prod_{y \in \mathbb{Y}} \frac{\sinh (\mathrm{i} \gamma+y-\lambda)}{\sinh (\mathrm{i} \gamma-y+\lambda)} \cdot \mathrm{e}^{-\Phi(\lambda \mid \mathbb{Y})} \cdot \frac{\left(1+\mathrm{e}^{-\frac{1}{T} u(\lambda-\mathrm{i} \gamma \mid \mathbb{Y})}\right)^{\mathbf{1}_{\lambda-\mathrm{i} \gamma \in \ln (\mathscr{I}(\mathscr{C})}}}{\left(1+\mathrm{e}^{-\frac{1}{T} u(\lambda+\mathrm{i} \gamma \mid \mathbb{Y})}\right)^{\mathbf{1}_{\lambda+\mathrm{i} \gamma \in \operatorname{Int}(\mathscr{C})}}}
$$

with $\Phi(\lambda \mid \mathbb{Y})=u_{1 ; \text { reg }}(\lambda \mid \mathbb{Y})+O(T)$
Let $\boldsymbol{Y}=\left\{y_{0}, y_{1}, \ldots\right\}$ be the finite set of Bethe roots outside \mathscr{C}, therefore fulfilling the higher level Bethe ansatz equations:

$$
\mathrm{e}^{-\frac{1}{T} u\left(y_{i} \mid \mathbb{Y}\right)}=-1
$$

Pick $y_{0} \in \mathcal{Y}$ with $\operatorname{Im}\left(y_{0}\right)>\operatorname{Im}\left(y_{i}\right)$. Now, considering $\mathrm{e}^{-\frac{1}{T} u\left(y_{0} \mid \mathbb{Y}\right)}$ for $T \rightarrow 0^{+}$there are two possibilities:

1: $\operatorname{Re} \varepsilon_{c}\left(y_{0}\right)=o(1) \Rightarrow$ we get a particle (1-string)

2: $\operatorname{Re} \varepsilon\left(y_{0}\right)<0$ but one can find $y_{1} \in \mathcal{Y} \backslash\left\{y_{0}\right\}$ s. th. $y_{0}=y_{1}+\mathrm{i} \gamma+O\left(T^{\infty}\right)$, to compensate the exponential blowup of $\mathrm{e}^{-\frac{1}{T} \varepsilon_{c}(\lambda)}$.

String-type solutions

For low T we can rewrite the equation for $u(\lambda \mid \mathbb{Y})$

$$
\mathrm{e}^{-\frac{1}{T} u(\lambda \mid \mathbb{Y})}=\mathrm{e}^{-\frac{1}{T} \varepsilon_{c}(\lambda)} \prod_{y \in \mathbb{Y}} \frac{\sinh (\mathrm{i} \gamma+y-\lambda)}{\sinh (\mathrm{i} \gamma-y+\lambda)} \cdot \mathrm{e}^{-\Phi(\lambda \mid \mathbb{Y})} \cdot \frac{\left(1+\mathrm{e}^{-\frac{1}{T} u(\lambda-\mathrm{i} \gamma \mid \mathbb{Y})}\right)^{\mathbf{1}_{\lambda-\mathrm{i} \gamma \in \operatorname{Int}(\mathscr{C})}}}{\left(1+\mathrm{e}^{-\frac{1}{T} u(\lambda+\mathrm{i} \gamma \mid \mathbb{Y})}\right)^{\mathbf{1}_{\lambda+\mathrm{i} \gamma \in \operatorname{Int}(\mathscr{C})}}}
$$

with $\Phi(\lambda \mid \mathbb{Y})=u_{1 ; \text { reg }}(\lambda \mid \mathbb{Y})+O(T)$

Let $y=\left\{y_{0}, y_{1}, \ldots\right\}$ be the finite set of Bethe roots outside \mathscr{C}, therefore fulfilling the higher level Bethe ansatz equations:

$$
\mathrm{e}^{-\frac{1}{T} u\left(y_{i} \mid \mathbb{Y}\right)}=-1
$$

Pick $y_{0} \in \mathcal{Y}$ with $\operatorname{Im}\left(y_{0}\right)>\operatorname{Im}\left(y_{i}\right)$. Now, considering $\mathrm{e}^{-\frac{1}{T} u\left(y_{0} \mid \mathbb{Y}\right)}$ for $T \rightarrow 0^{+}$there are two possibilities:

1: $\operatorname{Re} \varepsilon_{c}\left(y_{0}\right)=o(1) \Rightarrow$ we get a particle (1-string)
2: $\operatorname{Re} \varepsilon\left(y_{0}\right)<0$ but one can find $y_{1} \in \mathcal{Y} \backslash\left\{y_{0}\right\}$ s. th. $y_{0}=y_{1}+\mathrm{i} \gamma+O\left(T^{\infty}\right)$, to compensate the exponential blowup of $\mathrm{e}^{-\frac{1}{T} \varepsilon_{c}(\lambda)}$.

In case 2 , we consider the product

$$
(-1)^{2}=\mathrm{e}^{-\frac{1}{T} u\left(y_{0} \mid \mathbb{Y}\right)} \mathrm{e}^{-\frac{1}{T} u\left(y_{1} \mid \mathbb{Y}\right)}
$$

and again, get:
2.1: $\operatorname{Re} \varepsilon\left(y_{0}\right)+\operatorname{Re} \varepsilon\left(y_{1}\right)=o(1) \Rightarrow$ we get a 2-string.
2.2: $\operatorname{Re} \varepsilon\left(y_{0}\right)+\operatorname{Re} \varepsilon\left(y_{1}\right)<0$ but one can find $y_{2} \in \mathcal{Y} \backslash\left\{y_{1}\right\}$ s. th. $y_{1}=y_{2}+\mathrm{i} \gamma+O\left(T^{\infty}\right)$
Repeat these steps for the remaining roots in \mathcal{Y}.

Non-existence of string-type solutions

String-type solutions

A point $y \in \mathbb{C}$ is called the top of a thermal r-string, $r \in \mathbb{N}$ if

$$
\operatorname{Re}\left(\varepsilon_{k}^{(-)}(y)\right)<0 \quad \text { for } \quad k=1, \ldots, r-1
$$

and

$$
\operatorname{Re} \varepsilon_{r}^{(-)}(y)=0
$$

with

$$
\varepsilon_{k}^{(-)}(\lambda)=\sum_{s=0}^{k-1} \varepsilon_{c}(\lambda-\mathrm{i} s \gamma)
$$

Non-existence of string-type solutions

String-type solutions

A point $y \in \mathbb{C}$ is called the top of a thermal r-string, $r \in \mathbb{N}$ if

$$
\operatorname{Re}\left(\varepsilon_{k}^{(-)}(y)\right)<0 \quad \text { for } \quad k=1, \ldots, r-1
$$

and

$$
\operatorname{Re} \varepsilon_{r}^{(-)}(y)=0
$$

with

$$
\varepsilon_{k}^{(-)}(\lambda)=\sum_{s=0}^{k-1} \varepsilon_{c}(\lambda-\mathrm{i} s \gamma)
$$

But, using the properties of $\operatorname{Re}(\varepsilon(\lambda))$ we find that if

$$
\operatorname{Re} \varepsilon_{c}(\lambda)<0 \quad \Rightarrow \quad \operatorname{Re} \varepsilon_{2}^{(-)}(\lambda)>0
$$

which shows, that the condition for strings cannot be fulfilled for $\Delta \in(0,1)$

SF, Göhmann, Kozlowski, SF in preparation

Outlook for $\Delta \in(-1,0)$

$\left[\begin{array}{lllll}-\mathscr{C}_{\varepsilon} \pm \mathrm{i} \gamma \operatorname{modi} \pi & - & \mathrm{i}(\pi-\gamma) / 2 & \cdots & \pm \mathrm{i} \gamma / 2 \\ \operatorname{Re}\left(\varepsilon_{c}(\lambda)\right)=0 & -\cdots & \pm \mathrm{i}(\pi-\gamma) & \times & \text { Poles of } \varepsilon_{c}(\lambda)\end{array}\right.$

The integral equation representations for $\varepsilon(\lambda), \varepsilon_{c}(\lambda)$

$$
\begin{aligned}
\varepsilon(\lambda) & =\varepsilon_{0}(\lambda)-\int_{-Q}^{Q} \mathrm{~d} \mu K(\lambda-\mu \mid \gamma) \varepsilon(\mu \mid Q) \\
\varepsilon_{c}(\lambda) & =\varepsilon_{0}(\lambda)-\int_{\mathscr{C}_{\varepsilon}} \mathrm{d} \mu K(\lambda-\mu \mid \gamma) \varepsilon_{c}(\mu)
\end{aligned}
$$

have cuts at $\pm \mathrm{i} \gamma \operatorname{modi} \pi, \mathscr{C}_{\varepsilon} \pm \mathrm{i} \gamma \operatorname{modi} \pi$ \Rightarrow If $\gamma>\pi / 2, \mathscr{C}_{\varepsilon} \pm \mathrm{i} \gamma \bmod \mathrm{i} \pi$ intersects the curve $\operatorname{Re} \varepsilon_{c}(\lambda)=0$

Outlook for $\Delta \in(-1,0)$

$\gamma=2.04, h=0.65 h_{c} \approx 1.41, J=1.0$

The integral equation representations for $\varepsilon(\lambda), \varepsilon_{c}(\lambda)$

$$
\begin{aligned}
\varepsilon(\lambda) & =\varepsilon_{0}(\lambda)-\int_{-Q}^{Q} \mathrm{~d} \mu K(\lambda-\mu \mid \gamma) \varepsilon(\mu \mid Q) \\
\varepsilon_{c}(\lambda) & =\varepsilon_{0}(\lambda)-\int_{\mathscr{C}_{\varepsilon}} \mathrm{d} \mu K(\lambda-\mu \mid \gamma) \varepsilon_{c}(\mu)
\end{aligned}
$$

have cuts at $\pm \mathrm{i} \gamma \operatorname{modi} \pi, \mathscr{C}_{\varepsilon} \pm \mathrm{i} \gamma \operatorname{modi} \pi$ \Rightarrow If $\gamma>\pi / 2, \mathscr{C}_{\varepsilon} \pm \mathrm{i} \gamma \bmod \mathrm{i} \pi$ intersects the curve $\operatorname{Re} \varepsilon_{c}(\lambda)=0$

An analysis of the functions $\operatorname{Re} \varepsilon_{c}(\lambda)$ and $\operatorname{Re} \varepsilon_{2}^{(-)}(\lambda)$ shows, that the condition for the existence of 2 -strings can be fulfilled for $\Delta \in(-1 / 2,0)$

For $\Delta \in(-1,-1 / 2), \operatorname{Re} \varepsilon_{c}(\lambda)=0$ is intersected by more cuts at $\mathscr{C}_{\varepsilon} \pm \mathrm{i} \gamma \bmod \mathrm{i} \pi$

Summary and Outlook

Summary

- Each Eigenvalue Λ_{n} of the QTM is connected to a set \mathbb{Y} and an auxiliary function $u(\lambda \mid \mathbb{Y})$.
- Static correlation functions:

$$
\left\langle x_{1} y_{m+1}\right\rangle_{T, h} \sim \sum_{n} A_{n}^{x y}\left(\frac{\Lambda_{n}}{\Lambda_{0}}\right)^{m}
$$

- In the low- T limit the dressed energy $\varepsilon_{c}(\lambda)$ describes the behaviour of $u(\lambda \mid \mathbb{Y})$
- For $\Delta \in(0,1)$ the dressed energy is rigorously mathematically characterized in the complex plane
\Rightarrow String-type solutions for Bethe roots can be excluded for low- T and $h>0, \Delta \in(0,1)$

Outlook

- Massive regime: No strings \rightarrow explicit expression for Form Factor series (Babenko, Göhmann, Kozlowski, Suzuki 2021)
\rightarrow Is this also possible for the critical regime?
- Consider $\Delta \in(-1,0)$ (Currently in work)
\rightarrow Several technical difficulties, e.g the cuts intersecting with $\operatorname{Re} \varepsilon_{c}(\lambda)$

