Four-point functions in the Fortuin-Kasteleyn cluster model

Jesper L. Jacobsen 1,2,3

1Ecole Normale Supérieure, Paris (Laboratoire de Physique Théorique)

2Sorbonne Université, Paris (Faculté des Sciences et Ingénierie)

3Commissariat à l’Energie Atomique, Saclay (Institut de Physique Théorique)

RAQIS’18, 13 September 2018

Collaborator: Hubert Saleur (CEA-Saclay)

Also mentions work with: Romain Couvreur (ENS), Youjin Deng (Hefai), Xiaojun Tan (Hefai), Romain Vasseur (Berkeley)
Introduction

General setup
- Statistical model initially defined on a 2D lattice (e.g. square)
- Local short-range interactions (e.g. nearest neighbour)
- Adjustable parameter T (temperature / interaction strength)

Critical phenomena
- Take continuum limit ($\epsilon \to 0$)
- Scale invariance for some critical $T = T_c$
- Actually conformal invariance

Integrability
- No Yang-Baxter related integrability in this talk. However:
 - The model is integrable (XXZ chain).
 - Algebraic structures and form-factor-like expansions will appear.
Introduction

General setup
- Statistical model initially defined on a 2D lattice (e.g. square)
- Local short-range interactions (e.g. nearest neighbour)
- Adjustable parameter T (temperature / interaction strength)

Critical phenomena
- Take continuum limit (lattice mesh $\epsilon \to 0$)
- Scale invariance for some critical $T = T_c$
- Actually conformal invariance

Jesper L. Jacobsen (LPTENS)
Four-point functions
RAQIS’18, 13/09/2018
Introduction

General setup

- Statistical model initially defined on a 2D lattice (e.g. square)
- Local short-range interactions (e.g. nearest neighbour)
- Adjustable parameter T (temperature / interaction strength)

Critical phenomena

- Take continuum limit (lattice mesh $\epsilon \rightarrow 0$)
- Scale invariance for some critical $T = T_c$
- Actually conformal invariance

Integrability

- No Yang-Baxter related integrability in this talk. However:
 - The model is integrable (XXZ chain).
 - Algebraic structures and form-factor-like expansions will appear.
Q-state Potts model

Definition

- Spin $\sigma_i = 1, 2, \ldots, Q$ defined on each vertex $i \in V$
- Interaction $\delta_{\sigma_i, \sigma_j}$ along each edge $(ij) \in E$
- Interaction strength $K = J / T$ (with coupling constant J)
- Partition function

$$Z = \sum_{\{\sigma\}} \prod_{(ij) \in E} e^{K\delta_{\sigma_i, \sigma_j}}$$

- At K_c on the square lattice, related to integrable XXZ chain.
Random geometry

- Non-local observables: curves and clusters
- Examples: Percolation, self-avoiding walk, Ising spin clusters
- At $T = T_c$: self-similarity and fractal structures
Connection to random geometry

Random geometry

- Non-local observables: curves and clusters
- Examples: Percolation, self-avoiding walk, Ising spin clusters
- At $T = T_c$: self-similarity and fractal structures

Fortuin-Kasteleyn trick

- Recall $Z = \sum_{\{\sigma\}} \prod_{(ij) \in E} e^{K\delta_{\sigma_i,\sigma_j}}$
- Set $e^{K\delta_{\sigma_i,\sigma_j}} = 1 + (e^K - 1)\delta_{\sigma_i,\sigma_j}$
- Expand $\prod_{(ij) \in E}$ and perform $\sum_{\{\sigma\}}$ to obtain

$$Z = \sum_{A \subseteq E} Q^{k(A)}(e^K - 1)^{|A|}$$

- $k(A)$ is the number of connected components (clusters) in $A \subseteq E$
- Colours: Potts spins
- Black: FK clusters, weight Q
- Gray: Surrounding loops (on medial graph), weight $n = \sqrt{Q}$

Special cases at $e^{K_c} = 1 + \sqrt{Q}$

- $Q \rightarrow 1$: Critical percolation (at $p_c = \frac{1}{2}$)
- $Q \rightarrow 0$: Uniform spanning trees (alias dense polymers)
Correlation functions: standard CFT results

Two and three-point functions

- Functional form fixed by global conformal invariance [Polyakov 1970]
- Denoting \(r_{ij} \equiv |r_i - r_j| \):

\[
\langle \varphi_1(r_1) \varphi_2(r_2) \rangle = \frac{C_{12} \delta_{\Delta_1, \Delta_2}}{r_{12}^{2\Delta_1}}
\]

\[
\langle \varphi_1(r_1) \varphi_2(r_2) \varphi_3(r_3) \rangle = \frac{C_{123}}{r_{12}^{\Delta_1 + \Delta_2 - \Delta_3} r_{23}^{\Delta_2 + \Delta_3 - \Delta_1} r_{31}^{\Delta_3 + \Delta_1 - \Delta_2}}
\]
Correlation functions: standard CFT results

Two and three-point functions

- Functional form fixed by global conformal invariance [Polyakov 1970]
- Denoting $r_{ij} \equiv |r_i - r_j|$:

\[
\langle \varphi_1(r_1)\varphi_2(r_2) \rangle = \frac{C_{12}\delta_{\Delta_1,\Delta_2}}{r_{12}^{2\Delta_1}}
\]

\[
\langle \varphi_1(r_1)\varphi_2(r_2)\varphi_3(r_3) \rangle = \frac{C_{123}}{r_{12}^{\Delta_1+\Delta_2-\Delta_3}r_{23}^{\Delta_2+\Delta_3-\Delta_1}r_{31}^{\Delta_3+\Delta_1-\Delta_2}}
\]

Four-point functions

- Arbitrary dependence on conformal invariants (anharmonic ratios):

\[
\langle \varphi_1(r_1)\varphi_2(r_2)\varphi_3(r_3)\varphi_4(r_4) \rangle = f \left(\frac{r_{12}r_{34}}{r_{13}r_{24}}, \frac{r_{12}r_{34}}{r_{23}r_{14}} \right) \prod_{i<j} r_{ij}^{\left(\frac{1}{3} \sum_k \Delta_k \right) - \Delta_i - \Delta_j}
\]
Radial quantisation and study of conserved current (stress tensor) leads to the Virasoro algebra \cite{Belavin-Polyakov-Zamolodchikov 1984}

\[
[L_n, L_m] = (n - m)L_{n+m} + \frac{c}{12} n(n^2 - 1) \delta_{n+m,0}
\]

where \(c\) is the central charge, \(L_n = \frac{1}{2\pi i} \oint dz z^{n+1} T(z)\) are mode operators, and \(z = x + iy, \tilde{z} = x - iy\) are complex coordinates.
Radial quantisation and study of conserved current (stress tensor) leads to the Virasoro algebra [Belavin-Polyakov-Zamolodchikov 1984]

\[[L_n, L_m] = (n - m)L_{n+m} + \frac{c}{12} n(n^2 - 1)\delta_{n+m,0} \]

where \(c \) is the central charge, \(L_n = \frac{1}{2\pi i} \oint dz z^{n+1} T(z) \) are mode operators, and \(z = x + iy \), \(\bar{z} = x - iy \) are complex coordinates.

Highest weight representations

- Primary operators \(\varphi \) satisfy \(L_0 \varphi = \Delta \varphi \) and \(L_n \varphi = 0 \) for \(n > 0 \).
- Descendents: Linear combinations of \(L_{-n_1} \cdots L_{-n_k} \) with \(\sum_i n_i = N \).
- Correlation function involving a descendent: Linked to that of its corresponding primary, through action by differential operator.
The usual situation — and **two major challenges**

Diagonalisability of L_0

- “Usually” the dilatation operator $\mathcal{D} \equiv L_0 + \bar{L}_0$ is diagonalisable.
 - Critical exponents $\Delta + \bar{\Delta}$ are its eigenvalues.
 - Fields φ normalised by setting $C_{12} = 1$ in two-point functions.
- But if $Q \in 4 \cos^2(\pi Q)$ this may be **untrue**, and \mathcal{D} has Jordan cells!
- Corr. functions have power law *and* logarithmic dependence on r_{ij}.

Jesper L. Jacobsen (LPTENS)
The usual situation — and two major challenges

Diagonalisability of L_0

- “Usually” the dilatation operator $D \equiv L_0 + \bar{L}_0$ is diagonalisable.
- Critical exponents $\Delta + \bar{\Delta}$ are its eigenvalues.
- Fields φ normalised by setting $C_{12} = 1$ in two-point functions.
- But if $Q \in 4 \cos^2(\pi Q)$ this may be **untrue**, and D has Jordan cells!
- Corr. functions have power law *and* logarithmic dependence on r_{ij}.

** Computability of four-point functions**

- For these Q, “usually” the highest-weight representations have **null vectors** χ: a descendent which is itself primary.
 - Since χ has norm zero, one takes the quotient $\chi = 0$.
 - Leads to diff. eq. for four-point functions, solvable if N small.
 - In this way one can obtain e.g. Cardy’s crossing formulae and Schramm’s left-passage probability.

- But connectivity-related operators in FK cluster model **do not** have null vectors! So their correlators are **difficult to obtain**.
Logarithms and non-unitarity [Cardy 1999]

Standard unitary CFT

- Expand local density $\Phi(r)$ on sum of scaling operators $\varphi(r)$

$$\langle \Phi(r)\Phi(0) \rangle \sim \sum_{ij} \frac{A_{ij}}{r^{\Delta_i+\Delta_j}}$$

- $A_{ij} \propto \delta_{ij}$ by conformal symmetry [Polyakov 1970]
- $A_{ii} \geq 0$ by reflection positivity (unitarity)
- Hence only power laws appear

The non-unitary case

Cancellations and signs may occur

Suppose $A_{ii} \sim -A_{jj} \to \infty$ with $A_{ii}(\Delta_i - \Delta_j)$ finite

Then leading term is $r^{-2\Delta_i} \log r$
Logarithms and non-unitarity [Cardy 1999]

Standard unitary CFT

- Expand local density $\Phi(r)$ on sum of scaling operators $\varphi(r)$
 \[
 \langle \Phi(r) \Phi(0) \rangle \sim \sum_{ij} \frac{A_{ij}}{r^{\Delta_i + \Delta_j}}
 \]

- $A_{ij} \propto \delta_{ij}$ by conformal symmetry [Polyakov 1970]
- $A_{ii} \geq 0$ by reflection positivity (unitarity)
- Hence only power laws appear

The non-unitary case

- Cancellations and signs may occur
- Suppose $A_{ii} \sim -A_{jj} \to \infty$ with $A_{ii}(\Delta_i - \Delta_j)$ finite
- Then leading term is $r^{-2\Delta_i} \log r$
Symmetry classification of operators in FK model

- N-spin operators irreducible under S_Q and S_N symmetries
Symmetry classification of operators in FK model

- N-spin operators irreducible under S_Q and S_N symmetries

Operators acting on one spin

- Most general one-spin operator: $\mathcal{O}(r_i) \equiv \mathcal{O}(\sigma_i) = \sum_{a=1}^{Q} O_a \delta_{a,\sigma_i}$

$$
\delta_{a,\sigma_i} = \frac{1}{Q} \left[\varphi_{a}(\sigma_i) + \left(\delta_{a,\sigma_i} - \frac{1}{Q} \right) \right]
$$

- Dimensions of representations: $(Q) = (1) \oplus (Q - 1)$
Operators acting symmetrically on two spins

- $Q \times Q$ matrices $\mathcal{O}(r_i) \equiv \mathcal{O}(\sigma_i, \sigma_j) = \sum_{a=1}^{Q} \sum_{b=1}^{Q} \mathcal{O}_{ab} \delta_{a,\sigma_i} \delta_{b,\sigma_j}$
- The Q operators with $\sigma_i = \sigma_j$ decompose as before: $(1) \oplus (Q - 1)$
- Other $\frac{Q(Q-1)}{2}$ operators with $\sigma_i \neq \sigma_j$: $(1) + (Q - 1) + \left(\frac{Q(Q-3)}{2} \right)$
Operators acting symmetrically on two spins

- $Q \times Q$ matrices $\mathcal{O}(r_i) \equiv \mathcal{O}(\sigma_i, \sigma_j) = \sum_{a=1}^{Q} \sum_{b=1}^{Q} \mathcal{O}_{ab} \delta_{a,\sigma_i} \delta_{b,\sigma_j}$
- The Q operators with $\sigma_i = \sigma_j$ decompose as before: $(1) \oplus (Q - 1)$
- Other $\frac{Q(Q-1)}{2}$ operators with $\sigma_i \neq \sigma_j$: $(1) + (Q - 1) + \left(\frac{Q(Q-3)}{2} \right)$

Case $\sigma_i \neq \sigma_j$ from representation theory

- $\varepsilon = \delta_{\sigma_i \neq \sigma_j} = 1 - \delta_{\sigma_i, \sigma_j}$
- $\phi_a = \delta_{\sigma_i \neq \sigma_j} (\varphi_a(\sigma_i) + \varphi_a(\sigma_j))$
- $\psi_{ab} = \delta_{\sigma_i, a} \delta_{\sigma_j, b} + \delta_{\sigma_i, b} \delta_{\sigma_j, a} - \frac{1}{Q - 2} (\phi_a + \phi_b) - \frac{2}{Q(Q-1)} \varepsilon$
Operators acting symmetrically on two spins

- \(Q \times Q \) matrices \(\mathcal{O}(r_i) \equiv \mathcal{O}(\sigma_i, \sigma_j) = \sum_{a=1}^{Q} \sum_{b=1}^{Q} \mathcal{O}_{ab} \delta_{a,\sigma_i} \delta_{b,\sigma_j} \)

- The \(Q \) operators with \(\sigma_i = \sigma_j \) decompose as before: \((1) \oplus (Q - 1)\)

- Other \(\frac{Q(Q-1)}{2} \) operators with \(\sigma_i \neq \sigma_j \): \((1) + (Q - 1) + \left(\frac{Q(Q-3)}{2} \right)\)

Case \(\sigma_i \neq \sigma_j \) from representation theory

\[
\begin{align*}
\varepsilon &= \delta_{\sigma_i \neq \sigma_j} = 1 - \delta_{\sigma_i,\sigma_j} \\
\phi_a &= \delta_{\sigma_i \neq \sigma_j} (\varphi_a(\sigma_i) + \varphi_a(\sigma_j)) \\
\psi_{ab} &= \delta_{\sigma_i,a} \delta_{\sigma_j,b} + \delta_{\sigma_i,b} \delta_{\sigma_j,a} - \frac{1}{Q-2} (\phi_a + \phi_b) - \frac{2}{Q(Q-1)} \varepsilon
\end{align*}
\]

- Scalar \(\varepsilon \) (energy)
- Vector \(\varphi_a \) (order parameter)
- Tensor \(\psi_{ab} \) (two-cluster operator)
- Pole at \(Q = 1 \) means that \(\varepsilon \) and \(\psi_{ab} \) must mix into a Jordan cell
Geometrical interpretation in terms of FK clusters

One-spin results

\[\langle \varphi_a(r) \varphi_b(0) \rangle = \frac{1}{Q} \left(\delta_{a,b} - \frac{1}{Q} \right) \mathbb{P} \left(\begin{array}{c} \cdot \\ \cdot \end{array} \right). \]
One-spin results

\[\langle \varphi_a(r) \varphi_b(0) \rangle = \frac{1}{Q} \left(\delta_{a,b} - \frac{1}{Q} \right) P \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right). \]

- In general we do not know exactly (even in \(d = 2 \)) the probability \(P \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) \) that the two spins belong to the same FK cluster.
- But its **large-distance asymptotics** is predicted from CFT.
Two-spin results

\[\langle \varepsilon(r) \varepsilon(0) \rangle = \left(\frac{Q-1}{Q} \right)^2 \left(\mathbb{P} \left(\begin{array}{c} \cdot \cdot \\ \end{array} \right) + \mathbb{P} \left(\begin{array}{c} \cdot \\ \end{array} \right) \right) + \frac{Q-1}{Q} \mathbb{P} \left(\begin{array}{c} \cdot \\ \cdot \end{array} \right), \]

\[\langle \phi_a(r) \phi_b(0) \rangle = \frac{Q-2}{Q^2} \left(\delta_{a,b} - \frac{1}{Q} \right) \left(\frac{Q-2}{Q} \mathbb{P} \left(\begin{array}{c} \cdot \\ \end{array} \right) + 2 \mathbb{P} \left(\begin{array}{c} \cdot \\ \cdot \end{array} \right) \right), \]

\[\langle \psi_{ab}(r) \psi_{cd}(0) \rangle = \frac{2}{Q^2} \left(\delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc} - \frac{1}{Q-2} (\delta_{ac} + \delta_{bd} + \delta_{ad} + \delta_{bc}) \right. \]

\[\left. + \frac{2}{(Q-2)(Q-1)} \mathbb{P} \left(\begin{array}{c} \cdot \\ \cdot \end{array} \right) \right. \]
Avoiding the $Q \to 1$ divergence

- The “scalar” part of $\langle \psi_{ab}(r) \psi_{cd}(0) \rangle$ diverges.
- Therefore $\Delta \psi = \Delta \varepsilon$ (in any dimension!)
- So we can cure the divergence by mixing the two operators:
 \[
 \tilde{\psi}_{ab}(r) = \psi_{ab}(r) + \frac{2}{Q(Q-1)} \varepsilon(r).
 \]
- Thus emerges the Jordan cell which contains logarithmic correlators.
Define:
\[P_2 = P \left(\begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array} \right), \quad P_1 = P \left(\begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array} \right), \quad P_0 = P \left(\begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array} \right), \text{ and } P \neq \equiv P(\sigma_i \neq \sigma_{i+1}) \]

Construct an observable that behaves purely logarithmically

\[F(r) \equiv \frac{P_0(r) + P_1(r) - P_2}{P_2(r)} \sim \left(2 \times \lim_{Q \to 1} \frac{\Delta_\psi - \Delta_\varepsilon}{Q - 1} \right) \log r, \]

universal
Isolate the logarithm

Define:
\[P_2 = \mathcal{P} \left(\begin{array}{c} \cdot \\ \cdot \end{array} \right), \quad P_1 = \mathcal{P} \left(\begin{array}{c} \cdot \\ \cdot \end{array} \right), \quad P_0 = \mathcal{P} \left(\begin{array}{c} \cdot \\ \cdot \end{array} \right), \quad \text{and} \quad P_\neq \equiv \mathcal{P}(\sigma_i \neq \sigma_{i+1}) \]

Construct an observable that behaves purely logarithmically

\[F(r) \equiv \frac{P_0(r) + P_1(r) - P_2}{P_2(r)} \sim \left(2 \times \lim_{Q \to 1} \frac{\Delta_{\psi} - \Delta_\varepsilon}{Q - 1} \right) \log r, \]

In two dimensions, the universal pre-factor is \(\frac{2\sqrt{3}}{\pi} \).
Numerical check

\begin{align*}
\begin{array}{c}
\text{(2D, } F) \\
\text{(3D, } F) \\
\end{array}
\end{align*}

\begin{align*}
\begin{array}{c}
\text{1024}\quad 2048\quad 4096\quad 8192 \quad 32\quad 64\quad 128\quad 256 \\
\text{1024}\quad 2048\quad 4096\quad 8192 \quad 32\quad 64\quad 128\quad 256 \\
\end{array}
\end{align*}
Back to four-point functions

General setup

- 4 primaries $\Phi_i(z_i, \bar{z}_i)$ of scaling dimension $h_i + \bar{h}_i$ and spin $h_i - \bar{h}_i$
- Send 3 points to $0, 1, \infty$ and study dependence on $z = \frac{z_{12}z_{34}}{z_{13}z_{24}}$

$$G(z, \bar{z}) \equiv \lim_{\Lambda \to \infty} \Lambda^{2h_3} \bar{\Lambda}^{2\bar{h}_3} \left\langle \Phi_1(z, \bar{z})\Phi_2(0, 0)\Phi_3(\Lambda, \bar{\Lambda})\Phi_4(1, 1) \right\rangle$$
Back to four-point functions

General setup

- 4 primaries $\Phi_i(z_i, \bar{z}_i)$ of scaling dimension $h_i + \bar{h}_i$ and spin $h_i - \bar{h}_i$
- Send 3 points to 0, 1, ∞ and study dependence on $z = \frac{z_{12}z_{34}}{z_{13}z_{24}}$:

$$G(z, \bar{z}) \equiv \lim_{\Lambda \to \infty} \Lambda^{2h_3} \bar{\Lambda}^{2\bar{h}_3} \langle \Phi_1(z, \bar{z})\Phi_2(0, 0)\Phi_3(\Lambda, \bar{\Lambda})\Phi_4(1, 1) \rangle$$

Conformal bootstrap approach

$$G(z, \bar{z}) = \sum_{(\Delta, \bar{\Delta}) \in S} C_{\Phi_1, \Phi_2, \Phi_{\Delta, \bar{\Delta}}} C_{\Phi_{\Delta, \bar{\Delta}}, \Phi_3, \Phi_4} F^{(s)}_{\Delta}(z) \bar{F}^{(s)}_{\bar{\Delta}}(\bar{z})$$

- Three different channels must give same result, order by order, in: s-channel ($z_1 \to z_2$), t-channel ($z_1 \to z_4$), u-channel ($z_1 \to z_3$)
- E.g., s-channel corresponds to $z \to 0$ (i.e. $z_1 \sim z_2$ and $z_3 \sim z_4$)
\[G(z, \bar{z}) = \sum_{(\Delta, \bar{\Delta}) \in S} C_{\Phi_1, \Phi_2, \phi_\Delta, \bar{\phi}_{\bar{\Delta}}} C_{\Phi_{\Delta, \bar{\Delta}}, \phi_3, \phi_4} F_{\Delta}^{(s)}(z) \bar{F}_{\bar{\Delta}}^{(s)}(\bar{z}) \]

Diagramatically

Jesper L. Jacobsen (LPTENS) Four-point functions RAQIS'18, 13/09/2018 18 / 30
\[G(z, \bar{z}) = \sum_{(\Delta, \bar{\Delta}) \in S} C_{\Phi_1, \Phi_2, \Phi_{\Delta}, \bar{\Delta}} C_{\Phi_{\Delta}, \bar{\Phi}_{\bar{\Delta}}, \Phi_3, \Phi_4} \mathcal{F}^{(s)}_{\Delta}(z) \bar{\mathcal{F}}^{(s)}_{\bar{\Delta}}(\bar{z}) \]
\[G(z, \bar{z}) = \sum_{(\Delta, \bar{\Delta}) \in S} C_{\Phi_1, \Phi_2, \Phi_\Delta, \bar{\Phi}} C_{\Phi_\Delta, \bar{\Phi}, \Phi_3, \Phi_4} \mathcal{F}^{(s)}_\Delta(z) \mathcal{F}^{(s)}_{\bar{\Delta}}(\bar{z}) \]

Conformal blocks

\[\mathcal{F}^{(s)}_\Delta(z) = z^{\Delta - h_1 - h_2} [1 + O(z, \bar{z})] \]

- For given \((c, \Delta)\) use Zamolodchikov’s recursion formula.
\[G(z, \bar{z}) = \sum_{(\Delta, \bar{\Delta}) \in S} C_{\Phi_1, \Phi_2, \Phi_{\Delta, \bar{\Delta}}} C_{\Phi_{\Delta, \bar{\Delta}}, \Phi_3, \Phi_4} \mathcal{F}_\Delta^{(s)}(z) \bar{\mathcal{F}}_{\bar{\Delta}}^{(s)}(\bar{z}) \]

Conformal blocks

\[\mathcal{F}_\Delta^{(s)}(z) = z^{\Delta-h_1-h_2} [1 + O(z, \bar{z})] \]

- For given \((c, \Delta)\) use Zamolodchikov’s recursion formula.

Structure constants

- \(C_{\Phi_1, \Phi_2, \Phi_{\Delta, \bar{\Delta}}}\) same as in the three-point functions
- Not known in general for our problem.
- Some cases linked to DOZZ formula of time-like Liouville theory [Delfino-Viti 2011], [Ikhlef-Jacobsen-Saleur 2015]
\[G(z, \bar{z}) = \sum_{(\Delta, \bar{\Delta}) \in S} C_{\Phi_1, \Phi_2, \Phi_\Delta, \bar{\Delta}} C_{\Phi_\Delta, \bar{\Delta}, \Phi_3, \Phi_4} \mathcal{F}_\Delta^{(s)}(z) \mathcal{F}_{\bar{\Delta}}^{(s)}(\bar{z}) \]

Conformal blocks

\[\mathcal{F}_\Delta^{(s)}(z) = z^{\Delta - h_1 - h_2} [1 + O(z, \bar{z})] \]

- For given \((c, \Delta)\) use Zamolodchikov’s recursion formula.

Structure constants

- \(C_{\Phi_1, \Phi_2, \Phi_\Delta, \bar{\Delta}}\) same as in the three-point functions
- Not known in general for our problem.
- Some cases linked to DOZZ formula of time-like Liouville theory
 \([\text{Delfino-Viti 2011}], [\text{Ikhlef-Jacobsen-Saleur 2015}]\)

The s-channel spectrum problem

- For a given 4-point function, what is the spectrum \(S\)?
The \textit{s-channel} spectrum problem

- A conjecture for S was made in \cite{Ribault-Santachiara-Picco 2016}.
- We believe it is incomplete and correct it \cite{JJ-Saleur 2018}.
- Remaining conformal bootstrap programme: work in progress.
The correlation functions

- We are interested in the 15 probabilities $P_{aaaa}, P_{abab}, \ldots, P_{abcd}$.
- Indices refer to z_1, z_2, z_3, z_4 (with $z_1 \sim z_2$ and $z_3 \sim z_4$ for s-channel).
- Equal indices mean: points belong to the same FK cluster.
The correlation functions

- We are interested in the 15 probabilities $P_{aaaa}, P_{abab}, \ldots, P_{abcd}$
 - Indices refer to z_1, z_2, z_3, z_4 (with $z_1 \sim z_2$ and $z_3 \sim z_4$ for s-channel).
 - Equal indices mean: points belong to the same FK cluster.

E.g. $P_{abab} = P_2 = \mathbb{P} \left(\begin{array}{c} \hline \hline \end{array} \right)$ in previous notation. On the cylinder:

- P_{abab}
- P_{abba}
A (slightly) simpler problem

- Consider Potts-model order parameter correlators

\[G_{a_1, a_2, a_3, a_4} = \left\langle \prod_{i=1}^{4} (Q \delta_{\sigma_i, a_i} - 1) \right\rangle \]

- \(\{ G_{aaaa}, G_{aabb}, G_{abba}, G_{abab} \} \) linearly related to
 \(\{ P_{aaaa}, P_{aabb}, P_{abba}, P_{abab} \} \).

- The system is invertible, except for \(Q = 0, 1, 2, 3 \).
To keep things (relatively) simple

- We are particularly interested in $P_{abab} - P_{abba}$.
- Exactly computable for $Q = 0, 2, 4$ so three useful checks.
To keep things (relatively) simple

- We are particularly interested in $P_{abab} - P_{abba}$.
- Exactly computable for $Q = 0, 2, 4$ so three useful checks.

Parameterisation for $\sqrt{Q} = 2 \cos\left(\frac{\pi}{m+1}\right)$ and $m \in [1, \infty)$

$$c = 1 - \frac{6}{m(m+1)} \quad h_{r,s} = \frac{[r(m+1) - sm]^2 - 1}{4m(m+1)}$$
To keep things (relatively) simple

- We are particularly interested in $P_{abab} - P_{abba}$.
- Exactly computable for $Q = 0, 2, 4$ so three useful checks.

Parameterisation for $\sqrt{Q} = 2 \cos \left(\frac{\pi}{m+1} \right)$ and $m \in [1, \infty)$

$$c = 1 - \frac{6}{m(m+1)}$$
$$h_{r,s} = \frac{[r(m+1) - sm]^2 - 1}{4m(m+1)}$$

The conjectures for $S = \{h_{r,s}\}$

- $(r, s) \in (\mathbb{Z} + \frac{1}{2}, 2\mathbb{Z})$ by [Ribault-Santachiara-Picco 2016].
- $(r, s) \in (\mathbb{Z} + \frac{p}{N}, n)$ with $n > 0$ even, and $\frac{np}{N}$ odd, according to us.
Determining S numerically: First method

Geometrical setup

- Conformally transform from the plane to the cylinder: $w = \frac{L}{2\pi} \ln z$.
- Place $w_1, w_2 = \pm ia$ on one “slice” and $w_3, w_4 = \pm ia + \ell$ on another.
- Take $2a \sim \frac{L}{2}$, L as large as possible, and $\ell \gg L$.
Determining S numerically: First method

Geometrical setup
- Conformally transform from the plane to the cylinder: $w = \frac{L}{2\pi} \ln z$.
- Place $w_1, w_2 = \pm ia$ on one “slice” and $w_3, w_4 = \pm ia + \ell$ on another.
- Take $2a \sim \frac{L}{2}$, L as large as possible, and $\ell \gg L$.

Cylinder geometry
Transfer matrix method

- Fix L and $2a$.
- Compute $P_{a_1 a_2 a_3 a_4}$ exactly (~ 4000 digits) for many (~ 500) $\ell \gg L$.
- Obtain full spectrum $\{\lambda_i\}$ of the transfer matrix.

$$P_{a_1 a_2 a_3 a_4} = \sum_i (A_i + B_i \ell + C_i \ell^2 + \cdots) \left(\frac{\lambda_i}{\lambda_0}\right)^\ell$$

- Invert to get simple amplitudes A_i, or Jordan cells $\{A_i, B_i, C_i, \ldots\}$.
Determining S numerically: Second method

Setup and restrictions

- Applies only to order-parameter correlators $G_{a_1a_2a_3a_4}$.
- Change to repr. where operator $\Sigma a_i(\sigma_i) \equiv Q\delta_{\sigma_i,a_i}$ is well defined.
- Applies only to simple amplitudes A_i.

Scalar product method

Obtain left and right eigenstates: $\langle i| \text{ and } |i\rangle$

$A_i = \langle 0| \Sigma a_3 \Sigma a_4 |i\rangle \langle i| \Sigma a_1 \Sigma a_2 |0\rangle \langle 0| 0 \rangle \langle i| i \rangle$

Extensive checks that 1st and 2nd method give the same results.
Determining S numerically: Second method

Setup and restrictions

- Applies only to order-parameter correlators $G_{a_1 a_2 a_3 a_4}$.
- Change to repr. where operator $\Sigma_{a_i}(\sigma_i) \equiv Q\delta_{\sigma_i, a_i}$ is well defined.
- Applies only to simple amplitudes A_i.

Scalar product method

- Obtain left and right eigenstates: $\langle i |$ and $| i \rangle$

$$A_i = \frac{\langle 0 | \Sigma_{a_3} \Sigma_{a_4} | i \rangle \langle i | \Sigma_{a_1} \Sigma_{a_2} | 0 \rangle}{\langle 0 | 0 \rangle \langle i | i \rangle}$$

- Extensive checks that 1st and 2nd method give the same results.
The affine Temperley-Lieb algebra $\mathcal{TL}_N^a(n)$

- Describes “time evolution” of gray loops (each of weight $n = \sqrt{Q} = q + q^{-1}$) on the cylinder.
The affine Temperley-Lieb algebra $\text{TL}_N^a(n)$

- Describes “time evolution” of gray loops (each of weight $n = \sqrt{Q} = q + q^{-1}$) on the cylinder.

Defining algebraic relations

- Monoid e_i (with $i \in \mathbb{Z}_L$) and translator u.

$$
e_i^2 = ne_i \quad ue_iu^{-1} = e_{i+1}
$$

$$
e_i e_{i \pm 1} e_i = e_i \quad u^2 e_{L-1} = e_1 e_2 \cdots e_{L-1}
$$

- Note that this algebra is infinite-dimensional (for finite N).
Standard modules

- Finite-dimensional modules are classified [Martin-Saleur, Graham-Lehrer]
- \mathcal{W}_{j,z^2} corresponds to $2j$ through-lines, with phase z per winding.
- u^N is central in $\text{TL}_N^a(n)$.
- For $j = 0$, weight $n_{NC} = z + z^{-1}$ per non-contractible loop.
- For $j > 0$, we have $u^N = z^{2j}$ in \mathcal{W}_{j,z^2}. Natural to set $z^{2j} = 1$.

Method 1 relies on \mathcal{W}_{j,z^2}

Choice of standard module depends on number of through-clusters:

- 0 clusters: \mathcal{W}_0, q^2 to get $n_{NC} = \sqrt{Q}$.
- 1 cluster: \mathcal{W}_0, -1 to get $n_{NC} = 0$.
- $j > 1$ clusters: \mathcal{W}_j, $e^{2i\pi p/M}$ with $M\mid j$.

The transfer matrix used in method 2 has this same spectrum, but restricted to j even! (Probably clue for determining S.)

The CFT limit of these objects are known [Di Francesco-Saleur-Zuber]
Standard modules

- Finite-dimensional modules are classified [Martin-Saleur, Graham-Lehrer]
- \(\mathcal{W}_{j,z^2} \) corresponds to \(2j \) through-lines, with phase \(z \) per winding.
- \(u^N \) is central in \(TL^a_N(n) \).
- For \(j = 0 \), weight \(n_{NC} = z + z^{-1} \) per non-contractible loop.
- For \(j > 0 \), we have \(u^N = z^{2j} \) in \(\mathcal{W}_{j,z^2} \). Natural to set \(z^{2j} = 1 \).

Method 1 relies on \(\mathcal{W}_{j,z^2} \)

- Choice of standard module depends on \# of through-clusters:
 - 0 clusters: \(\mathcal{W}_{0,q^2} \) to get \(n_{NC} = \sqrt{Q} \).
 - 1 cluster: \(\mathcal{W}_{0,-1} \) to get \(n_{NC} = 0 \).
 - \(j > 1 \) clusters: \(\mathcal{W}_{j,e^{2i\pi p/M} \text{ with } M|j} \).
- The transfer matrix used in method 2 has this same spectrum, but restricted to \(j \) even! (Probably clue for determining \(S \).)
- The CFT limit of these objects are known [Di Francesco-Saleur-Zuber]
Sample results: Amplitude ratios in $P_{aabb} - P_{abba}$

$$P_{aabb} - P_{abba} \propto (z\bar{z})^{-2h_{1/2},0} \left(A_{\Phi_{h_1/2, -2, h_1/2, 2}} z^{h_1/2, -2} \bar{z}^{h_1/2, 2} + A_{\Phi_{h_3/2, -2, h_3/2, 2}} z^{h_3/2, -2} \bar{z}^{h_3/2, 2} + A_{\Phi_{h_1/4, -4, h_1/4, 4}} z^{h_1/4, -4} \bar{z}^{h_1/4, 4} + \ldots \right)$$
Sample results: Amplitude ratios in $P_{aabb} - P_{abba}$

$$
P_{aabb} - P_{abba} \propto (z\bar{z})^{-2h_1/2,0} \left(A_{\Phi_{h_1/2,-2,h_1/2,2}} z^{h_1/2,-2}\bar{z}^{h_1/2,2} \\
+ A_{\Phi_{h_3/2,-2,h_3/2,2}} z^{h_3/2,-2}\bar{z}^{h_3/2,2} + A_{\Phi_{h_1/4,-4,h_1/4,4}} z^{h_1/4,-4}\bar{z}^{h_1/4,4} + \ldots \right)
$$
Sample results: Amplitude ratios in $P_{aabb} - P_{abba}$

$P_{aabb} - P_{abba} \propto (z \bar{z})^{-2h_{1/2},0} \left(A_{\Phi h_{1/2},-2,h_{1/2},2} z^{h_{1/2},-2} \bar{z}^{h_{1/2},2} + A_{\Phi h_{3/2},-2,h_{3/2},2} z^{h_{3/2},-2} \bar{z}^{h_{3/2},2} + A_{\Phi h_{1/4},-4,h_{1/4},4} z^{h_{1/4},-4} \bar{z}^{h_{1/4},4} + \ldots \right)$

- 1st case: Reasonable agreement with [Ribault et al] for $L \rightarrow \infty$.
- 2nd case: Not in their conjectured spectrum $(r, s) \in (\mathbb{Z} + \frac{1}{2}, 2\mathbb{Z})$
Divergences at $Q = 4 \cos^2 \left(\frac{3\pi}{8} \right), 4 \cos^2 \left(\frac{\pi}{8} \right)$ due to Jordan cells.
Conclusion and summary

- The 2D Potts model in the Fortuin-Kasteleyn cluster formulation breaks two basic paradigms of CFT:
 1. Decomposability of irreducible representations.
 2. Degenerate highest-weight representations (\exists null vectors).

 This leads to remarkable consequences:
 1. Dilatation operator may be non-diagonalisable (Jordan cells).
 Correlation functions thus contain logarithms. Happens at particular Q of physical relevance (e.g. $Q = 1$).
 2. Four-point functions exhibit rich spectrum in the s-channel.

Challenges:
 1. Clarify relation to time-like Liouville theory and compute all structure constants of three-point functions.
 2. Solve the conformal bootstrap for four-point functions and compute analytically all universal amplitude ratios.

Quantum integrability might give results even for finite a and ℓ...
Conclusion and summary

- The 2D Potts model in the Fortuin-Kasteleyn cluster formulation breaks two basic paradigms of CFT:
 1. Decomposability of irreducible representations.
 2. Degenerate highest-weight representations (\exists null vectors).

- This leads to remarkable consequences:
 1. Dilatation operator may be non-diagonalisable (Jordan cells).
 Correlation functions thus contain logarithms.
 Happens at particular Q of physical relevance (e.g. $Q = 1$).
 2. Four-point functions exhibit rich spectrum in the s-channel.

Challenges:

- Clarify relation to time-like Liouville theory and compute all structure constants of three-point functions.
- Solve the conformal bootstrap for four-point functions and compute analytically all universal amplitude ratios.

Quantum integrability might give results even for finite a and ℓ. . .
Conclusion and summary

- The 2D Potts model in the Fortuin-Kasteleyn cluster formulation breaks two basic paradigms of CFT:
 1. Decomposability of irreducible representations.
 2. Degenerate highest-weight representations (\(\exists \) null vectors).

- This leads to remarkable consequences:
 1. Dilatation operator may be non-diagonalisable (Jordan cells). Correlation functions thus contain logarithms. Happens at particular \(Q \) of physical relevance (e.g. \(Q = 1 \)).
 2. Four-point functions exhibit rich spectrum in the s-channel.

- Challenges:
 1. Clarify relation to time-like Liouville theory and compute all structure constants of three-point functions.
 2. Solve the conformal bootstrap for four-point functions and compute analytically all universal amplitude ratios.
Conclusion and summary

The 2D Potts model in the Fortuin-Kasteleyn cluster formulation breaks two basic paradigms of CFT:
1. Decomposability of irreducible representations.
2. Degenerate highest-weight representations (\(\exists\) null vectors).

This leads to remarkable consequences:
1. Dilatation operator may be non-diagonalisable (Jordan cells). Correlation functions thus contain logarithms. Happens at particular \(Q\) of physical relevance (e.g. \(Q = 1\)).
2. Four-point functions exhibit rich spectrum in the \(s\)-channel.

Challenges:
1. Clarify relation to time-like Liouville theory and compute all structure constants of three-point functions.
2. Solve the conformal bootstrap for four-point functions and compute analytically all universal amplitude ratios.

Quantum integrability might give results even for finite \(a\) and \(\ell\)....