DUAL HAMILTONIAN STRUCTURES IN AN INTEGRABLE HIERARCHY

Vincent Caudrelier

RAQIS'16, University of Geneva

Somes references and collaborators

Based on joint work with J. Avan, A. Doikou and A. Kundu

- Lagrangian and Hamiltonian structures in an integrable hierarchy and space-time duality, Nucl. Phys. B902 (2016), 415-439.
- Multisymplectic approach to integrable defects in the sine-Gordon model, J. Phys. A 48 (2015) 195203.
- A multisymplectic approach to defects in integrable classical field theory, JHEP 02 (2015), 088

and some ongoing work with A. Fordy.

Plan

- 1. The fundamentals: classical and quantum R matrix
 - The general scheme
 - Tracing the origin of the classical r-matrix
- 2. Some new observations on the classical r-matrix
 - New input from covariant field theory
 - Poisson brackets for the "time" Lax matrix
- 3. Why the dual picture?
 - Motivation: integrable defects
 - The bigger picture: initial-boundary value problems
- 4. Speculations, outlook, quantum case

Quantum
 Classical

 YBE
 YBE

$$R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$$
 $\xrightarrow{R=1+\hbar r}$
 $[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0$

$$\begin{array}{cccc} \textit{Quantum} & \textit{Classical} \\ \textit{YBE} & \textit{YBE} & \textit{YBE} \\ \\ R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12} & \xrightarrow{R=1+\hbar r} & [r_{12},r_{13}] + [r_{12},r_{23}] \\ & \downarrow & & \downarrow \\ \text{Lax matrix} & \downarrow & \downarrow \\ R_{12}L_1L_2 = L_2L_1R_{12} & \xrightarrow{[\ ,\]\to\hbar\{\ ,\ \}} & \{\mathcal{L}_1,\mathcal{L}_2\} = [r_{12},\mathcal{L}_1\mathcal{L}_2] \end{array}$$

$$\begin{array}{ccc} \textit{Classical discrete} & \textit{Classical continuous} \\ \text{Lax matrix} & \text{Lax matrix} \\ \{\mathcal{L}_1, \mathcal{L}_2\} = [\textit{r}_{12}, \mathcal{L}_1 \mathcal{L}_2] & \xrightarrow{\mathcal{L}=1+\Delta \textit{U}} & \{\textit{U}_1, \textit{U}_2\} = \delta[\textit{r}_{12}, \textit{U}_1 + \textit{U}_2] \end{array}$$

$$\begin{array}{cccc} \textit{Classical discrete} & \textit{Classical continuous} \\ \text{Lax matrix} & \text{Lax matrix} \\ \{\mathcal{L}_1,\mathcal{L}_2\} = [r_{12},\mathcal{L}_1\mathcal{L}_2] & \xrightarrow{\mathcal{L}=1+\Delta U} & \{U_1,U_2\} = \delta[r_{12},U_1+U_2] \\ \downarrow & & \downarrow \\ \text{Monodromy matrix} & \text{Monodromy matrix} \\ \{\mathcal{T}_1,\mathcal{T}_2\} = [r_{12},\mathcal{T}_1\mathcal{T}_2] & \{\mathcal{T}_1,\mathcal{T}_2\} = [r_{12},\mathcal{T}_1\mathcal{T}_2] \end{array}$$

• Examine in detail the fundamental relation (continuous case)

$$\{U_1, U_2\} = \delta[r_{12}, U_1 + U_2]$$

• Examine in detail the fundamental relation (continuous case)

$$\{U_1, U_2\} = \delta[r_{12}, U_1 + U_2]$$

• With all explicit dependences, it reads

$$\{U_1(x,\lambda), U_2(y,\mu)\} = \delta(x-y)[r_{12}(\lambda-\mu), U_1(x,\lambda) + U_2(y,\mu)]$$
where $U_1 = U \otimes 1$, $U_2 = 1 \otimes U$ and (rational case)

$$r_{12}(\lambda) = g \frac{P_{12}}{\lambda}$$
, P_{12} permutation, g constant

• Examine in detail the fundamental relation (continuous case)

$$\{U_1, U_2\} = \delta[r_{12}, U_1 + U_2]$$

With all explicit dependences, it reads

$$\{U_1(x,\lambda), U_2(y,\mu)\} = \delta(x-y)[r_{12}(\lambda-\mu), U_1(x,\lambda) + U_2(y,\mu)]$$
where $U_1 = U \otimes \mathbb{1}$, $U_2 = \mathbb{1} \otimes U$ and (rational case)

$$r_{12}(\lambda) = g \frac{P_{12}}{\lambda}$$
, P_{12} permutation, g constant

• Ultralocal Poisson algebra for the entries of the matrix U.

What is the origin of this fundamental relation?

What is the origin of this fundamental relation?

 \rightarrow The Poisson brackets of the fields contained in U.

What is the origin of this fundamental relation ? \rightarrow The Poisson brackets of the fields contained in U. Example: nonlinear Schrödinger (NLS) equation

$$iq_t + q_{xx} - 2g|q|^2q = 0$$

one imposes *equal time* Poisson brackets (at t = 0)

$$\{q(x), q^*(y)\} = i\delta(x - y)$$

so that one can write NLS as a Hamiltonian system

$$q_t = \{H_{NLS}, q\}, \ \ H_{NLS} = \int \left(|q_x|^2 + g|q|^4\right) \, dx$$

[Zakharov, Manakov '74]

On the other hand, NLS as a PDE is obtained as the compatibility condition of the auxiliary problem

$$\begin{cases} \Psi_{x} = U \Psi \\ \Psi_{t} = V \Psi \end{cases}$$

i.e. the zero curvature condition

$$U_t - V_x + [U, V] = 0$$

with Lax pair

$$U(x,\lambda) = \begin{pmatrix} -i\lambda & q(x) \\ gq^*(x) & i\lambda \end{pmatrix}, \quad V = \begin{pmatrix} -2i\lambda^2 + i|q|^2 & 2\lambda q + iq_x \\ 2\lambda gq^* - igq_x^* & 2i\lambda^2 - i|q|^2 \end{pmatrix}$$

[Zakharov, Shabat '71]

□ ▶ ◀♬ ▶ ◀ 臺 ▶ ◀ 臺 ▶ ■ ♥ ♡ ♡ ♡

Then, the canonical Poisson brackets on the fields

$$\{q(x), q^*(y)\} = i\delta(x - y)$$

are equivalent to the ultralocal Poisson algebra for U

$$\{U_1(x,\lambda), U_2(y,\lambda)\} = \delta(x-y)[r_{12}(\lambda-\mu), U_1(x,\lambda) + U_2(y,\mu)]$$

[Sklyanin '79]

Continue the reasoning: but then, what is the origin of the canonical PB for the fields

$$\{q(x), q^*(y)\} = i\delta(x - y),$$

source of all the rest of the approach?

• Go back to the Classics: Lagrangian/Hamiltonian mechanics

- Go back to the Classics: Lagrangian/Hamiltonian mechanics
- Canonical fields are prescribed from a Lagrangian description

- Go back to the Classics: Lagrangian/Hamiltonian mechanics
- Canonical fields are prescribed from a Lagrangian description
 For NLS

$$\mathcal{L}_{NLS} = rac{i}{2}(q^*q_t - qq_t^*) - q_x^*q_x - g(q^*q)^2$$

Then

$$\pi = rac{\partial \mathcal{L}_{NLS}}{\partial q_t} = rac{i}{2}q^*\,, \ \ \pi^* = rac{\partial \mathcal{L}_{NLS}}{\partial q_t^*} = -rac{i}{2}q$$

and one requires

$$\{\pi(x), q(y)\} = \delta(x - y)$$

- Go back to the Classics: Lagrangian/Hamiltonian mechanics
- Canonical fields are prescribed from a Lagrangian description
 For NLS

$$\mathcal{L}_{NLS} = rac{i}{2}(q^*q_t - qq_t^*) - q_x^*q_x - g(q^*q)^2$$

Then

$$\pi = rac{\partial \mathcal{L}_{ extit{NLS}}}{\partial q_t} = rac{i}{2} q^* \,, \ \ \pi^* = rac{\partial \mathcal{L}_{ extit{NLS}}}{\partial q_t^*} = -rac{i}{2} q$$

and one requires

$$\{\pi(x), q(y)\} = \delta(x - y)$$

This yields the known brackets

$$\{q(x), q^*(y)\} = i\delta(x - y)$$

(NB: Dirac procedure must be used).

Summary: the textbook approach

$$\{q(x), q^*(y)\} = i\delta(x - y)$$

Summary: the textbook approach

$$\{q(x), q^*(y)\} = i\delta(x - y)$$

$$\downarrow \downarrow$$

$$\{U_1(x, \lambda), U_2(y, \mu)\} = \delta(x - y)[r_{12}(\lambda - \mu), U_1(x, \lambda) + U_2(y, \mu)]$$

Summary: the textbook approach

$$\{q(x), q^*(y)\} = i\delta(x - y)
 \downarrow
 \{U_1(x, \lambda), U_2(y, \mu)\} = \delta(x - y)[r_{12}(\lambda - \mu), U_1(x, \lambda) + U_2(y, \mu)]
 \downarrow
 \{\mathcal{T}_1(x, y, \lambda), \mathcal{T}_2(x, y, \mu)\} = [r_{12}(\lambda - \mu), \mathcal{T}_1(x, y, \lambda)\mathcal{T}_2(x, y, \mu)]$$

Summary: the textbook approach

$$\{q(x), q^*(y)\} = i\delta(x - y)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{U_1(x, \lambda), U_2(y, \mu)\} = \delta(x - y)[r_{12}(\lambda - \mu), U_1(x, \lambda) + U_2(y, \mu)]$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{\mathcal{T}_1(x, y, \lambda), \mathcal{T}_2(x, y, \mu)\} = [r_{12}(\lambda - \mu), \mathcal{T}_1(x, y, \lambda)\mathcal{T}_2(x, y, \mu)]$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{\tau(\lambda), \tau(\mu)\} = 0$$

Summary: taking a step back

• Simple observation: the standard Legendre transformation is incomplete from covariant point of view.

- Simple observation: the standard Legendre transformation is incomplete from covariant point of view.
- Time is favoured when defining

$$\pi(\mathbf{x}) = \frac{\partial \mathcal{L}_{NLS}}{\partial q_t(\mathbf{x})}, \quad \pi^*(\mathbf{x}) = \frac{\partial \mathcal{L}_{NLS}}{\partial q_t^*(\mathbf{x})}$$

- Simple observation: the standard Legendre transformation is incomplete from covariant point of view.
- Time is favoured when defining

$$\pi(\mathbf{x}) = \frac{\partial \mathcal{L}_{NLS}}{\partial q_t(\mathbf{x})}, \quad \pi^*(\mathbf{x}) = \frac{\partial \mathcal{L}_{NLS}}{\partial q_t^*(\mathbf{x})}$$

 Restore symmetry between independent variables by introducing "the other half" of Legendre transform

$$\Pi(t) = \frac{\partial \mathcal{L}_{NLS}}{\partial q_{\mathsf{x}}(t)}, \quad \Pi^*(t) = \frac{\partial \mathcal{L}_{NLS}}{\partial q_{\mathsf{x}}^*(t)}$$

[De Donder '35; Weyl '35]

• Then proceed as before with canonical prescription for Poisson brackets between fields and momenta.

- Then proceed as before with canonical prescription for Poisson brackets between fields and momenta.
- Obtain a new equal space Poisson bracket $\{\ ,\ \}_T$ on phase space associated to (q,q^*,Π,Π^*) at fixed x

$$\{\Pi(t),q(\tau)\}_{\mathcal{T}}=\delta(t-\tau)\,,\quad \{\Pi^*(t),q^*(\tau)\}_{\mathcal{T}}=\delta(t-\tau)$$

- Then proceed as before with canonical prescription for Poisson brackets between fields and momenta.
- Obtain a new equal space Poisson bracket $\{\ ,\ \}_T$ on phase space associated to (q,q^*,Π,Π^*) at fixed x

$$\{\Pi(t),q(\tau)\}_{\mathcal{T}}=\delta(t-\tau)\,,\quad \{\Pi^*(t),q^*(\tau)\}_{\mathcal{T}}=\delta(t-\tau)$$

• In our case

$$\{q(t), q_{x}^{*}(\tau)\}_{T} = \delta(t - \tau), \quad \{q^{*}(t), q_{x}(\tau)\}_{T} = \delta(t - \tau)$$

Remark: $\{\ ,\ \}_T$ together with standard bracket $\{\ ,\ \}_S$ do NOT form a bi-Hamiltonian structure! [Magri '78]



 \bullet NLS consistently recovered from Hamilton equations with respect to \times

$$q_x = \{H_T, q\}_T, \quad \Pi_x = \{H_T, \Pi\}_T$$

 NLS consistently recovered from Hamilton equations with respect to x

$$q_x = \{H_T, q\}_T, \quad \Pi_x = \{H_T, \Pi\}_T$$

• In geometrical terms, the vector field ∂_x is Hamiltonian with respect to the new PB $\{\ ,\ \}_T$, with Hamiltonian

$$H_T = \int (rac{i}{2}(qq_t^* - q^*q_t) - q_x^*q_x + g(q^*q)^2) \, dt$$

2.2 Dual Hamiltonian picture

- Two fundamentally different but equivalent Hamiltonian formulations of an integrable field theory
- Swap the roles of x and t in a symmetric way.

- Two fundamentally different but equivalent Hamiltonian formulations of an integrable field theory
- Swap the roles of x and t in a symmetric way.

Traditional phase space $\{q(x), q^*(x)\}$

 $egin{al} extstyle extstyle extstyle Dual \ extstyle extstyle extstyle phase space \ \{q(t), q^*(t), q_{\mathsf{x}}(t), q_{\mathsf{x}}(t)\} \ extstyle \ extstyle extstyl$

- Two fundamentally different but equivalent Hamiltonian formulations of an integrable field theory
- Swap the roles of x and t in a symmetric way.

$$\begin{array}{cccc} \textit{Traditional} & \textit{Dual} \\ & \text{phase space} & \text{phase space} \\ & \{q(x), q^*(x)\} & \{q(t), q^*(t), q_x(t), q_x^*(t)\} \\ \\ \textit{iq}_t + q_{xx} - 2g|q|^2q = 0 & \textit{iq}_t + q_{xx} - 2g|q|^2q = 0 \\ & \updownarrow & & \updownarrow \\ & q_t = \{H_S, q\}_S & q_x = \{H_T, q\}_T , & (q_x)_x = \{H_T, q_x\}_T \\ & H_S = \int \mathcal{H}_S \, \mathsf{dx} & H_T = \int \mathcal{H}_T \, \mathsf{dt} \end{array}$$

- Construction is much richer than just a reformulation of NLS.
- Can repeat the established procedure w.r.t. $\{\ ,\ \}_T$ with interesting consequences:

- Construction is much richer than just a reformulation of NI.S.
- Can repeat the established procedure w.r.t. $\{\ ,\ \}_{\mathcal{T}}$ with interesting consequences:
- 1. Time Lax matrix V has same ultralocal Poisson algebra as standard Lax matrix U

$$\{V_1(\mathbf{t},\lambda),V_2(\tau,\mu)\}_{\tau} = -\delta(\mathbf{t}-\tau)[r_{12}(\lambda-\mu),V_1(\mathbf{t},\lambda)+V_2(\tau,\mu)]$$

2. Standard construction:

Lax matrix \rightarrow transition matrix \rightarrow monodromy matrix go over completely into dual formulation:

$$U(x,\lambda)\mapsto \mathcal{T}_S(x,y,\lambda)=\mathcal{P}_Se^{\int_y^x U(z,\lambda)dz}\mapsto \mathcal{T}_S(\lambda)$$

$$V(t,\lambda)\mapsto \mathcal{T}_{\mathcal{T}}(t, au,\lambda)=\mathcal{P}_{\mathcal{T}}e^{\int_{ au}^{t}V(s,\lambda)ds}\mapsto \mathcal{T}_{\mathcal{T}}(\lambda)$$

2. Standard construction:

Lax matrix \rightarrow transition matrix \rightarrow monodromy matrix go over completely into dual formulation:

$$U(x,\lambda)\mapsto \mathcal{T}_S(x,y,\lambda)=\mathcal{P}_Se^{\int_y^x U(z,\lambda)dz}\mapsto \mathcal{T}_S(\lambda)$$

$$V(t,\lambda)\mapsto \mathcal{T}_{\mathcal{T}}(t, au,\lambda)=\mathcal{P}_{\mathcal{T}}\mathrm{e}^{\int_{ au}^{t}V(s,\lambda)ds}\mapsto \mathcal{T}_{\mathcal{T}}(\lambda)$$

3. Liouville integrability established in dual picture. Infinite sequences of charges conserved in space and in involution w.r.t. $\{\ ,\ \}_{\mathcal{T}}$.

2. Standard construction:

Lax matrix \rightarrow transition matrix \rightarrow monodromy matrix go over completely into dual formulation:

$$U(x,\lambda)\mapsto \mathcal{T}_S(x,y,\lambda)=\mathcal{P}_Se^{\int_y^x U(z,\lambda)dz}\mapsto \mathcal{T}_S(\lambda)$$

$$V(t,\lambda)\mapsto \mathcal{T}_{\mathcal{T}}(t, au,\lambda)=\mathcal{P}_{\mathcal{T}}e^{\int_{ au}^{t}V(s,\lambda)ds}\mapsto \mathcal{T}_{\mathcal{T}}(\lambda)$$

- 3. Liouville integrability established in dual picture. Infinite sequences of charges conserved in space and in involution w.r.t. $\{\ ,\ \}_T$.
- 4. Conclusion: we have two ways of tackling Liouville integrability for classical field theories.

First open questions

- How do we fit the new brackets and the associated Poisson algebras into the well established theory of Poisson-Lie group?
- Standard equal-time picture used for canonical quantization. What does the dual equal-space picture translate into at the quantum level?
- Can we devise a covariant quantization of integrable field theories in the sense of multisymplectic field theory?

• How did we come to these observations and what did they achieve?

- How did we come to these observations and what did they achieve?
- Original motivation: understand Liouville integrability of classical field theories with a defect. [Bowcock, Corrigan, Zambon '03]
- Integrability well understood from a Lax pair/PDE point of view: generating functions of conserved charges with defect are known.

 [V.C '07]
- Major problem for Liouville integrability: the defect is modeled by internal boundary conditions at some point $x = x_0$.

• Consequence: any attempt based on the construction of a monodromy matrix with defect of the form

$$\mathcal{T}(\lambda) = \mathcal{T}^+(\lambda) D_{x_0}(\lambda) \mathcal{T}^-(\lambda)$$

faces the challenge of making sense of

$$\{D_{\mathsf{x}_0}(\lambda), D_{\mathsf{x}_0}(\mu)\}_{\mathsf{S}}$$
 and $\{D_{\mathsf{x}_0}(\lambda), \mathcal{T}^{\pm}(\mu)\}_{\mathsf{S}}$

• Involves PB of canonical fields at the same space point: " $\delta(0)$ " divergence!

• Two ways around this problem have been explored:

1. Discretize and take continuum limit

[Habibullin, Kundu '08]

- Two ways around this problem have been explored:
- 1. Discretize and take continuum limit [Habibullin, Kundu '08]
- 2. Turn the argument around: impose that $D_{x_0}(\lambda)$ be in a representation of desired Poisson algebra

$$\{D_{x_01}(\lambda), D_{x_02}(\mu)\}_{S} = [r_{12}, D_{x_01}(\lambda)D_{x_02}(\mu)]$$

with unknown fields sitting at the defect. Extra fields couple dynamically to bulk field at x_0 (gluing conditions). [Avan, Doikou '11]

- Two ways around this problem have been explored:
- 1. Discretize and take continuum limit [Habibullin, Kundu '08]
- 2. Turn the argument around: impose that $D_{x_0}(\lambda)$ be in a representation of desired Poisson algebra

$$\{D_{x_01}(\lambda), D_{x_02}(\mu)\}_{S} = [r_{12}, D_{x_01}(\lambda)D_{x_02}(\mu)]$$

with unknown fields sitting at the defect. Extra fields couple dynamically to bulk field at x_0 (gluing conditions). [Avan, Doikou '11]

ightarrow Solve the particular problem in their own right but very hard to reconcile with Lax pair integrability obtained before.

• Way out: use the dual picture to bypass the problem of the point-like defect. [V.C., A. Kundu, '14]

- Way out: use the dual picture to bypass the problem of the point-like defect. [V.C., A. Kundu, '14]
- Reasoning:
- Without defect: two different but equivalent ways of establishing Liouville integrability.
- With defect: standard approach fails but the dual approach applies without a problem thanks to swapping of x and t.

- Way out: use the dual picture to bypass the problem of the point-like defect. [V.C., A. Kundu, '14]
- Reasoning:
- Without defect: two different but equivalent ways of establishing Liouville integrability.
- With defect: standard approach fails but the dual approach applies without a problem thanks to swapping of x and t.
- ullet Bonus: integrable defect conditions (frozen Bäcklund transformations) naturally incorporated as canonical transformations w.r.t to new bracket $\{\ ,\ \}_{\mathcal{T}}$.
- Liouville integrability with certain defects reconciled with Lax pair formulation without gluing conditions.

Initial value problem vs initial-boundary value problem

• Terminology problem: never really an initial-value problem.

Initial value problem vs initial-boundary value problem

- Terminology problem: never really an initial-value problem.
- Standard approach based on monodromy matrix associated only to space Lax matrix *U* is optimized for so-called "initial" value problems.
- Completely natural since the original motivation was to perform canonical quantization of classical integrable field theories.

Initial value problem vs initial-boundary value problem

- Terminology problem: never really an initial-value problem.
- Standard approach based on monodromy matrix associated only to space Lax matrix *U* is optimized for so-called "initial" value problems.
- Completely natural since the original motivation was to perform canonical quantization of classical integrable field theories.
- Gives the *illusion* that time Lax matrix V plays no role. BUT! Works well only because one chooses *nice* boundary conditions: periodic, fast decay, open (a la Sklyanin).

ullet This is what allows us to "discard" V from general time evolution equation of transition matrix

$$\partial_t \mathcal{T}(x, y, \lambda) = V(x, \lambda) \mathcal{T}(x, y, \lambda) - \mathcal{T}(x, y, \lambda) V(y, \lambda)$$

ullet This is what allows us to "discard" V from general time evolution equation of transition matrix

$$\partial_t \mathcal{T}(x, y, \lambda) = V(x, \lambda) \mathcal{T}(x, y, \lambda) - \mathcal{T}(x, y, \lambda) V(y, \lambda)$$

 \bullet Example: NLS with fast decay boundary conditions as $|x| \to \infty$, this implies

$$\partial_t \mathcal{T}(\lambda) = i\lambda^2 [\sigma_3, \mathcal{T}(\lambda)]$$

Hence, the crucial result:

$$\partial_t \mathrm{Tr} \mathcal{T}(\lambda) = 0$$

• Last result also holds for periodic boundary conditions for instance.

In short

Speaking of integrability without reference to initial AND boundary data is meaningless, *even* in so-called initial-value problem.

• Hence, one always has to deal with space and time symmetrically. Dual Hamiltonian approach restores the balance at Hamiltonian level.

- Potential application: can we revisit Sklyanin's prescription for integrable boundary conditions from dual point of view?
- \rightarrow gain freedom on allowed boundary conditions by giving away some freedom on initial conditions

- Potential application: can we revisit Sklyanin's prescription for integrable boundary conditions from dual point of view?
- \rightarrow gain freedom on allowed boundary conditions by giving away some freedom on initial conditions
- Ideally, set up a theory of integrable *initial-boundary* conditions: Hamiltonian counterpart of linearizable initial-boundary conditions generalizing Fokas approach to initial-boundary value problems

 [V.C. '15]

4. Speculations, outlook, quantum case

• Towards time-dependent open integrable systems via dual picture: out-of-equilibrium integrable systems?

4. Speculations, outlook, quantum case

- Towards time-dependent open integrable systems via dual picture: out-of-equilibrium integrable systems?
- \rightarrow requires an understanding of the combination of the two Poisson structures $\{\ ,\ \}_S$ and $\{\ ,\ \}_T$:

"Covariant Poisson-Lie theory"?

- → Then, understand covariant quantization:
- Role of time Lax matrix V at quantum level?
- Understand how the canonical quantization of r and $\{\ ,\ \}_S$ into R and quantum group structures can incorporate $\{\ ,\ \}_T$

4. Speculations, outlook, quantum case

Questions to the specialists in the audience:

- 1. Is it meaningful/interesting to consider quantized time Lax matrices (IQFT)? What about spin chains (time-independent)?
- 2. Anyone aware of works related to covariant integrable systems, classical or quantum?

References

THANK YOU!

- J. Avan, V. Caudrelier, A. Doikou, A. Kundu, Lagrangian and Hamiltonian structures in an integrable hierarchy and space-time duality, Nucl. Phys. B902 (2016), 415-439.
- V. Caudrelier, Multisymplectic approach to integrable defects in the sine-Gordon model, J. Phys. A48 (2015) 195203.
- V. Caudrelier, A. Kundu, A multisymplectic approach to defects in integrable classical field theory, JHEP 02 (2015), 088
- V. Caudrelier, On the inverse scattering method for integrable PDEs on a star graph, Comm. Math. Phys 338 (2015), 893