Algebraic Bethe ansatz approach to form factors and correlation functions of the cyclic solid-on-solid model

Véronique TERRAS

CNRS & ENS Lyon, France

RAQIS 12 – Angers

Collaborator: D. Levy-Bencheton (PhD student, ENS Lyon).
Correlation functions in the ABA framework: first results

determinant representation for scalar products of Bethe states (Slavnov)
+ solution of the quantum inverse problem

\[\leadsto \] determinant representation for form factors in finite volume
\[\leadsto \] elementary building blocks of correlation functions as multiple sums
in finite volume and as multiple integrals in the thermodynamic limit

Two-point function:

sum up elementary blocks or form factors

\[\leadsto \] Master equation representation for the finite chain:
N-fold multiple integral representation for the correlation function in finite volume

Asymptotic analysis of the two-point function

\[\leadsto \] from the Master equation
\[\leadsto \] from the series over form factors

Method essentially developed for XXZ chain or Quantum Bose gas
What about more complicated models?
A natural generalization of the XXZ Heisenberg chain is the XYZ chain:

$$H_{XYZ} = \sum_{m=1}^{N} \left\{ J_x \sigma^x_m \sigma^x_{m+1} + J_y \sigma^y_m \sigma^y_{m+1} + J_z \sigma^z_m \sigma^z_{m+1} \right\}$$

related to the 8-vertex model:

2-d square lattice model
link $\rightarrow \epsilon_j = \pm$
vertex \rightarrow Boltzmann weight

$$R^{8V}(z_1/z_2)^{\epsilon_1,\epsilon_2}_{\epsilon'_1,\epsilon'_2} = \begin{pmatrix} a(z;p) & 0 & 0 & d(z;p) \\ 0 & b(z;p) & c(z;p) & 0 \\ 0 & c(z;p) & b(z;p) & 0 \\ d(z;p) & 0 & 0 & a(z;p) \end{pmatrix}$$

$z =$ spectral parameter
$p =$ elliptic parameter
$a, b, c, d =$ elliptic theta functions of z

No charge conservation through a vertex \rightarrow no direct Bethe Ansatz solution
Baxter’s solution \((Ann.Phys.73) \) \rightarrow map onto an IRF model \((8VSOS model) \)
eigenstates of 8V model given in terms of Bethe eigenstates of 8VSOS model
2-d square lattice model
vertex → local height s_j
$s_j - s_k = \pm 1$ (adjacent)
face → Boltzmann weight

$$R(u_i - \xi_j; s)^{\epsilon_i,\epsilon_j}_{\epsilon_i',\epsilon_j'} =$$

$$\begin{bmatrix}
s + \epsilon_j \\
\downarrow \quad u_i \\
s + \epsilon_j + \epsilon_i + \epsilon_j'
\end{bmatrix}$$

$$b(u; s) = \frac{[s+1][u]}{[s][u+1]}$$
$$c(u; s) = \frac{[s+u][1]}{[s][u+1]}$$
$$u = \text{spectral parameter}$$
$$s = \text{dynamical parameter}$$
$$[u] = \theta_1(\eta u; \tau) \quad p = e^{2\pi i \tau}$$

satisfying the **Dynamical Quantum Yang-Baxter Equation**:

$$R_{12}(u_1 - u_2; s + h_3) R_{13}(u_1; s) R_{23}(u_2; s + h_1)$$

$$= R_{23}(u_2; s) R_{13}(u_1; s + h_2) R_{12}(u_1 - u_2; s) \quad \text{with} \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Charge conservation, solvable by Bethe Ansatz
ABA for the 8VSOS model

Felder, Varchenko (1996) : representations of $E_{\tau,\eta}(sl_2)$

- **Monodromy matrix:**

 \[T_{a,1\ldots N}(u; \xi_1, \ldots, \xi_N; s) = R_{aN}(u - \xi_N; s + h_1 + \cdots + h_{N-1}) \cdots R_{a1}(u - \xi_1; s) \]

 \[= \begin{pmatrix} A(u; s) & B(u; s) \\ C(u; s) & D(u; s) \end{pmatrix} \in \text{End}(\mathbb{C}^2 \otimes \mathcal{H}) \]

 \[\hat{T}(u) = \begin{pmatrix} \hat{A}(u) & \hat{B}(u) \\ \hat{C}(u) & \hat{D}(u) \end{pmatrix} = T(u; \hat{s}) \begin{pmatrix} \hat{\tau}_s & 0 \\ 0 & \hat{\tau}_s^{-1} \end{pmatrix} \in \text{End}(\mathbb{C}^2 \otimes \text{Fun}(\mathcal{H})) , \]

 where $\hat{\tau}_s \hat{s} = (\hat{s} + 1) \hat{\tau}_s$, and the action of \hat{s} and $\hat{\tau}_s$ on functions $f \in \text{Fun}(\mathcal{H})$ are given as $[\hat{s}f](s) = sf(s), \ [\hat{\tau}_s f](s) = f(s + 1)$.

- **Transfer matrix:**

 \[\hat{t}(u) = \hat{A}(u) + \hat{D}(u) \]

 \[\leadsto \text{preserve the space Fun}(\mathcal{H}[0]) \text{ of functions of the dynamical parameter } s \text{ with values in the zero-weight space } \mathcal{H}[0] \text{ of } \mathcal{H} \]

 \[\leadsto [\hat{t}(u), \hat{t}(v)] = 0 \text{ on Fun}(\mathcal{H}[0]) \]

- **Space of states:** functions $\psi : s \mapsto \psi(s) \in \mathcal{H}[0]$

 - unrestricted case (η generic): $s \in C_{s_0} = \{s_0 + j, j \in \mathbb{Z}\}$
 - cyclic case ($\eta = r/L$ rational): $s \in C_{s_0}^L = \{s_0 + j, j \in \mathbb{Z}/L\mathbb{Z}\}$
reference state:

\[A(u; s) | 0 \rangle = \tilde{a}(u) | 0 \rangle, \quad D(u; s) | 0 \rangle = \frac{[s-1]}{[s+N-1]} \tilde{d}(u) | 0 \rangle \]

Bethe states: Suppose that the set of spectral parameters \(\{ v_1, \ldots, v_n \} \), satisfies the system of Bethe equations

\[\tilde{a}(v_j) \prod_{l \neq j} \frac{[v_l - v_j + 1]}{[v_l - v_j]} = (-1)^r \omega^{-2} \tilde{d}(v_j) \prod_{l \neq j} \frac{[v_j - v_l + 1]}{[v_j - v_l]}, \quad j = 1, \ldots n, \]

with \(N = 2n + kL \) \((k \in \mathbb{Z})\) and \(\omega_L = (-1)^m \) (for \(\eta = r/L \)), then the state

\[| \{ v \} \rangle : s \mapsto \varphi(s) B(v_1; s) B(v_2; s-1) \ldots B(v_n; s-n+1) | 0 \rangle \in \text{Fun}(\mathcal{H}[0]) \]

with \(\varphi(s) = \omega^s \prod_{j=1}^{n} \frac{[1]}{[s-j]} \)

is an eigenstate of the transfer matrix

\[[\hat{t}(u) | \{ v \} \rangle] (s) = A(u; s) | \{ v \} \rangle (s+1) + D(u; s) | \{ v \} \rangle (s-1) \]

\[= \tau(u; \{ v \}) | \{ v \} \rangle (s), \]

with eigenvalue

\[\tau(u; \{ v \}) = \omega \tilde{a}(u) \prod_{l=1}^{n} \frac{[v_l - u + 1]}{[v_l - u]} + (-1)^r \omega^{-1} \tilde{d}(u) \prod_{l=1}^{n} \frac{[u - v_l + 1]}{[u - v_l]}. \]
Scalar product of Bethe states

Compute $\langle \{u\} | \{v\} \rangle$ in a compact and manageable form?

- **for XXZ:**

 - ∃ determinant representation for the scalar product when one of the state is a Bethe eigenstate (Slavnov, 1989)

 - this representation is related to Izergin’s determinant representation for the partition function with domain wall boundary conditions:

 $$Z_N(\{u\}; \{\xi\}) \propto \det_N \frac{\sinh \eta}{\sinh(u_i - \xi_j) \sinh(u_i - \xi_j + \eta)}$$

- **for SOS:**

 - no single determinant representation for the partition function with DWBC (Rosengren; Pakuliak, Rubtsov, Silantyev)

 $$Z_N(\{u\}; \{\xi\}; s) \propto \sum_{S \subset \{1, \ldots, N\}} (-1)^{|S|} \frac{[\gamma + s - |S|]}{[s - |S|]} \det_N \frac{[u_j - \xi^S_k + \gamma]}{[\gamma][u_j - \xi^S_k]}$$

 with $\xi^S_k = \begin{cases} \xi_k - 1 & \text{if } k \in S \\ \xi_k & \text{if } k \notin S \end{cases}$ (γ arbitrary).
Scalar product of Bethe states

Let \(\{u\}, \omega_u \) be solution of the Bethe equations and \(\{v\}, \omega_v \) be arbitrary, and consider the quantities:

- “partial scalar product” (general SOS model):

\[
S_n(\{u\}; \{v\}; s) = \langle 0 | C(u_n; s-n) \ldots C(u_1; s-1) B(v_1; s) \ldots B(v_n; s-n+1) | 0 \rangle
\]

\(\Rightarrow \) can be computed from Rosengren’s formula for the partition function with DWBC using the expressions of \(B \) and \(C \) in the \(F \)-basis (Maillet, Sanchez de Santos 96; Kitanine, Maillet, V.T. 99; Albert et al. 00)

- “total scalar product” (cyclic SOS):

\[
\langle \{u\} \mid \{v\} \rangle = \frac{1}{L} \sum_{s \in \mathbb{Z}/L \mathbb{Z}} \bar{\varphi}(s) \varphi(s) S_n(\{u\}; \{v\}; s)
\]

\(\Rightarrow \) The “total scalar product” (and the norm) can be expressed as a single determinant
Scalar product of Bethe states

Let \(\{u\}, \omega_u \) be solution of the Bethe equations and \(\{v\}, \omega_v \) be arbitrary, and consider the quantities:

- "partial scalar product" (general SOS model):

\[
S_n(\{u\}; \{v\}; s) = \langle 0 | C(u_n; s-n) \ldots C(u_1; s-1) B(v_1; s) \ldots B(v_n; s-n+1) | 0 \rangle
\]

\(\Rightarrow \) can be computed from Rosengren’s formula for the partition function with DWBC using the expressions of \(B \) and \(C \) in the \(F \)-basis (Maillet, Sanchez de Santos 96; Kitanine, Maillet, V.T. 99; Albert et al. 00)

- sum of determinants (with more convenient representation in the cyclic case)

- "total scalar product" (cyclic SOS):

\[
\langle \{u\} | \{v\} \rangle = \frac{1}{L} \sum_{s \in s_0 + \mathbb{Z}/L\mathbb{Z}} \bar{\varphi}(s) \varphi(s) S_n(\{u\}; \{v\}; s)
\]

\(\Rightarrow \) The "total scalar product" (and the norm) can be expressed as a single determinant
for generic η

$$S_n(\{u\}; \{v\}; s) \propto \sum_{S, \tilde{S} \subset \{1, \ldots, n\}} (-1)^{|s| + |\tilde{s}|} \frac{[\gamma + s - |S| + |\tilde{S}|]}{[s - |S| + |\tilde{S}|]}$$

$$\times \prod_{j \notin \tilde{S}} \left(\frac{\tilde{a}(v_j)}{\tilde{d}(v_j)} \right) \prod_{t=1}^{n} [u_t - v_j + 1] \prod_{j \in \tilde{S}} \left(\omega_u^{-2} \prod_{t=1}^{n} [u_t - v_j - 1] \right) \det_n \frac{[u_i - \xi_j^{S\tilde{S}} + \gamma]}{[\gamma][u_i - \xi_j^{S\tilde{S}}]}$$

with $\xi_k^{S\tilde{S}} = \begin{cases}
\xi_k - 1 & \text{if } k \in S \text{ and } k \notin \tilde{S} \\
\xi_k + 1 & \text{if } k \notin S \text{ and } k \in \tilde{S} \\
\xi_k & \text{otherwise}
\end{cases}$ (\gamma \text{ arbitrary}).

for rational η ($\eta = r/L$)

$$S_n(\{u\}; \{v\}; s) \propto \sum_{\ell=0}^{L-1} q^\ell s \left[Ls_0 + \gamma + \ell \frac{\tau}{\eta} \right]_L \left[0' \right]_L \det_n \left[\Omega^{(\ell)}_{\gamma}(\{u\}; \{v\}) \right],$$

with $q = e^{2\pi i \eta}$, $[u]_L = \theta_1(\eta u; L\tau)$, and

$$[\Omega^{(\ell)}_{\gamma}(\{u\}; \{v\})]_{ij} = \frac{1}{[\gamma]} \left\{ \frac{[u_i - v_j + \gamma]}{[u_i - v_j]} - q^{-\ell} \frac{[u_i - v_j + \gamma + 1]}{[u_i - v_j + 1]} \right\} \tilde{a}(v_j) \prod_{t=1}^{n} [u_t - v_j + 1]$$

$$+ \frac{(-1)^{rk}}{[\gamma]} \left\{ \frac{[u_i - v_j + \gamma]}{[u_i - v_j]} - q^{\ell} \frac{[u_i - v_j + \gamma - 1]}{[u_i - v_j - 1]} \right\} \omega_u^{-2} \tilde{d}(v_j) \prod_{t=1}^{n} [u_t - v_j - 1].$$
“Total scalar product” for rational η ($\eta = r/L$)

Let $\{u\}, \omega_u$ be solution of the Bethe equations and $\{v\}, \omega_v$ be arbitrary

$$
\langle \{u\} | \{v\} \rangle = \left\{ \frac{1}{L} \sum_{s \in \mathbb{Z} + \mathbb{Z}/L\mathbb{Z}} \omega^s_v [\gamma + s] \omega^s_u [s] \right\} \prod_{t=1}^{n} \tilde{d}(u_t) \cdot \det_n [\Omega_\gamma(\{u\}; \{v\})] \prod_{j<k} [u_j - u_k][v_k - v_j],
$$

with $\gamma = -|u| + |v|$ and

$$
[\Omega_\gamma(\{u\}; \{v\})]_{ij} = \frac{1}{[\gamma]} \left\{ \frac{[u_i - v_j + \gamma]}{[u_i - v_j]} - \frac{\omega_v [u_i - v_j + \gamma + 1]}{\omega_u [u_i - v_j + 1]} \right\} \tilde{a}(v_j) \prod_{t=1}^{n} [u_t - v_j + 1] \\
+ \frac{(-1)^{rk}}{[\gamma]} \left\{ \frac{[u_i - v_j + \gamma]}{[u_i - v_j]} - \frac{\omega_u [u_i - v_j + \gamma - 1]}{\omega_v [u_i - v_j - 1]} \right\} \omega^{-2} u \tilde{d}(v_j) \prod_{t=1}^{n} [u_t - v_j - 1].
$$

Norm for rational η

$$
\langle \{u\} | \{u\} \rangle = \frac{1}{(-[0]^r)^n} \prod_{t=1}^{n} \tilde{d}(u_t) \cdot \det_n \left[\frac{\partial}{\partial u_k} \gamma_{\omega_u}(u_j | \{u\}) \right]
$$

where

$$
\gamma_{\omega}(v | \{u\}) = \tilde{a}(v) \prod_{t=1}^{n} [u_t - v + 1] + (-1)^{rk} \omega^{-2} \tilde{d}(v) \prod_{t=1}^{n} [u_t - v - 1]
$$
Determinant representation for finite-size form factors

solution of the quantum inverse problem:

\[E^{++}_i = \prod_{k=1}^{i-1} \hat{t}(\xi_k) \cdot \hat{A}(\xi_i) \cdot \prod_{k=i}^{1} \hat{t}(\xi_k)^{-1} \]

\[E^{--}_i = \prod_{k=1}^{i-1} \hat{t}(\xi_k) \cdot \hat{D}(\xi_i) \cdot \prod_{k=i}^{1} \hat{t}(\xi_k)^{-1} \]

\[\Rightarrow \text{express form factors in terms of scalar products} \]

\[\Rightarrow \text{representation in terms of determinants:} \]

\[\langle \{u\} | \sigma_i^Z | \{v\} \rangle = \left\{ \prod_{k=1}^{i-1} \frac{\tau(\xi_k, \{u\})}{\tau(\xi_k, \{v\})} \right\} \left\{ \frac{1}{L} \sum_{s \in s_0 + \mathbb{Z}/L\mathbb{Z}} \omega_u^{-s} \omega_v^s \frac{[\gamma + s]}{[s]} \right\} \]

\[\times \prod_{t=1}^{n} \tilde{d}(u_t) \prod_{k<l} [u_k - u_l][v_l - v_k] \det_n \left[\Omega_\gamma(\{u\}; \{v\}) - 2P_\gamma(\{u\}; \{v\}|\xi_i) \right] \]

with \(\gamma = |v| - |u| \) and \(P_\gamma(\{u\}; \{v\}|\xi_i) \) is a rank 1 matrix

\[\Rightarrow \text{possible to take the thermodynamic limit (computation of spontaneous staggered polarization)} \]
Conclusion and perspectives

Summary

- Determinant representations for scalar products/norms of Bethe states
- Determinant representations for finite-size form factors

Further questions . . .

- (multi-point) local height probabilities for CSOS model (work in progress)
  ~~~ use “partial scalar product”
  ~~~ sum of multiple integrals ?

- XYZ model ?
  ~~~ combinatorial complexity of Vertex-IRF transformation