Experimental Summary of Higgs Session

Physics at TeV Colliders Les Houches, 11-29 June 2007

on behalf of the LH'07 Higgs WG

Convenors: Sally Dawson, Massimiliano Grazzini, Sasha Nikitenko, Markus Schumacher

Les Houches June 29th 2007

Overview

- ♦ gg→ZZ background for H→ZZ 4I
- issues related to vector boson fusion
 - background from double parton scattering
 - jet veto versus track veto
 - event rates from gg→Hjj after VBF selction
 - jet veto efficiency for signal from data: Z(γ)jj and single top
- difficult regions in BSM Higgs Models
 - e.g. NMSSM or CPX scenario of CPV MSSM
 - i) lightest H decoupled from Z/W and t
 - \rightarrow exp study: tt \rightarrow W+bH-, H- \rightarrow W-H₁, H₁ \rightarrow bb
 - ii) large BR for light H → A A with A→tau tau (bb)
 - → exp study: VBF, WH with H→AA→4 tau →2mu 2 had , 4 mu

pp→ZZ→4I background for H→ZZ→4I

H→ZZ→ 4 Leptons

dominant background is irreducible pp→ZZ—4I

so far only: qqbar → ZZ → 41 in MC (estimate up to now: 30% after cuts)

new: MC generator for gg→ZZ→4I by Nicolas Kauer

- question: how much is contribution from gg→ZZ after all cuts?
 - difference in distributions from qqbar and gg e.g. M₄₁?
- gg2ZZ-MC: for now includes no "photon" diagrams
 "interference" effect for 4 mu / 4 e final states
 → study masses above 180 GeV for 2e2mu final state

Domenico Giordano, Massimiliano Grazzini, Sandra Horvat, Nicolas Kauer

$pp \rightarrow ZZ \rightarrow 4l$ background for $H \rightarrow ZZ \rightarrow 4l$: mass distribution

Domenico Giordano, Massimiliano Grazzini, Sandra Horvat, Nicolas Kauer Markus Schumacher

pp→ZZ→4l background for H→ZZ→4l: lepton distributions

next steps: - apply full selection criteria and use full simulation

- repeat study for low masses with updated code by N. Kauer

Vector boson fusion VBF: pp→qqH, H→tau tau

- dominant background still Zjj QCD (factor 4 larger than EW)
- can selection be improved by track veto compared to central jet veto?
- what about bckg. from Drell Yan + dijets via doube parton scattering?
- beyond discovery: signal rate measurement (exclusion limit)
 - CP studies, coupling determination need
 - determination of gg→Hjj contribution
 - knowledge of signal efficiency, especially for jet veto

Background to Zjj from double parton scattering (S. Nikitenko)

$$\sigma^{D}_{(A,B)} = (m/2) \sigma_{A} \sigma_{B} / \sigma_{eff}$$

(m=2 for A=Z, B=di-jets) σ_{eff} =14.5 mb from CDF Phys.Rev. D56 (1997) 3811

Expectations at LHC: $\sigma_{\text{off}} \sim 20 \text{ mb}$ (T. Sjostrand, private communication)

- "rough" estimate of background contribution
- loose VBF selection: 2 jets in opposite hemishperes, $\Delta \eta > 4.2$, $M_{IJ} > 1 TeV$

"normal" Z+jets (ALPGEN): $\sigma \sim 770 \text{ fb}$

DY: di-jets (σ_{tot} =100mb): σ ~ 1.4mb

 $\sigma \sim 2nb$

 $\rightarrow \sigma \sim 140 \text{ fb}$

- contribution at 20% level → reduce it
- next step: DY+ "hard" UE with PYTHIA following recipe by T. Sjostrand

Supression of Zjj BG from double parton scattering

ET of tagging jets

 $E_{Ti1,i2} > 40 \text{ GeV}$

DPS Z+di-jets: eff. ~ 30%

Signal: eff: ~ 80%

$\Delta \phi_{ii}$ btw. tagging jets

$$\Delta \phi_{ij} < 2.8$$

DPS Z+di-jets: eff. ~ 50%

Signal eff. ~ 85%

- Conclusion: DPS DY + di-jets bkg. seem no to be a problem
- Next steps: check DPS Z+j plus di-jets with one lost jet
 - develop method how to estimate it from data

Track veto versus Central jet veto (S. Nikitenko)

TV idea: count charged particles in rapidity gap: $\eta_{Jmin} + 0.5 < \eta_{trk} < \eta_{Jmax} - 0.5$

PYTHIA hadron level study

without underlying event

with underlying event

Track veto vs CJV: Comparion of survival probabilities

	veto cut	qqH	Z+jets
CJA	E _T ^{J3} >20 GeV	0.83 (0.81)	0.44 (0.46)
TCV	$N_{trk} > 9$	0.80	0.55

* Numbers in parenthesis from CMS PTDR with full simulation

- similar project in ATLAS started: J. B. De Vivie
- TV seems to be more robust against pile up (primary vertex determination)

gg->Hjj contribution to signal rate

Monica.V. Acosta and S. Nikitenko gg->H+ up to 4jets with ALPGEN+MLM qqH with PYTHIA fast CMS detector simulation

- conclusion: gg→Hjj contribution is ~ 4-5 % for M_H=120 GeV after cuts
- next steps: repeat study at NLO using Campell program for gg→Hjj and VBFNLO (D. Zeppenefeld et al.) for VBF
 - estimating Zjj background from data
 - comparison of Zjj EW and QCD with different MCs

Disentangling Z(y)jj EW from QCD production

goal: -estimate jet veto efficiency for EW process

transfer it to VBF Higgs production
 using theoretical calulcations/ MC generators

problem: QCD rate large compared to EW rate (still factor 10 after basic VF cuts)

idea: look at Z→ee, mumu and unfold 3rd jet distributions using uncorrleated variables (Kyle Cranmer)

maybe: use also photon + jets to do the same additional issue: photon/jet discrmination

D. Rainwater $^1,\;$ R. Szalapski $^2,\;$ and D. Zeppenfeld 1

 $|oldsymbol{\eta}_1|_{ extbf{max}}$

hep

Learning about CJV from single top production?

- same colour structure
- similar rapidity gap and radiation pattern after selection cuts?

Dieter Zeppenfeld + MS

 $\sigma(LO, 120 GeV) \sim 4.4 pb$

2 tagging jets in opposite hemispheres: (Herwig+Jimmy+ fast detector sim)

Characteristics of third jet

transverse momentum

$$\eta_3^* = \eta_3 - \frac{1}{2}(\eta_1 + \eta_2)$$

- with small statistics no definite conclusions possible!
- at 1st glance: no significant discrepancy btw. single top and VBF
 - → not yet completly dismotivated
- next steps: use ME calculations for 3rd jets

Light H1 and Charged Higgs e.g. in CPV MSSM

uncovered region:

 M_{H1} : < 50 GeV, M_{H2} : 105 to 115 GeV M_{H3} : 140 to 180 GeV, M_{H+-} : 130 to 170 GeV

- light H1 decouples from W,Z and top
- no sensitive MC study from LHC yet

■ most promising channel: final state: 4b 2j l v (R. Godbole et al.) same as ttH, H→bb

ATLAS fastsim study looks promising

$tt \rightarrow H + bWb, H + \rightarrow WH1, H1 \rightarrow bb$

- Mass resolution studies for signal (Aruna J. Nayak): M_{H+}=133GeV, M_{H1}=51GeV
- t->Wb from full CMS detector simulation (matching from MC truth)

- combinatorics challenge: how to assign b's and q's to t, H1, H+
- Claire Shepard-T. et al: optimise selection with various methods (cuts, ANN, liklelihood)
- other problem: background estimate from data (as in ttH→bb)

Large BR(H→AA) e.g. in NMSSM (Sami Lethi, Sasha Nikitenko)

- CMS study for VBF \rightarrow H \rightarrow AA \rightarrow 4 taus \rightarrow 2 μ 2 tau-jet 6 ν
- $M_H = 105 \text{GeV}$, $M_A = 5.3 \text{ GeV}$ with BRs > 90% in NMSSM
 - → soft taus and close in phase space from the same A decay
- challenges: trigger on no isolated muons (→ rate problem)
 - mass reconstruction
- proposal: trigger on same sign non isolated di-muons with pT threshold ~ 5-7 GeV
- rate reduction for gg->bb:

R= $\sigma(\mu+\mu+OR\mu-\mu-)/\sigma(\mu\mu)$ at p_T> 5 GeV is ~ 4.0 ! evaluated with PYTHIA6.227 need confirmation with full simulation

$\mu^{-}\mu^{-}j^{+}j^{+} + \mu^{+}\mu^{+}j^{-}j^{-}$ topology 107.5 fb				
	$p_{T}^{\mu} > 7 \text{ GeV}$ (iso.)	p_T^{μ} > 10 GeV (non iso).		
Cumulative efficiency				
2 μ, η<2.1	0.160	0.089		
N _{trk.} = 1	0.056	0.031		
$Q_{\mu}xQ_{h}<0$	0.054	0.030		
σ _{sel.} , fb	5.8 fb	3.2 fb		

■ similar study for WH with same decay chain → avoid trigger problem

VBF H→AA→4 tau→4 mu + 8 neutrinos (Iris Rottländer+MS)

 $M_H = 100 \text{ GeV}$, $M_A = 10 \text{ GeV}$, generated with PYTHIA + fast detector simulation

- require 3 or 4 muons (1/6 of selected events have 4 muons)
- standard VBF cuts
- collinear approximation for mass reconstruction (2mu and 4 nu follow A)
- signal efficiency: ~ 2.5 to 3 %
- mass resolution 13 GeV

next steps: - background with Madgraph, check trigger availability

Outlook

❖ several interesting projects just started ... → hope for good proceedings

- in addition to what was shown:
 - angular correlations for rescueing ttH→bb (R.Godbole, A. Djouadi, ...)
 - CP studies in ZZ→4I (R.Godbole, D.Miller, M.Mühlleitner, S.Horvat, S. Nikitenko)
 - discriminating SM, MSSM, NMSSM via ratio of BRs (S. Heinemeyer, MS, ...)

* apologies to people whose contributions and plans I forgot to mention

personal remark:

leave "Les Houches" how and where it has been for the last 8 years for me it is the most stimulating workshop I have ever been to