Summary of activities in NLO multi-leg working group

June 20, 2007

Les Houches 07 wishlist

process	# groups
$V \in \{Z, W, \gamma\}$	working on
1. $pp \rightarrow VV$ jet	2
2. $pp \rightarrow t\bar{t}b\bar{b}$	1
3. $pp \rightarrow t\bar{t} + 2jets$	
4. $pp \rightarrow WWW$	1
5. $pp \rightarrow V V b\overline{b}$	
6. $pp \rightarrow VV + 2$ jets	
7. $pp \rightarrow V + 3$ jets	
8. $b\overline{b}b\overline{b}$	1
9. $gg ightarrow W^*W^*$ (NLO, 2 loops)	?
10. EW corrections to VBF	1
11. NNLO to VBF, $t\bar{t}$, Z/γ +jet, W+jet	

progress

- change in philosophy:
 - more automatisation
 - more modular tools:
 - Joop integrals: public database
 - \rightarrow "Les Houches Accord on master integrals"
 - real radiation: automated dipole subtraction (T. Gleisberg)

progress

- change in philosophy:
 - more automatisation
 - more modular tools:
 - Joop integrals: public database
 - \rightarrow "Les Houches Accord on master integrals"
 - real radiation: automated dipole subtraction (T. Gleisberg)
- better methods:
 - \rightarrow "learn, discuss, compare"

on-shell recursion for multi-leg tree level amplitudes (Weinzierl)

Comparison for Born amplitudes

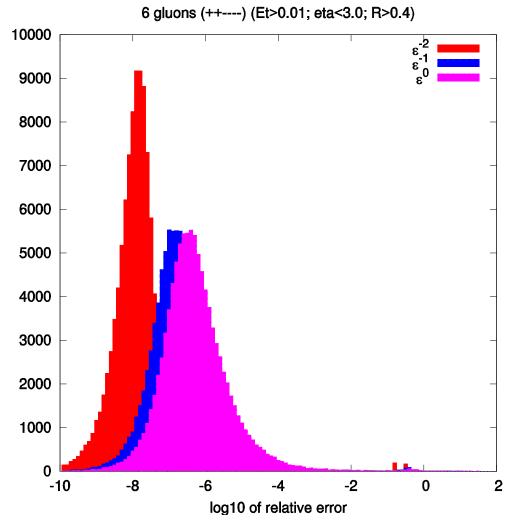
(Weinzierl)

n	4	5	6	7	8	9	10	11	12
Berends-Giele	0.00005	0.00023	0.0009	0.003	0.011	0.030	0.09	0.27	0.7
Scalar	0.00008	0.00046	0.0018	0.006	0.019	0.057	0.16	0.4	1
MHV	0.00001	0.00040	0.0042	0.033	0.24	1.77	13	81	—
BCF	0.00001	0.00007	0.0003	0.001	0.006	0.037	0.19	0.97	5.5

CPU time in seconds for the computation of the *n* gluon amplitude on a standard PC 2 GHz Pentium IV), summed over all helicities.

I. Dinsdale, M. Ternick and S.W., JHEP 0603:056, (hep-ph/0602204);

C. Duhr, S. Höche and F. Maltoni, hep-ph/0607057.


- on-shell recursion for multi-leg tree level amplitudes (Weinzierl)
- crash course on unitarity cuts (Mastrolia)

- on-shell recursion for multi-leg tree level amplitudes (Weinzierl)
- crash course on unitarity cuts (Mastrolia)
- reconstruction of coefficients of one-loop master integrals and of the rational terms by solving a system of equations numerically (Pittau)

- on-shell recursion for multi-leg tree level amplitudes (Weinzierl)
- crash course on unitarity cuts (Mastrolia)
- reconstruction of coefficients of one-loop master integrals and of the rational terms by solving a system of equations numerically (Pittau)
- similar approach: "unitarity method goes numerical" (Giele)

Comparison: 6 gluons

• Time: 107 secs/10,000 events

- All other PT-helicity combinations identical results. (3+,3-) helicity amplitudes checked for singular contributions
- 3.0* slower as 5 gluons
- 11.0*slower as 4 gluons
- Increase in computer time is determined by growth of the number of coefficients.
- This is still development code with lots of internal checks, the final code will be faster
- On the other hand the (D-4)-part inclusion will double the cpu time

(semi-)numerical approaches

semi-numerical:

- GOLEM-approach: (Binoth)
 - stop algebraic tensor reduction before it causes trouble
 - analytical/numerical options
 - obtain rational parts as a by-product
- CEGZ-approach: (Ellis)
 - do numerical tensor reduction
 - aim: provide (public) code for one-loop tensor integrals with massless internal lines up to rank 5 pentagons

(semi-)numerical approaches

semi-numerical:

- GOLEM-approach: (Binoth)
 - stop algebraic tensor reduction before it causes trouble
 - analytical/numerical options
 - obtain rational parts as a by-product
- CEGZ-approach: (Ellis)
 - do numerical tensor reduction
 - aim: provide (public) code for one-loop tensor integrals with massless internal lines up to rank 5 pentagons
- purely numerical:
 - no tensor reduction, calculate loop integrals numerically (Nagy)

needed by most of the approaches:

one-loop master integrals

Les Houches accord on Master Integrals:

- agreement on format to uniquely characterise the integral (LoopTools conventions)
- WIKI page where everybody can post previously unknown MI's
- hosted at <u>http://durpdg.dur.ac.uk/hepdata/</u> (put up by Jeppe Andersen)

Numerical Stability

"Numerical instabilities are like bad spots on an apple" (Dave Soper)

questions:

where do the bad spots come from? (which type of singularity?)

questions:

- where do the bad spots come from? (which type of singularity?)
- are they only on the surface of the apple? (are they always at the phase space boundaries?)

questions:

- where do the bad spots come from? (which type of singularity?)
- are they only on the surface of the apple? (are they always at the phase space boundaries?)
- if I make an apple cake:

(integrate the amplitude over the phase space)

- are the spots harmless? (smoothly integrable?)
- can I cut out the bad spots and still have enough apple left for the cake? (drop or interpolate problematic phase space points if they are a negligible fraction of phase space)
- if I cut the cake, do hidden bad spots suddenly show UP? (how do kinematic cuts affect the numerical stability?)

disadvantages ...

• There can be problems from double parton scattering singularities.

• This starts at N = 6.

Z.Nagy

- plan: dedicated section in the proceedings on different types of singularities (Giele et al)
- agreement on information that would be useful in a publication:
 - amplitudes in analytical form: give numerical value at certain phase space point(s) such that others can compare
 - integrated amplitudes/cross sections: statements about numerical behaviour
 - what fraction of phase space shows instabilities ?
 - how have they been dealt with ?

Revenge of the Analytic S-matrix

Search INSIDE!™ The Analyt S-Matrix

R.J. EDEN P.Y.LANDSHDFF D.I.OLIVE J.C.POLKINGHORNE

Cambridge Grovenaty Press

Revenge of the Analytic S-matrix

R.J. EDEN P.V.LANDSHDFF D.I.OLIVE J.C.POLKINGHORNE

Combridge University Plans

rediscover the sixties!