What has been achieved since Les Houches 2005 ?

What has been done in session 1 ? NLO multi-leg group

Gudrun Heinrich

LES HOUCHES

Les Houches 05: NLO wishlist for LHC

process $(V \in \{Z, W, \gamma\})$	background to
1. $pp \rightarrow VV$ jet	$t\bar{t}H$, new physics
2. $pp \rightarrow H + 2$ jets	H production by VBF
3. $pp \rightarrow t\bar{t}b\bar{b}$	$t\bar{t}H$
4. $pp \rightarrow t\bar{t} + 2$ jets	$t\bar{t}H$
5. $pp \rightarrow VV b\bar{b}$	VBF $\rightarrow H \rightarrow VV$, $t\bar{t}H$, new physics
6. $pp \rightarrow VV + 2$ jets	VBF $\rightarrow H \rightarrow VV$
7. $pp \rightarrow V + 3$ jets	various new physics signatures
8. $pp \rightarrow VVV$	SUSY trilepton

- $\mathcal{O}(\alpha^6 \alpha_s)$:

 $pp \rightarrow Z \ Z + 2$ jets via VBF, $pp \rightarrow W W + 2$ jets via VBF, Jäger, Oleari, Zeppenfeld '06 $pp \rightarrow W \ Z + 2$ jets via VBF Bozzi, Jäger, Oleari, Zeppenfeld '07

Les Houches 07 wishlist

nraaaaa	-44
process	# groups
$V \in \{Z, W, \gamma\}$)	working on
	2
$I \cdot pp \rightarrow V V$ jet	
2. $pp \rightarrow t\bar{t} b\bar{b}$	1
3. $pp \rightarrow t\overline{t} + 2$ jets	
4. $pp \rightarrow WWWW$	1 (?)
5. $pp \rightarrow VVbb, VVt\bar{t}$	
6. $pp \rightarrow VV + 2$ jets	
7. $pp \rightarrow V + 3$ jets	
8. $b\overline{b}b\overline{b}$	1
9. $gg ightarrow W^*W^*$ (NLO, 2 loops)	?
10. EW corrections to VBF	1
11. NNLO to VBF, $t\bar{t}$, Z/γ +jet, W+jet	?

That's all ???

What has been achieved since Les Houches 2005 ? What has been done in session 1 ? NLO multi-leg group - p.

processes which were not on the wishlist

EXAMPLES: (SM, LHC kinematics only, N > 4 only)

- $pp \rightarrow t\bar{t} + jet$ Dittmaier, Uwer, Weinzierl '07
- $pp \rightarrow Z+2$ jets, W+2 jets with one *b*-quark tag Campbell, Ellis, Maltoni, Willenbrock '06, '07
- $pp \rightarrow H \, bb$ Febres Cordero, Reina, Wackeroth '06
- $pp \rightarrow HHH$ Plehn, Rauch '05; Binoth, Karg, Kauer, Rückl '06
- **_**

- important new technical developments
 - analytic methods (twistor/string inspired)
 - \rightarrow Zoltan's talk this afternoon,
 - \rightarrow Ruth Britto's talk next week

- important new technical developments
 - analytic methods (twistor/string inspired)
 - \rightarrow Zoltan's talk this afternoon,
 - → Ruth Britto's talk next week
 - semi-numerical methods

- important new technical developments
 - analytic methods (twistor/string inspired)
 - \rightarrow Zoltan's talk this afternoon,
 - → Ruth Britto's talk next week
 - semi-numerical methods
 - generation of amplitude in terms of Feynman diagrams
 - ▶ tensor reduction ⇒ set of "basis integrals":
 (boxes, triangles, bubbles, tadpoles) known analytically

- important new technical developments
 - analytic methods (twistor/string inspired)
 - \rightarrow Zoltan's talk this afternoon,
 - → Ruth Britto's talk next week
 - semi-numerical methods
 - generation of amplitude in terms of Feynman diagrams
 - ▶ tensor reduction ⇒ set of "basis integrals": (boxes, triangles, bubbles, tadpoles) known analytically

$$\mathcal{A} = C_4 \qquad + C_3 \qquad + C_2 \qquad - + \mathcal{R}$$

tensor reduction

scalar 6-point function

integrals with less legs from reduction of tensor rank and number of legs at the same time

non-trivial tensor structure

factorial growth in complexity!

possible solutions:

do tensor reduction (partly) numerically Campbell, Ellis, Giele, Zanderighi; Denner, Dittmaier, Uwer, Weinzierl; Del Aguila, Pittau...

possible solutions:

- do tensor reduction (partly) numerically Campbell, Ellis, Giele, Zanderighi; Denner, Dittmaier, Uwer, Weinzierl; Del Aguila, Pittau...
- make use of properties of helicity amplitudes Van Hameren, Vollinga, Weinzierl

possible solutions:

- do tensor reduction (partly) numerically Campbell, Ellis, Giele, Zanderighi; Denner, Dittmaier, Uwer, Weinzierl; Del Aguila, Pittau...
- make use of properties of helicity amplitudes Van Hameren, Vollinga, Weinzierl
- do not reduce fully to scalar integrals, compute non-scalar basis integrals (partly) numerically Binoth, Guillet, GH, Kauer, Pilon, Schubert; Denner, Dittmaier

possible solutions:

- do tensor reduction (partly) numerically Campbell, Ellis, Giele, Zanderighi; Denner, Dittmaier, Uwer, Weinzierl; Del Aguila, Pittau...
- make use of properties of helicity amplitudes Van Hameren, Vollinga, Weinzierl
- do not reduce fully to scalar integrals, compute non-scalar basis integrals (partly) numerically Binoth, Guillet, GH, Kauer, Pilon, Schubert; Denner, Dittmaier
- solve system of equations which determines coefficients of basis integrals numerically Papadopoulos, Pittau, Ossola; Ellis, Giele, Kunszt

technical developments cont'd.

 fully numerical methods: do integration over loop momenta and/or Feynman parameters numerically problem: isolation of singularites
 Anastasiou, Beerli, Daleo, Kunszt; Ferroglia, Passera, Passarino, Uccirati; Lazopoulos, Melnikov, Petriello; Krämer, Nagy, Soper; Kurihara, Kaneko, ...

improved methods for real radiation at NLO (partly inspired by NNLO efforts)

Daleo, Gehrmann, Maître; Nagy, Somogyi, Trocsanyi;

Weinzierl, Schwinn, Gleisberg, ...

superficial comparison of methods

analytic methods

- + compact expressions
- + evaluation of analytic expressions fast
- processes with massive particles in the loop and/or many different mass scales difficult
- automatisation in its infancy, numerical behaviour not yet studied sufficiently

superficial comparison of methods

analytic methods

- + compact expressions
- + evaluation of analytic expressions fast
- processes with massive particles in the loop and/or many different mass scales difficult
- automatisation in its infancy, numerical behaviour not yet studied sufficiently

semi-numerical methods

- + trade-off between speed (analytic expressions) and generation of intractably large expressions optimised
- + automated processing can make use of already existing "industry"
- expressions not compact, numerical stability can be delicate

superficial comparison of methods

analytic methods

- + compact expressions
- + evaluation of analytic expressions fast
- processes with massive particles in the loop and/or many different mass scales difficult
- automatisation in its infancy, numerical behaviour not yet studied sufficiently

semi-numerical methods

- + trade-off between speed (analytic expressions) and generation of intractably large expressions optimised
- + automated processing can make use of already existing "industry"
- expressions not compact, numerical stability can be delicate

numerical methods

- + do not generate large analytic expressions
- numerical integration in multi-dimensional parameter space with intricate pole structure non-trivial

towards NLO 2 \rightarrow 4 scattering

6-point results achieved:

complete one-loop amplitudes for

6 gluons

Britto, Feng, Mastrolia; Ellis, Giele, Zanderighi;
Berger, Bern, Dixon, Dunbar, Forde, Kosower; Xiao, Yang, Zhou;
Bedford, Brandhuber, Spence, Travaglini;
Britto, Buchbinder, Cachazo, Feng, ... '94-'06

6 photons

Nagy, Soper; Binoth, Gehrmann, GH, Mastrolia; Papadopoulos, Ossola, Pittau; Forde '06/07

● full electroweak corrections to $e^+e^- \rightarrow 4 f$ Denner, Dittmaier, Roth, Wieders Feb. 05, but should be mentioned

$\bullet e^+e^- \to H H \nu \bar{\nu}$

GRACE group (Boudjema et al.) 10/05

important developments towards matching NLO with parton showers

Frixione, Nason, Webber, ..., Nagy, Soper, ..., Giele, Kosower, Skands, Krämer, Mrenna, ..., Gieseke, Latunde-Dada, Ridolfi, ..., Gleisberg, Höche, Krauss, Schälicke, Schumann, Winter, ...

enormous activity in session 1

- resummation:
 - *H* production, doubly differential in q_T and yBozzi, Catani, DeFlorian, Grazzini '07
 - single-inclusive jet production near threshold DeFlorian, Vogelsang '07

Issues to be addressed during this workshop

discuss the session 1 wishlist

Issues to be addressed during this workshop

- discuss the session 1 wishlist
- automatisation:
 - important topic in session 1: can we achieve high level of modularity to compare/exchange pieces of code which are common to many approaches?
 (e.g. colour algebra, one-loop master integrals, dipole subtraction terms, ...)
 - some kind of "Les Houches Accord" on input/output ?

Issues to be addressed during this workshop

- discuss the session 1 wishlist
- automatisation:
 - important topic in session 1: can we achieve high level of modularity to compare/exchange pieces of code which are common to many approaches?
 (e.g. colour algebra, one-loop master integrals, dipole subtraction terms, ...)
 - some kind of "Les Houches Accord" on input/output ?

achieved in session 1 ...

needed by most of the approaches:

one-loop master integrals

Les Houches accord on Master Integrals:

- agreement on format to uniquely characterise the integral (LoopTools conventions)
- WIKI page where everybody can post previously unknown MI's
- hosted at <u>http://durpdg.dur.ac.uk/hepdata/</u> (put up by Jeppe Andersen)

automatisation/modularity

one-loop tensor integrals:

Keith Ellis suggested to provide (public) code for one-loop tensor integrals with massless internal lines up to rank 5 pentagons

real radiation:

T. Gleisberg is working on a code (to be made public) for automated generation of dipole subtraction terms

to be addressed during this workshop

- How can "string inspired/standard approaches" maximally profit from each other?
 - make use of complementarity of different approaches
 - assess limitations and future prospects of "traditional/new" approaches
 - discuss in particular rational parts, massive loops

_ ...

to be addressed during this workshop

- How can "string inspired/standard approaches" maximally profit from each other?
 - make use of complementarity of different approaches
 - assess limitations and future prospects of "traditional/new" approaches
 - discuss in particular rational parts, massive loops

_ ...

agreement in session 1:

dedicated section on rational parts in the proceedings

topics to be addressed

NNLO:

- asses where it is needed
- compare different methods

- NNLO:
 - asses where it is needed
 - compare different methods
- Jog-enhanced EW corrections, resummation, ...

- NNLO:
 - asses where it is needed
 - compare different methods
- Jog-enhanced EW corrections, resummation, ...
- numerical stability in NLO multi-leg calculations: classify types of singularities which can occur in an amplitude

Numerical Stability

"Numerical instabilities are like bad spots on an apple" (Dave Soper)

Singularities in scattering amplitudes

questions:

where do the bad spots come from? (which type of singularity?)

Singularities in scattering amplitudes

questions:

- where do the bad spots come from? (which type of singularity?)
- are they only on the surface of the apple? (are they always at the phase space boundaries?)

Singularities in scattering amplitudes

questions:

- where do the bad spots come from? (which type of singularity?)
- are they only on the surface of the apple? (are they always at the phase space boundaries?)
- if I make an apple cake:

(integrate the amplitude over the phase space)

- are the spots harmless? (integrable?)
- can I cut out the bad spots and still have enough apple left for the cake? (to drop or interpolate problematic phase space points: do they represent a negligible fraction of phase space?)
- if I cut the cake, do hidden bad spots suddenly show UP? (how do kinematic cuts affect the numerical stability?)

disadvantages ... Z.Nagy • There can be problems from double parton scattering singularities. • This starts at N = 6.

Revenge of the Analytic S-matrix

Search INSIDE!™ The Analyt S-Matrix

R.J. EDEN P.Y.LANDSHDFF D.I.OLIVE J.C.POLKINGHORNE

Combridge University Plans

What has been achieved since Les Houches 2005 ? What has been done in session 1 ? NLO multi-leg group - p.22

Revenge of the Analytic S-matrix

R.J. EDEN P.V.LANDSHDFF D.I.OLIVE J.C.POLKINGHORNE

Combridge University Plans

translate the Bible into modern language!

extra slides

- plan: dedicated section in the proceedings on different types of singularities (Giele, Duplancic, et al)
- agreement on information that would be useful in a publication:
 - amplitudes in analytical form: give numerical value at certain phase space point(s) such that others can compare
 - integrated amplitudes/cross sections: statements about numerical behaviour
 - what fraction of phase space shows instabilities ?
 - how have they been dealt with ?

Virtual Corrections

... interference of LO diagrams with

 $\tilde{\mathcal{M}}_{V}^{finite}$ computed with Passarino-Veltman reduction cumbersome: (numerically small) pentagon contributions

combination of real emission and virtual contributions with subtraction terms according to dipole approach of *Catani & Seymour*

poles canceled analytically \rightarrow finite results

VV production via VBF

Barbara Jäger @ Loopfest VI