Upcoming Experiments in Astroparticle Physics

John CARR

Centre de Physique des Particules de Marseille / IN2P3 / CNRS

1. Astroparticle Physics

2. Cosmic Ray Experiments

3. Gamma Ray Telescopes

4. Neutrino Telescopes

Les Houches 13 May 2005

Astroparticle Physics

present time

Composition of the Universe

Expansion of the universe accelerating

WIMP Distributions in Galaxy

Concentrations at Centre of Sun, Centre of Earth Halo of Galaxy $\rho \sim 0.3 \text{ GeV/ cm}^3$, $v \sim 300 \text{ km/sec}$

Spike around Black Hole at Galactic Centre?

C.

Clumpy Halo?

Multi-Messenger Astronomy

Visible Light

Gamma Rays

Neutrinos

Astroparticle PhysicsTerrestrial AcceleratorsCosmic Accelerators

Active Galactic Nuclei

Binary Systems

SuperNova Remnant

LHC CERN, Geneva, 2005

Saturne, Saclay, 1964

Cyclotron Berkeley 1937

Energy of particles accelerated

 $(\Box$

Origin of High Energy Cosmic Rays ?

Same energy density arriving on Earth as starlight but origin is unknown.

Extremely Energetic Cosmic Sources

Gamma Ray Bursts

Multi-Messenger Astronomy

Light and gamma rays absorbed on matter and radiation Charged cosmic rays deviated by magnetic fields Neutrino trace back to the source, even the most distant

Ultra High Energy Cosmic Rays

Astronomy with charged comic rays not easy

M. Masetti

Auger Observatory in Argentina

AUGER-North

Proposal for Northern site :USA Utah or Colorado

Equatorial Coordinates

EUSO concept: Detecting air showers from space.

Dark matter search with charged cosmic rays and gammas

PAMELA: satellite launch 2004

AMS International Space Station: 2007

Gamma Ray Telescope Projects

HESS gamma ray telescope in Namibia

Example of recent observation previously unknown source :

Observation of Galactic Centre : HESS

Energy Spectrum of GC

(If interpreted as Dark Matter $M\chi > 12$ TeV)

Add large 35m dish at middle of existing 4 telescopes

Future of satellite gammas: GLAST

- Launched in 2007 Lifetime: 5 y (goal 10 y)
- Payload to be built by a wide collaboration of Astrophysics and Particle Physics institutes in USA, France, Italy, Germany, Sweden and Japan

Energy range: 10 MeV to > 300 GeV Field of view: > 3 sr Source location accuracy: 30" - 1' Energy resolution (1 σ): 2% (> 10 GeV) Sensitivity (2-y survey): 2 10⁻⁹ cm⁻² s⁻¹ (> 100 MeV)

Gamma Ray Astronomy in 2008

Neutrino Telescope Projects

ANTARES La-Seyne-sur-Mer, France (NEMO Catania, Italy)

BAIKAL: Lake Baikal, Siberia

NESTOR : Pylos, Greece

DUMAND, Hawaii (cancelled 1995)

AMANDA, South Pole, Antarctica

Neutrino weak interactions with matter

Unique properties of neutrinos :

Astronomic sources and universe transparent to neutrinos **but**...

Need massive detectors to observe them

Neutrino interaction lengtl

Earth transparent up to 100 TeV

Probability of interaction $\sim 10^{-5}$ / km water at 100 TeV

Interaction length of neutrinos vs energy

Evolution of Neutrino Telescopes

SuperKamiokande 30 K tonnes water in

ANTARES 10 000 K tonnes water In deep sea

Need > 1000 m depth to absorb light and cosmic rays

Principle of Neutrino Astronomy

Undersea Neutrino Telescope

AMANDA data

AMANDA data Flux of atmospheric neutrinos

Angular Resolution

~ 0.2° at 100 TeV :dominated by detector resolution

Energy measurement

Water versus Ice

Deployment

Ice gives solid platform to install detector Sea experiments need boats/ platforms Ice detectors worked first (Baikal deploys from ice)

Angular Resolution

Light scattering much less in waterAMANDA: ~ 3° (real detector)ANTARES: ~ 0.2 ° (simulations)

Uniformity of Detector response

Water homogeneous Ice has dust layers, bubbles Knowledge of efficiency simpler in water

Noise Backgrounds

Water: ⁴⁰K /bioluminescence ~ 60kHz / PMT Ice: only dark tube noise ~ 500Hz / PMT

Effective Neutrino Area AMANDA / ANTARES

Region of sky observable by Neutrino Telescopes

AMANDA (South Pole)

ANTARES (43° North)

SuperNova Remnants

Energy Argument for Supernova Origin of Cosmic Rays

One supernova ~ 10^{51} ergs In galaxy 1 SN / 30 years (1/ 10^{9} sec) Power in supernova ~ 10^{42} ergs / sec If efficiency to convert SN power to CR 5% $\Rightarrow 5 \times 10^{40}$ ergs/sec

Total power in cosmic rays: 5×10^{40} ergs/sec

Evidence for Acceleration of cosmic-ray protons in supernova remnant RX J1713.7-3946?

CANGAROO Gamma Ray Telescope

Relative Declination (degrees)

Recent results from HESS gamma ray telescope

RX J1713.7-3946

Signal for Northern Hemisphere Neutrino Telescopes (few events / year in ANTARES)

Observation of neutrinos would give clear proof for hadronic acceleration and so source of cosmic rays

Event rates from Microquasars in **ANTARES**

Model of Levisson and Waxman: Proton interactions on synchrotron gamma from electrons - assuming 10% of jet energy in protons

C. Distefano et al, ApJ 575, 378(2002)

Search for concentrations of Dark Matter

Indirect detection of WIMPS Searches for annihilation in Earth, Sun, Galactic Centre

DM : ANTARES versus Direct Detection

Using example of mSUGRA model

A₀=0, μ>0,

tanβ=10,

M_{1/2}=0-800 GeV,

M₀=0-1000 GeV

+ $\Omega_{\text{wimp}}h^2 < 1$

+ LEP constraints

Neutrino telescope

v flux from sun

Direct Detection

spin-independent cross-section

⇒ Neutrino Telescopes very competitive for some regions of MSSM phase space

Site location

Deployment of Sea Cable, Nov 2001

Deployment of Junction Box, Dec 2002

Sea bed situation March 2003

instrumentatio

Line

(MIIL)

5 storey optical detector line (PSL)

3.

36

Undersea images of detector elements

"Line 0" : In-situ final test of line cables

Deployment Line0 March 16 2005

MILOM : Real instrumentation line for calibration

Deployment March 18 2005

Line0 / MILOM Connection with ROV Victor

Timing resolution in the Sea

Optical Modules

Optical Beacon 60 LED ~10ns pulse width

Time difference between pairs of optical modules

Reference time clock system

Conclusions

ANTARES 12 line detector planned for completion 2007

Complete Neutrino Astronomy sky coverage with AMANDA/ICECUBE

> KM3NET future km scale in Mediterranean